1
|
MacPherson J, Shipley ON, Weinrauch AM, Busquets-Vass G, Newsome SD, Anderson WG. Absence of a functional gut microbiome impairs host amino acid metabolism in the Pacific spiny dogfish (Squalus suckleyi). J Exp Biol 2024; 227:jeb247751. [PMID: 39091254 DOI: 10.1242/jeb.247751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Nitrogen recycling and amino acid synthesis are two notable ways in which the gut microbiome can contribute to host metabolism, and these processes are especially important in nitrogen-limited animals. Marine elasmobranchs are nitrogen limited as they require substantial amounts of this element to support urea-based osmoregulation. However, following antibiotic-induced depletion of the gut microbiome, elasmobranchs are known to experience a significant decline in circulating urea and employ compensatory nitrogen conservation strategies such as reduced urea and ammonia excretion. We hypothesized that the elasmobranch gut microbiome transforms dietary and recycled nutrients into amino acids, supporting host carbon and nitrogen balance. Here, using stable isotope analyses, we found that depleting the gut microbiome of Pacific spiny dogfish (Squalus suckleyi) resulted in a significant reduction to the incorporation of supplemented dietary 15N into plasma amino acids, notably those linked to nitrogen handling and energy metabolism, but had no effect on gut amino acid transport. These results demonstrate the importance of gut microbes to host amino acid pools and the unique nitrogen handling strategy of marine elasmobranchs. More broadly, these results elucidate how the gut microbiome contributes to organismal homeostasis, which is likely a ubiquitous phenomenon across animal populations.
Collapse
Affiliation(s)
- Jess MacPherson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Geraldine Busquets-Vass
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Laboratorio de Macroecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada - Unidad La Paz, La Paz, Baja California Sur 23050, Mexico
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| |
Collapse
|
2
|
Liu S, Luo L, Zuo F, Huang X, Zhong L, Liu S, Geng Y, Ou Y, Chen D, Cai W, Deng Y. Ammonia nitrogen stress damages the intestinal mucosal barrier of yellow catfish ( Pelteobagrus fulvidraco) and induces intestinal inflammation. Front Physiol 2023; 14:1279051. [PMID: 37791345 PMCID: PMC10542119 DOI: 10.3389/fphys.2023.1279051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Nitrogen from ammonia is one of the most common pollutants toxics to aquatic species in aquatic environment. The intestinal mucosa is one of the key mucosal defenses of aquatic species, and the accumulation of ammonia nitrogen in water environment will cause irreversible damage to intestinal function. In this study, histology, immunohistochemistry, ultrastructural pathology, enzyme activity analysis and qRT-PCR were performed to reveal the toxic effect of ammonia nitrogen stress on the intestine of Pelteobagrus fulvidraco. According to histological findings, ammonia nitrogen stress caused structural damage to the intestine and reduced the number of mucous cells. Enzyme activity analysis revealed that the activity of bactericidal substances (Lysozyme, alkaline phosphatase, and ACP) had decreased. The ultrastructure revealed sparse and shortened microvilli as well as badly degraded tight junctions. Immunohistochemistry for ZO-1 demonstrated an impaired intestinal mucosal barrier. Furthermore, qRT-PCR revealed that tight junction related genes (ZO-1, Occludin, Claudin-1) were downregulated, while the pore-forming protein Claudin-2 was upregulated. Furthermore, as ammonia nitrogen concentration grew, so did the positive signal of Zap-70 (T/NK cell) and the expression of inflammation-related genes (TNF, IL-1β, IL-8, IL-10). In light of the above findings, we conclude that ammonia nitrogen stress damages intestinal mucosal barrier of Pelteobagrus fulvidraco and induces intestinal inflammation.
Collapse
Affiliation(s)
- Senyue Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenlong Cai
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Hoogenboom JL, Anderson WG. Using 15N to determine the metabolic fate of dietary nitrogen in North Pacific spiny dogfish (Squalus acanthias suckleyi). J Exp Biol 2023; 226:jeb244921. [PMID: 37306009 DOI: 10.1242/jeb.244921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Marine elasmobranchs are ureosmotic, retaining large concentrations of urea to balance their internal osmotic pressure with that of the external marine environment. The synthesis of urea requires the intake of exogenous nitrogen to maintain whole-body nitrogen balance and satisfy obligatory osmoregulatory and somatic processes. We hypothesized that dietary nitrogen may be directed toward the synthesis of specific nitrogenous molecules in post-fed animals; specifically, we predicted the preferential accumulation and retention of labelled nitrogen would be directed towards the synthesis of urea necessary for osmoregulatory purposes. North Pacific spiny dogfish (Squalus acanthias suckleyi) were fed a single meal of 7 mmol l-1 15NH4Cl in a 2% ration by body mass of herring slurry via gavage. Dietary labelled nitrogen was tracked from ingestion to tissue incorporation and the subsequent synthesis of nitrogenous compounds (urea, glutamine, bulk amino acids, protein) in the intestinal spiral valve, plasma, liver and muscle. Within 20 h post-feeding, we found labelled nitrogen was incorporated into all tissues examined. The highest δ15N values were seen in the anterior region of the spiral valve at 20 h post-feeding, suggesting this region was particularly important in assimilating the dietary labelled nitrogen. In all tissues examined, enrichment of the nitrogenous compounds was sustained throughout the 168 h experimental period, highlighting the ability of these animals to retain and use dietary nitrogen for both osmoregulatory and somatic processes.
Collapse
Affiliation(s)
- J Lisa Hoogenboom
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2M5
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada, R3T 2M5
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
| |
Collapse
|
4
|
Hoogenboom JL, Anderson WG. Investigating nitrogen movement in North Pacific spiny dogfish (Squalus acanthias suckleyi), with focus on UT, Rhp2, and Rhbg mRNA abundance. J Comp Physiol B 2023:10.1007/s00360-023-01487-4. [PMID: 37162540 DOI: 10.1007/s00360-023-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
For ureosmotic marine elasmobranchs, the acquisition and retention of nitrogen is critical for the synthesis of urea. To better understand whole-body nitrogen homeostasis, we investigated mechanisms of nitrogen trafficking in North Pacific spiny dogfish (Squalus acanthias suckleyi). We hypothesized that the presence of nitrogen within the spiral valve lumen would affect both the transport of nitrogen and the mRNA abundance of a urea transporter (UT) and two ammonia transport proteins (Rhp2, Rhbg) within the intestinal epithelium. The in vitro preincubation of intestinal tissues in NH4Cl, intended to simulate dietary nitrogen availability, showed that increased ammonia concentrations did not significantly stimulate the net uptake of total urea or total methylamine. We also examined the mRNA abundance of UT, Rhp2, and Rhbg in the gills, kidney, liver, and spiral valve of fasted, fed, excess urea fed, and antibiotic-treated dogfish. After fasting, hepatic UT mRNA abundance was significantly lower, and Rhp2 mRNA in the gills was significantly higher than the other treatments. Feeding significantly increased Rhp2 mRNA levels in the kidney and mid spiral valve region. Both excess urea and antibiotics significantly reduced Rhbg mRNA levels along all three spiral valve regions. The antibiotic treatment also significantly diminished UT mRNA abundance levels in the anterior and mid spiral valve, and Rhbg mRNA levels in the kidney. In our study, no single treatment had significantly greater influence on the overall transcript abundance of the three transport proteins compared to another treatment, demonstrating the dynamic nature of nitrogen balance in these ancient fish.
Collapse
Affiliation(s)
- J Lisa Hoogenboom
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada.
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada
| |
Collapse
|
5
|
Shipley ON, Olin JA, Whiteman JP, Bethea DM, Newsome SD. Bulk and amino acid nitrogen isotopes suggest shifting nitrogen balance of pregnant sharks across gestation. Oecologia 2022; 199:313-328. [PMID: 35718810 DOI: 10.1007/s00442-022-05197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Nitrogen isotope (δ15N) analysis of bulk tissues and individual amino acids (AA) can be used to assess how consumers maintain nitrogen balance with broad implications for predicting individual fitness. For elasmobranchs, a ureotelic taxa thought to be constantly nitrogen limited, the isotopic effects associated with nitrogen-demanding events such as prolonged gestation remain unknown. Given the linkages between nitrogen isotope variation and consumer nitrogen balance, we used AA δ15N analysis of muscle and liver tissue collected from female bonnethead sharks (Sphyrna tiburo, n = 16) and their embryos (n = 14) to explore how nitrogen balance may vary across gestation. Gestational stage was a strong predictor of bulk tissue and AA δ15N values in pregnant shark tissues, decreasing as individuals neared parturition. This trend was observed in trophic (e.g., Glx, Ala, Val), source (e.g., Lys), and physiological (e.g., Gly) AAs. Several potential mechanisms may explain these results including nitrogen conservation, scavenging, and bacterially mediated breakdown of urea to free ammonia that is used to synthesize AAs. We observed contrasting patterns of isotopic discrimination in embryo tissues, which generally became enriched in 15N throughout development. This was attributed to greater excretion of nitrogenous waste in more developed embryos, and the role of physiologically sensitive AAs (i.e., Gly and Ser) to molecular processes such as nucleotide synthesis. These findings underscore how AA isotopes can quantify shifts in nitrogen balance, providing unequivocal evidence for the role of physiological condition in driving δ15N variation in both bulk tissues and individual AAs.
Collapse
Affiliation(s)
- Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Beneath the Waves, PO Box 126, Herndon, VA, 20172, USA.
| | - Jill A Olin
- Biological Sciences, Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - John P Whiteman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Dana M Bethea
- NOAA Fisheries Southeast Regional Office, Saint Petersburg, FL, 33701, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
6
|
Perry CT, Pratte ZA, Clavere-Graciette A, Ritchie KB, Hueter RE, Newton AL, Fischer GC, Dinsdale EA, Doane MP, Wilkinson KA, Bassos-Hull K, Lyons K, Dove ADM, Hoopes LA, Stewart FJ. Elasmobranch microbiomes: emerging patterns and implications for host health and ecology. Anim Microbiome 2021; 3:61. [PMID: 34526135 PMCID: PMC8444439 DOI: 10.1186/s42523-021-00121-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch–microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care.
Collapse
Affiliation(s)
- Cameron T Perry
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Zoe A Pratte
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina Beaufort, Beaufort, SC, USA
| | - Robert E Hueter
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA.,OCEARCH, Park City, UT, USA
| | - Alisa L Newton
- Disney's Animals, Science and Environment, Orlando, FL, USA
| | - G Christopher Fischer
- OCEARCH, Park City, UT, USA.,Marine Science Research Institute, Jacksonville University, Jacksonville, FL, USA
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Krystan A Wilkinson
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA.,Chicago Zoological Society's Sarasota Dolphin Research Program ℅ Mote Marine Laboratory, Sarasota, FL, USA
| | - Kim Bassos-Hull
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL, USA
| | - Kady Lyons
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Alistair D M Dove
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Lisa A Hoopes
- Research and Conservation Department, Georgia Aquarium, Atlanta, GA, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
7
|
Weinrauch AM, Hoogenboom JL, Anderson WG. A review of reductionist methods in fish gastrointestinal tract physiology. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110571. [PMID: 33556622 DOI: 10.1016/j.cbpb.2021.110571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
A holistic understanding of a physiological system can be accomplished through the use of multiple methods. Our current understanding of the fish gastrointestinal tract (GIT) and its role in both nutrient handling and osmoregulation is the result of the examination of the GIT using multiple reductionist methods. This review summarizes the following methods: in vivo mass balance studies, and in vitro gut sac preparations, intestinal perfusions, and Ussing chambers. From Homer Smith's initial findings of marine fish intestinal osmoregulation in the 1930s through to today's research, we discuss the methods, their advantages and pitfalls, and ultimately how they have each contributed to our understanding of fish GIT physiology. Although in vivo studies provide substantial information on the intact animal, segment specific functions of the GIT cannot be easily elucidated. Instead, in vitro gut sac preparations, intestinal perfusions, or Ussing chamber experiments can provide considerable information on the function of a specific tissue and permit the delineation of specific transport pathways through the use of pharmacological agents; however, integrative inputs (e.g. hormonal and neuronal) are removed and only a fraction of the organ system can be studied. We conclude with two case studies, i) divalent cation transport in teleosts and ii) nitrogen handling in the elasmobranch GIT, to highlight how the use of multiple reductionist methods contributes to a greater understanding of the organ system as a whole.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - J Lisa Hoogenboom
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
8
|
Jung EH, Smich J, Rubino JG, Wood CM. An in vitro study of urea and ammonia production and transport by the intestinal tract of fed and fasted rainbow trout: responses to luminal glutamine and ammonia loading. J Comp Physiol B 2021; 191:273-287. [PMID: 33415429 DOI: 10.1007/s00360-020-01335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
Digestion of dietary protein in teleosts results in high ammonia levels within the intestinal chyme that may reach concentrations that are many-fold greater than blood plasma levels. We used in vitro gut sac preparations of the ammoniotelic rainbow trout (Oncorhynchus mykiss) to investigate the role of the intestine in producing and transporting ammonia and urea, with specific focus on feeding versus fasting, and on responses to loading of the lumen with 2 mmol L-1 glutamine or 2 mmol L-1 ammonia. Feeding increased not only ammonia production and both mucosal and serosal fluxes, but also increased urea production and serosal fluxes. Elevated urea production was accompanied by an increase in arginase activity but minimal CPS III activity, suggesting that urea may be produced by direct arginolysis. The ammonia production and serosal fluxes increased in fasted preparations with glutamine loading, indicating an ability of the intestinal tissue to deaminate glutamine and perhaps use it as an energy source. However, there was little evidence of urea production or transport resulting from the presence of glutamine. Furthermore, the intestinal tissues did not appear to convert surplus ammonia to urea as a detoxification mechanism, as urea production and serosal flux rates decreased in fed preparations, with minimal changes in fasted preparations. Nevertheless, there was indirect evidence of detoxification by another pathway, as ammonia production rate decreased with ammonia loading in fed preparations. Overall, our study suggests that intestinal tissues of rainbow trout have the ability to produce urea and detoxify ammonia, likely via arginolysis.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | - Joanna Smich
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Julian G Rubino
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.,Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
9
|
The effects of digesting a urea-rich meal on North Pacific spiny dogfish (Squalus acanthias suckleyi). Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110775. [PMID: 32717287 DOI: 10.1016/j.cbpa.2020.110775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
Marine elasmobranchs are nitrogen-limited owing to the requirement of nitrogen for both somatic growth and urea-based osmoregulation, and due to the loss of urea across the gills and kidney as nitrogenous waste. In this study we used in vitro stomach and intestinal gut sacs to investigate the effects of consuming a urea-rich meal (700 mM within a 2% body-mass ration of food-slurry) on nitrogen movement across the gastrointestinal (GI) tract of North Pacific spiny dogfish (Squalus acanthias suckleyi). Plasma urea concentrations did not differ between fasted (359 ± 19 mM), urea-poor fed (340 ± 16 mM), and urea-rich fed (332 ± 24 mM) dogfish. Interestingly, in vitro gut sacs of urea-rich fed dogfish showed no net urea absorption from the lumen over 3 h incubation, which contrasts previously published data on urea-poor fed dogfish that absorb urea from the lumen. In addition, ammonium (NH4+) concentration within the gut sac intestinal lumen significantly increased from 0.62 to 4.35 mM over 3 h. This is likely due to a combination of tissue production and microbial urease activity in the intestine. The overall results highlight the ability of S. a. suckleyi to regulate and maintain internal nitrogen concentrations despite the addition of excess dietary urea.
Collapse
|
10
|
Weinrauch AM, Folkerts EJ, Blewett TA, Bucking C, Anderson WG. Impacts of low salinity exposure and antibiotic application on gut transport activity in the Pacific spiny dogfish, Squalus acanthias suckleyi. J Comp Physiol B 2020; 190:535-545. [PMID: 32617717 DOI: 10.1007/s00360-020-01291-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
The role of the marine elasmobranch gastrointestinal tract in nitrogen-recycling and osmotic homeostasis has become increasingly apparent, with the gut microbial community likely playing a significant role converting urea, an important osmolyte in elasmobranchs, into ammonia. The Pacific spiny dogfish can experience and tolerate reduced environmental salinities, yet how this environmental challenge may affect the microbiome, and consequently nitrogen transport across the gut, is as of yet unknown. In the present study, excised gut sac preparations were made from dogfish acclimated to the following: full-strength seawater (C), low salinity for 7 days (LS), and after acute transfer of LS-acclimated fish to full-strength SW for 6 h (AT). Significantly reduced microbial derived urease activity was observed in the mucosal saline of gut sac preparations from the LS (by 81%) and AT (by 89%) treatments relative to the C treatment. Microbial derived cellulase activity from mucosal saline samples tended to follow similar patterns. To further ensure an effective decrease in the spiral valve microbial population, an antibiotic cocktail was applied to the mucosal saline used for in vitro measurements of ion, water, and nitrogen flux in these gut sac preparations. This caused a further 57-61% decrease in the mucosal saline urease activity of the C and LS treatments. Overall, we observed relatively little flux across the stomach for all measured parameters aside from water movement, which switched from a net efflux in control fish to a net influx in acutely transferred fish, indicative of drinking. While no significant differences were observed in terms of nitrogen flux (urea or ammonia), we tended to see the accumulation of ammonia in the spiral valve lumen and a switch from efflux to influx of urea in control versus acutely transferred fish. The increased ammonia production likely occurs as a result of heightened metabolism in a challenging environment, while the retention and acquisition of urea is suggestive of nitrogen scavenging under nitrogen-limiting conditions.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada.
| | - Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| | - Carol Bucking
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| |
Collapse
|
11
|
The gaseous gastrointestinal tract of a seawater teleost, the English sole (Parophrys vetulus). Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110743. [PMID: 32531535 DOI: 10.1016/j.cbpa.2020.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
There has been considerable recent progress in understanding the respiratory physiology of the gastrointestinal tract (GIT) in teleosts, but the respiratory conditions inside the GIT remain largely unknown, particularly the luminal PCO2 and PO2 levels. The GIT of seawater teleosts is of special interest due to its additional function of water absorption linked to HCO3- secretion, a process that may raise luminal PCO2 levels. Direct measurements of GIT PCO2 and PO2 using micro-optodes in the English sole (Parophrys vetulus; anaesthetized, artificially ventilated, 10-12 °C) revealed extreme luminal gas levels. Luminal PCO2 was 14-17 mmHg in the stomach and intestinal segments of fasted sole, considerably higher than arterial blood levels of 5 mmHg. Moreover, feeding, which raised intestinal HCO3- concentration, also raised luminal PCO2 to 34-50 mmHg. All these values were higher than comparable measurements in freshwater teleosts, and also greater than environmental CO2 levels of concern in aquaculture or global change scenarios. The PCO2 values in subintestinal vein blood draining the GIT of fed fish (28 mmHg) suggested some degree of equilibration with high luminal PCO2, whereas subintestinal vein PO2 levels were relatively low (9 mmHg). All luminal sections of the GIT were virtually anoxic (PO2 ≤ 0.3 mmHg), in both fasted and fed animals, a novel finding in teleosts.
Collapse
|
12
|
An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K + channels, and Na +, K + ATPase. J Comp Physiol B 2019; 189:549-566. [PMID: 31486919 DOI: 10.1007/s00360-019-01231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
We examined mechanisms of ammonia handling in the anterior, mid, and posterior intestine of unfed and fed freshwater rainbow trout (Oncorhynchus mykiss), with a focus on the Na+:K+:2Cl- co-transporter (NKCC), Na+:K +-ATPase (NKA), and K+ channels. NKCC was localized by immunohistochemistry to the mucosal (apical) surface of enterocytes, and NKCC mRNA was upregulated after feeding in the anterior and posterior segments. NH4+ was equally potent to K+ in supporting NKA activity in all intestinal sections. In vitro gut sac preparations were employed to examine mucosal ammonia flux rates (Jmamm, disappearance from the mucosal saline), serosal ammonia flux rates (Jsamm, appearance in the serosal saline), and total tissue ammonia production rates (Jtamm = Jsamm - Jmamm). Bumetanide (10-4 mol L-1), a blocker of NKCC, inhibited Jsamm in most preparations, but this was largely due to reduction of Jtamm; Jmamm was significantly inhibited only in the anterior intestine of fed animals. Ouabain (10-4 mol L-1), a blocker of NKA, generally reduced both Jmamm and Jsamm without effects on Jtamm in most preparations, though the anterior intestine was resistant after feeding. Barium (10-2 mol L-1), a blocker of K+ channels, inhibited Jmamm in most preparations, and Jsamm in some, without effects on Jtamm. These pharmacological results, together with responses to manipulations of serosal and mucosal Na+ and K+ concentrations, suggest that NKCC is not as important in ammonia absorption as previously believed. NH4+ appears to be taken up through barium-sensitive K+ channels on the mucosal surface. Mucosal NH4+ uptake via both NKCC and K+ channels is energized by basolateral NKA, which plays an additional role in scavenging NH4+ on the serosal surface to possibly minimize blood toxicity or enhance ion uptake and amino acid synthesis following feeding. Together with recent findings from other studies, we have provided an updated model to describe the current understanding of intestinal ammonia transport in teleost fish.
Collapse
|