1
|
Li C, He Q, Wang Y, Wang Z, Wang Z, Annapooranan R, Latz MI, Cai S. Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat Commun 2022; 13:3914. [PMID: 35798737 PMCID: PMC9263131 DOI: 10.1038/s41467-022-31705-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
Biohybrid is a newly emerging and promising approach to construct soft robotics and soft machines with novel functions, high energy efficiency, great adaptivity and intelligence. Despite many unique advantages of biohybrid systems, it is well known that most biohybrid systems have a relatively short lifetime, require complex fabrication process, and only remain functional with careful maintenance. Herein, we introduce a simple method to create a highly robust and power-free soft biohybrid mechanoluminescence, by encapsulating dinoflagellates, bioluminescent unicellular marine algae, into soft elastomeric chambers. The dinoflagellates retain their intrinsic bioluminescence, which is a near-instantaneous light response to mechanical forces. We demonstrate the robustness of various geometries of biohybrid mechanoluminescent devices, as well as potential applications such as visualizing external mechanical perturbations, deformation-induced illumination, and optical signaling in a dark environment. Our biohybrid mechanoluminescent devices are ultra-sensitive with fast response time and can maintain their light emission capability for weeks without special maintenance.
Collapse
Affiliation(s)
- Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qiguang He
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yang Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Raja Annapooranan
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA. .,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Kovács KD, Novák M, Hajnal Z, Hős C, Szabó B, Székács I, Fang Y, Bonyár A, Horvath R. Label-free tracking of whole-cell response on RGD functionalized surfaces to varied flow velocities generated by fluidic rotation. J Colloid Interface Sci 2021; 599:620-630. [PMID: 33984760 DOI: 10.1016/j.jcis.2021.04.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Fluidic flow plays important roles in colloid and interface sciences. Measuring adsorption, aggregation processes and living cell behavior under a fluidic environment with varied flow velocities in a parallel and high-throughput manner remains to be a challenging task. Here a method is introduced to monitor cell response to well-defined flow with varied velocities over an array of label-free resonant waveguide grating (RWG) based optical biosensors. The arrangement consists of a circular well with an array of biosensors at the bottom surface. By rotating the liquid over the biosensor array using a magnetic stirrer bar, flow velocities from zero to a predefined maximum can be easily established over different locations within the biosensor array as characterized in detail by numerical simulations. Cell adhesion and detachment measurements on an Arg-Gly-Asp (RGD) peptide functionalized surface were performed to demonstrate i) measurements at a wide range of simultaneous flow velocities over the same interface; ii) the possibility of parallel measurements at the same flow conditions in one run; and iii) the simple tuning of the employed range of flow velocities. Our setup made it possible to analyze the magnitude and rate of cell detachment at various flow velocities in parallel and determine the critical velocity and force where cells start to detach from the RGD motif displaying biomimetic surface. Furthermore, cellular response to simultaneous mechanical (flow) and chemical stimulation was also investigated using trypsin as a model. This study opens a new possibility to investigate interface phenomena under predefined and conveniently varied flow conditions.
Collapse
Affiliation(s)
- Kinga Dóra Kovács
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary; Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Martin Novák
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary
| | - Zoltán Hajnal
- Microsystems Laboratory, ELKH EK MFA, Budapest, Hungary
| | - Csaba Hős
- Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bálint Szabó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary
| | - Ye Fang
- EIG New Programs, Corning Research and Development Corporation, Corning Incorporated, NY, USA
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Robert Horvath
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary.
| |
Collapse
|
3
|
Lindström JB, Pierce NT, Latz MI. Role of TRP Channels in Dinoflagellate Mechanotransduction. THE BIOLOGICAL BULLETIN 2017; 233:151-167. [PMID: 29373067 DOI: 10.1086/695421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd3+), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Collapse
Key Words
- AA, amino acids
- AMTB hydrochloride, N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride
- Ce, Caenorhabditis elegans
- Cr, Chlamydomonas reinhardtii
- DMSO, dimethyl sulfoxide
- Dm, Drosophila melanogaster
- Dr, Danio rerio
- FSW, filtered seawater
- Gd3+, gadolinium
- GsMTx4, Grammostola spatulata mechanotoxin 4
- HC067047, 2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
- HMM, Hidden Markov Model
- Hs, Homo sapiens
- Lp, Lingulodinium polyedra
- ML204, 4-Methyl-2-(1-piperidinyl)-quinoline
- Mb, Monosiga brevicollis
- ORF, open reading frame
- PIP2, Phosphatidylinositol 4,5-bisphosphate
- PLC, phospholipase C
- Pt, Paramecium tetraurelia
- RHC80267, O,O′-[1,6-Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone
- RN1734, 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide
- RN1747, 1-(4-Chloro-2-nitrophenyl)sulfonyl-4-benzylpiperazine
- TMHMM, transmembrane helix prediction
- TRP, transient receptor potential channel
- U73122, 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione
Collapse
|
4
|
Lang AW, Jones EM, Afroz F. Separation control over a grooved surface inspired by dolphin skin. BIOINSPIRATION & BIOMIMETICS 2017; 12:026005. [PMID: 28059780 DOI: 10.1088/1748-3190/aa5770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Over many decades the biological surfaces of aquatic swimmers have been studied for their potential as drag reducing surfaces. The hydrodynamic benefit of riblets, or grooves embedded parallel to the flow which appear on surfaces such as shark skin, have been well documented. However the skin of dolphins is embedded with sinusoidal grooves that run perpendicular or transverse to the flow over their bodies. It is theorized that the transverse grooves present on dolphin skin trap vortices between them, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer, thus acting as a potential mechanism to reduce flow separation and thus pressure drag. In an attempt to test this hypothesis and study these effects, an adverse pressure gradient was induced above a flat plate resulting in a controlled region of flow separation occurring within a tripped, turbulent boundary layer. Small transverse grooves of both rectangular and sinusoidal shape were 3D printed and mounted to the plate to measure their effect on the boundary layer flow. The results were compared to a flat plate without grooves using digital particle image velocimetry (DPIV). The strength of the adverse pressure gradient was varied, and the observed control in flow separation and other effects upon the boundary layer are discussed.
Collapse
Affiliation(s)
- Amy W Lang
- Department of Aerospace Engineering and Mechanics, University of Alabama, 255 H M Comer, 245 7th Avenue, Box 870280, Tuscaloosa, AL 35487, United States of America
| | | | | |
Collapse
|
5
|
Tesson B, Latz MI. Mechanosensitivity of a rapid bioluminescence reporter system assessed by atomic force microscopy. Biophys J 2016; 108:1341-1351. [PMID: 25809248 DOI: 10.1016/j.bpj.2015.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/10/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cells are sophisticated integrators of mechanical stimuli that lead to physiological, biochemical, and genetic responses. The bioluminescence of dinoflagellates, alveolate protists that use light emission for predator defense, serves as a rapid noninvasive whole-cell reporter of mechanosensitivity. In this study, we used atomic force microscopy (AFM) to explore the relationship between cell mechanical properties and mechanosensitivity in live cells of the dinoflagellate Pyrocystis lunula. Cell stiffness was 0.56 MPa, consistent with cells possessing a cell wall. Cell response depended on both the magnitude and velocity of the applied force. At the maximum stimulation velocity of 390 μm s(-1), the threshold response occurred at a force of 7.2 μN, resulting in a contact time of 6.1 ms and indentation of 2.1 μm. Cells did not respond to a low stimulation velocity of 20 μm s(-1), indicating a velocity dependent response that, based on stress relaxation experiments, was explained by the cell viscoelastic properties. This study demonstrates the use of AFM to study mechanosensitivity in a cell system that responds at fast timescales, and provides insights into how viscoelastic properties affect mechanosensitivity. It also provides a comparison with previous studies using hydrodynamic stimulation, showing the discrepancy in cell response between direct compressive forces using AFM and those within flow fields based on average flow properties.
Collapse
Affiliation(s)
- Benoit Tesson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California.
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California.
| |
Collapse
|
6
|
Deane GB, Stokes MD, Latz MI. Bubble stimulation efficiency of dinoflagellate bioluminescence. LUMINESCENCE 2015; 31:270-80. [PMID: 26061152 DOI: 10.1002/bio.2957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/07/2015] [Accepted: 05/08/2015] [Indexed: 11/10/2022]
Abstract
Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.
Collapse
Affiliation(s)
- Grant B Deane
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - M Dale Stokes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Sagong W, Jeon WP, Choi H. Hydrodynamic characteristics of the sailfish (Istiophorus platypterus) and swordfish (Xiphias gladius) in gliding postures at their cruise speeds. PLoS One 2013; 8:e81323. [PMID: 24312547 PMCID: PMC3846759 DOI: 10.1371/journal.pone.0081323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The sailfish and swordfish are known as the fastest sea animals, reaching their maximum speeds of around 100 km/h. In the present study, we investigate the hydrodynamic characteristics of these fishes in their cruise speeds of about 1 body length per second. We install a taxidermy specimen of each fish in a wind tunnel, and measure the drag on its body and boundary-layer velocity above its body surface at the Reynolds number corresponding to its cruising condition. The drag coefficients of the sailfish and swordfish based on the free-stream velocity and their wetted areas are measured to be 0.0075 and 0.0091, respectively, at their cruising conditions. These drag coefficients are very low and comparable to those of tuna and pike and smaller than those of dogfish and small-size trout. On the other hand, the long bill is one of the most distinguished features of these fishes from other fishes, and we study its role on the ability of drag modification. The drag on the fish without the bill or with an artificially-made shorter one is slightly smaller than that with the original bill, indicating that the bill itself does not contribute to any drag reduction at its cruise speed. From the velocity measurement near the body surface, we find that at the cruise speed flow separation does not occur over the whole body even without the bill, and the boundary layer flow is affected only at the anterior part of the body by the bill.
Collapse
Affiliation(s)
- Woong Sagong
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Woo-Pyung Jeon
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Haecheon Choi
- Department of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
8
|
Jin K, Klima JC, Deane G, Dale Stokes M, Latz MI. Pharmacological investigation of the bioluminescence signaling pathway of the dinoflagellate Lingulodinium polyedrum: evidence for the role of stretch-activated ion channels. JOURNAL OF PHYCOLOGY 2013; 49:733-745. [PMID: 27007206 DOI: 10.1111/jpy.12084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/20/2013] [Indexed: 06/05/2023]
Abstract
Dinoflagellate bioluminescence serves as a whole-cell reporter of mechanical stress, which activates a signaling pathway that appears to involve the opening of voltage-sensitive ion channels and release of calcium from intracellular stores. However, little else is known about the initial signaling events that facilitate the transduction of mechanical stimuli. In the present study using the red tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge, two forms of dinoflagellate bioluminescence, mechanically stimulated and spontaneous flashes, were used as reporter systems to pharmacological treatments that targeted various predicted signaling events at the plasma membrane level of the signaling pathway. Pretreatment with 200 μM Gadolinium III (Gd(3+) ), a nonspecific blocker of stretch-activated and some voltage-gated ion channels, resulted in strong inhibition of both forms of bioluminescence. Pretreatment with 50 μM nifedipine, an inhibitor of L-type voltage-gated Ca(2+) channels that inhibits mechanically stimulated bioluminescence, did not inhibit spontaneous bioluminescence. Treatment with 1 mM benzyl alcohol, a membrane fluidizer, was very effective in stimulating bioluminescence. Benzyl alcohol-stimulated bioluminescence was inhibited by Gd(3+) but not by nifedipine, suggesting that its role is through stretch activation via a change in plasma membrane fluidity. These results are consistent with the presence of stretch-activated and voltage-gated ion channels in the bioluminescence mechanotransduction signaling pathway, with spontaneous flashing associated with a stretch-activated component at the plasma membrane.
Collapse
Affiliation(s)
- Kelly Jin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Jason C Klima
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Grant Deane
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Malcolm Dale Stokes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
9
|
Abstract
Mathematical models suggest the enormous eyes of giant and colossal squid evolved to see the bioluminescence induced by the approach of predatory whales.
Collapse
Affiliation(s)
- Julian C Partridge
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK.
| |
Collapse
|
10
|
Han J, Li G, Liu H, Hu H, Zhang X. Stimulation of bioluminescence in Noctiluca sp. using controlled temperature changes. LUMINESCENCE 2012; 28:742-4. [PMID: 23001957 DOI: 10.1002/bio.2426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/06/2022]
Abstract
Bioluminescence induced by multifarious stimuli has long been observed and is remains under investigation because of its great complexity. In particular, the exact mechanism underlying bioluminescence is not yet fully understood. This work presents a new experimental method for studying Noctiluca sp. bioluminescence under temperature change stimulation. It is a study of Noctiluca sp. bioluminescence using controlled temperature changes in a tank. A characteristic of this experiment is the large volume of water used (1 m(3) in a tank of 2 × 1 × 1 m). Temperature changes were controlled by two methods. In the first, a flask filled with hot water was introduced into the tank and in the second, a water heater was used in the tank. Temperature changes were recorded using sensors. Noctiluca sp. bioluminescence was recorded using a Canon 5D Mark II and this allowed the characteristics of Noctiluca sp. bioluminescence under temperature change stimulation to be monitored.
Collapse
Affiliation(s)
- Jing Han
- National Laboratory of Underwater Observing and Control Technology, Dalian, 116013, China
| | | | | | | | | |
Collapse
|
11
|
Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N. A unique advantage for giant eyes in giant squid. Curr Biol 2012; 22:683-8. [PMID: 22425154 DOI: 10.1016/j.cub.2012.02.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/31/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
Giant and colossal deep-sea squid (Architeuthis and Mesonychoteuthis) have the largest eyes in the animal kingdom [1, 2], but there is no explanation for why they would need eyes that are nearly three times the diameter of those of any other extant animal. Here we develop a theory for visual detection in pelagic habitats, which predicts that such giant eyes are unlikely to evolve for detecting mates or prey at long distance but are instead uniquely suited for detecting very large predators, such as sperm whales. We also provide photographic documentation of an eyeball of about 27 cm with a 9 cm pupil in a giant squid, and we predict that, below 600 m depth, it would allow detection of sperm whales at distances exceeding 120 m. With this long range of vision, giant squid get an early warning of approaching sperm whales. Because the sonar range of sperm whales exceeds 120 m [3-5], we hypothesize that a well-prepared and powerful evasive response to hunting sperm whales may have driven the evolution of huge dimensions in both eyes and bodies of giant and colossal squid. Our theory also provides insights into the vision of Mesozoic ichthyosaurs with unusually large eyes.
Collapse
|
12
|
Abstract
Bioluminescence spans all oceanic dimensions and has evolved many times--from bacteria to fish--to powerfully influence behavioral and ecosystem dynamics. New methods and technology have brought great advances in understanding of the molecular basis of bioluminescence, its physiological control, and its significance in marine communities. Novel tools derived from understanding the chemistry of natural light-producing molecules have led to countless valuable applications, culminating recently in a related Nobel Prize. Marine organisms utilize bioluminescence for vital functions ranging from defense to reproduction. To understand these interactions and the distributions of luminous organisms, new instruments and platforms allow observations on individual to oceanographic scales. This review explores recent advances, including the chemical and molecular, phylogenetic and functional, community and oceanographic aspects of bioluminescence.
Collapse
Affiliation(s)
- Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA.
| | | | | |
Collapse
|
13
|
Weber PW, Murray MM, Howle LE, Fish FE. Comparison of real and idealized cetacean flippers. BIOINSPIRATION & BIOMIMETICS 2009; 4:046001. [PMID: 19834251 DOI: 10.1088/1748-3182/4/4/046001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When a phenomenon in nature is mimicked for practical applications, it is often done so in an idealized fashion, such as representing the shape found in nature with convenient, piece-wise smooth mathematical functions. The aim of idealization is to capture the advantageous features of the natural phenomenon without having to exactly replicate it, and it is often assumed that the idealization process does in fact capture the relevant geometry. We explored the consequences of the idealization process by creating exact scale models of cetacean flippers using CT scans, creating corresponding idealized versions and then determining the hydrodynamic characteristics of the models via water tunnel testing. We found that the majority of the idealized models did not exhibit fluid dynamic properties that were drastically different from those of the real models, although multiple consequences resulting from the idealization process were evident. Drag performance was significantly improved by idealization. Overall, idealization is an excellent way to capture the relevant effects of a phenomenon found in nature, which spares the researcher from having to painstakingly create exact models, although we have found that there are situations where idealization may have unintended consequences such as one model that exhibited a decrease in lift performance.
Collapse
Affiliation(s)
- P W Weber
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
14
|
Benoit-Bird KJ, Au WWL. Phonation behavior of cooperatively foraging spinner dolphins. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:539-546. [PMID: 19173439 DOI: 10.1121/1.2967477] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Groups of spinner dolphins have been shown to cooperatively herd small prey. It was hypothesized that the strong group coordination is maintained by acoustic communication, specifically by frequency-modulated whistles. Observations of groups of spinner dolphins foraging at night within a sound-scattering layer were made with a multibeam echosounder while the rates of dolphin sounds were measured using four hydrophones at 6 m depth intervals. Whistles were only detected when dolphins were not foraging and when animals were surfacing. Differences in click rates were found between depths and between different foraging stages but were relatively low when observations indicated that dolphins were actively feeding despite the consistency of these clicks with echolocation signals. Highest click rates occurred within the scattering layer, during transitions between foraging states. This suggests that clicks may be used directly or indirectly to cue group movement during foraging, potentially by detecting other individuals' positions in the group or serving a direct communicative role which would be contrary to the existing assumption that echolocation and communication are compartmentalized. Communicating via clicks would be beneficial as the signal's characteristics minimize the chance of eavesdropping by competing dolphins and large fish. Our results are unable to support the established paradigm for dolphin acoustic communication and suggest an alternate coordination mechanism in foraging spinner dolphins.
Collapse
Affiliation(s)
- Kelly J Benoit-Bird
- College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97330, USA.
| | | |
Collapse
|
15
|
Latz MI, Bovard M, VanDelinder V, Segre E, Rohr J, Groisman A. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. ACTA ACUST UNITED AC 2008; 211:2865-75. [PMID: 18723546 DOI: 10.1242/jeb.011890] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dinoflagellate bioluminescence serves as a model system for examining mechanosensing by suspended motile unicellular organisms. The response latency, i.e. the delay time between the mechanical stimulus and luminescent response, provides information about the mechanotransduction and signaling process, and must be accurately known for dinoflagellate bioluminescence to be used as a flow visualization tool. This study used a novel microfluidic device to measure the response latency of a large number of individual dinoflagellates with a resolution of a few milliseconds. Suspended cells of several dinoflagellate species approximately 35 microm in diameter were directed through a 200 microm deep channel to a barrier with a 15 microm clearance impassable to the cells. Bioluminescence was stimulated when cells encountered the barrier and experienced an abrupt increase in hydrodynamic drag, and was imaged using high numerical aperture optics and a high-speed low-light video system. The average response latency for Lingulodinium polyedrum strain HJ was 15 ms (N>300 cells) at the three highest flow rates tested, with a minimum latency of 12 ms. Cells produced multiple flashes with an interval as short as 5 ms between individual flashes, suggesting that repeat stimulation involved a subset of the entire intracellular signaling pathway. The mean response latency for the dinoflagellates Pyrodinium bahamense, Alexandrium monilatum and older and newer isolates of L. polyedrum ranged from 15 to 22 ms, similar to the latencies previously determined for larger dinoflagellates with different morphologies, possibly reflecting optimization of dinoflagellate bioluminescence as a rapid anti-predation behavior.
Collapse
Affiliation(s)
- Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Fish FE, Howle LE, Murray MM. Hydrodynamic flow control in marine mammals. Integr Comp Biol 2008; 48:788-800. [PMID: 21669832 DOI: 10.1093/icb/icn029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provides hydrodynamic advantages with respect to drag, lift, thrust, and stall. The flukes of cetaceans and sirenians and flippers of pinnipeds possess geometries with flexibility, which enhance thrust production for high efficiency swimming. The pectoral flippers provide hydrodynamic lift for maneuvering. The design of the flippers is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales (Megaptera novaeangliae). These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The delay of stall permits enhanced turning performance with respect to both agility and maneuverability. The morphological features of marine mammals for flow control can be utilized in the biomimetic design of engineered structures for increased power production and increased efficiency.
Collapse
Affiliation(s)
- Frank E Fish
- *Department of Biology, West Chester University, West Chester, PA 19383, USA; Mechanical Engineering and Material Science Department and Center for Nonlinear and Complex Systems, Duke University, Durham, NC 27708-0300, USA; Mechanical Engineering Department, United States Naval Academy, Annapolis, MD 21402, USA
| | | | | |
Collapse
|
17
|
Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, Vesentini N, Gualtieri P. Oddities and Curiosities in the Algal World. ALGAL TOXINS: NATURE, OCCURRENCE, EFFECT AND DETECTION 2008. [DOI: 10.1007/978-1-4020-8480-5_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Moline MA, Oliver MJ, Mobley CD, Sundman L, Bensky T, Bergmann T, Bissett WP, Case J, Raymond EH, Schofield OME. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jc004138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Maldonado EM, Latz MI. Shear-stress dependence of dinoflagellate bioluminescence. THE BIOLOGICAL BULLETIN 2007; 212:242-9. [PMID: 17565113 DOI: 10.2307/25066606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fluid flow stimulates bioluminescence in dinoflagellates. However, many aspects of the cellular mechanotransduction are incompletely known. The objective of our study was to formally test the hypothesis that flow-stimulated dinoflagellate bioluminescence is dependent on shear stress, signifying that organisms are responding to the applied fluid force. The dinoflagellate Lingulodinium polyedrum was exposed to steady shear using simple Couette flow in which fluid viscosity was manipulated to alter shear stress. At a constant shear rate, a higher shear stress due to increased viscosity increased both bioluminescence intensity and decay rate, supporting our hypothesis that bioluminescence is shear-stress dependent. Although the flow response of non-marine attached cells is known to be mediated through shear stress, our results indicate that suspended cells such as dinoflagellates also sense and respond to shear stress. Shear-stress dependence of flow-stimulated bioluminescence in dinoflagellates is consistent with mechanical stimulation due to direct predator handling in the context of predator-prey interactions.
Collapse
Affiliation(s)
- Elisa M Maldonado
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0202, USA
| | | |
Collapse
|
20
|
Chen AK, Latz MI, Sobolewski P, Frangos JA. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2020-7. [PMID: 17322118 DOI: 10.1152/ajpregu.00649.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminescent dinoflagellates respond to flow by the production of light. The primary mechanotransduction event is unknown, although downstream events include a calcium flux in the cytoplasm, a self-propagating action potential across the vacuole membrane, and a proton flux into the cytoplasm that activates the luminescent chemistry. Given the role of GTP-binding (G) proteins in the mechanotransduction of flow by nonmarine cells and the presence of G-proteins in dinoflagellates, it was hypothesized that flow-stimulated dinoflagellate bioluminescence involves mechanotransduction by G-proteins. In the present study, osmotic swelling of cells of the dinoflagellate Lingulodinium polyedrum was used as a drug delivery system to introduce GDPbetaS, an inhibitor of G-protein activation. Osmotically swollen cells produced higher levels of flow-stimulated bioluminescence at a lower threshold of shear stress, indicating they were more flow sensitive. GDPbetaS inhibited flow-stimulated bioluminescence in osmotically swollen cells and in cells that were restored to the isosmotic condition following hypoosmotic treatment with GDPbetaS. These results provide evidence that G-proteins are involved in the mechanotransduction of flow in dinoflagellates and suggest that G-protein involvement in mechanotransduction may be a fundamental evolutionary adaptation.
Collapse
Affiliation(s)
- Antony K Chen
- La Jolla Bioengineering Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
21
|
Camacho FG, Rodríguez JG, Mirón AS, García MCC, Belarbi EH, Chisti Y, Grima EM. Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 2006; 25:176-94. [PMID: 17208406 DOI: 10.1016/j.biotechadv.2006.11.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Dinoflagellates are microalgae that are associated with the production of many marine toxins. These toxins poison fish, other wildlife and humans. Dinoflagellate-associated human poisonings include paralytic shellfish poisoning, diarrhetic shellfish poisoning, neurotoxic shellfish poisoning, and ciguatera fish poisoning. Dinoflagellate toxins and bioactives are of increasing interest because of their commercial impact, influence on safety of seafood, and potential medical and other applications. This review discusses biotechnological methods of identifying toxic dinoflagellates and detecting their toxins. Potential applications of the toxins are discussed. A lack of sufficient quantities of toxins for investigational purposes remains a significant limitation. Producing quantities of dinoflagellate bioactives requires an ability to mass culture them. Considerations relating to bioreactor culture of generally fragile and slow-growing dinoflagellates are discussed. Production and processing of dinoflagellates to extract bioactives, require attention to biosafety considerations as outlined in this review.
Collapse
Affiliation(s)
- F Garcia Camacho
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Fish FE. The myth and reality of Gray's paradox: implication of dolphin drag reduction for technology. BIOINSPIRATION & BIOMIMETICS 2006; 1:R17-25. [PMID: 17671302 DOI: 10.1088/1748-3182/1/2/r01] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The inconsistency for the calculated high drag on an actively swimming dolphin and underestimated muscle power available resulted in what has been termed Gray's paradox. Although Gray's paradox was flawed, it has been the inspiration for a variety of drag reduction mechanisms. This review examines the present state of knowledge of drag reduction specific to dolphins. Streamlining and special behaviors provide the greatest drag reduction for dolphins. Mechanisms to control flow by maintaining a completely laminar boundary layer over the body have not been demonstrated for dolphins.
Collapse
Affiliation(s)
- Frank E Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA.
| |
Collapse
|
23
|
Deane GB, Stokes MD. A quantitative model for flow-induced bioluminescence in dinoflagellates. J Theor Biol 2005; 237:147-69. [PMID: 15975605 DOI: 10.1016/j.jtbi.2005.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 03/23/2005] [Accepted: 04/01/2005] [Indexed: 11/19/2022]
Abstract
A model is presented for the flash response of bioluminescent dinoflagellates stimulated by fluid shear. The model is based on the idea that the response of an individual cell to stimulation is inherently probabilistic, and can be modeled as a Poisson process over short time scales. A new cell parameter, the cell anxiety, is introduced to parameterize the probability of flashing. The statistical model is incorporated into a description of fully developed fluid flow in pipes and a cylindrical Couette chamber, and found to compare favorably with previously published data from experiments.
Collapse
Affiliation(s)
- G B Deane
- Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0238, USA.
| | | |
Collapse
|
24
|
|
25
|
Latz MI, Juhl AR, Ahmed AM, Elghobashi SE, Rohr J. Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study. J Exp Biol 2004; 207:1941-51. [PMID: 15107447 DOI: 10.1242/jeb.00973] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYDinoflagellate bioluminescence provides a near-instantaneous reporter of cell response to flow. Although both fluid shear stress and acceleration are thought to be stimulatory, previous studies have used flow fields dominated by shear. In the present study, computational and experimental approaches were used to assess the relative contributions to bioluminescence stimulation of shear stress and acceleration in a laminar converging nozzle. This flow field is characterized by separate regions of pronounced acceleration away from the walls, and shear along the wall. Bioluminescence of the dinoflagellates Lingulodinium polyedrum and Ceratocorys horrida, chosen because of their previously characterized different flow sensitivities, was imaged with a low-light video system. Numerical simulations were used to calculate the position of stimulated cells and the levels of acceleration and shear stress at these positions. Cells were stimulated at the nozzle throat within the wall boundary layer where, for that downstream position, shear stress was relatively high and acceleration relatively low. Cells of C. horrida were always stimulated significantly higher in the flow field than cells of L. polyedrum and at lower flow rates, consistent with their greater flow sensitivity. For both species, shear stress levels at the position of stimulated cells were similar to but slightly greater than previously determined response thresholds using independent flow fields. L. polyedrum did not respond in conditions where acceleration was as high as 20 g. These results indicate that shear stress, rather than acceleration, was the stimulatory component of flow. Thus, even in conditions of high acceleration, dinoflagellate bioluminescence is an effective marker of shear stress.
Collapse
Affiliation(s)
- Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Chen AK, Latz MI, Frangos JA. The use of dinoflagellate bioluminescence to characterize cell stimulation in bioreactors. Biotechnol Bioeng 2003; 83:93-103. [PMID: 12740936 DOI: 10.1002/bit.10647] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bioluminescent dinoflagellates are flow-sensitive marine organisms that produce light emission almost instantaneously upon stimulation by fluid shear in a shear stress dose-dependent manner. In the present study we tested the hypothesis that monitoring bioluminescence by suspended dinoflagellates can be used as a tool to characterize cellular response to hydrodynamic forces in agitated bioreactors. Specific studies were performed to determine: (1) impeller configurations with minimum cell activation, (2) correlations of cellular response and an integrated shear factor, and (3) the effect of rapid acceleration in agitation. Results indicated that (1) at a volumetric mass transfer coefficient of 3 x 10(-4) s(-1), marine impeller configurations were less stimulatory than Rushton configurations, (2) bioluminescence response and a modified volumetric integrated shear factor had an excellent correlation, and (3) rapid acceleration in agitation was highly stimulatory, suggesting a profound effect of temporal gradients in shear in increasing cell stimulation. By using bioluminescence stimulation as an indicator of agitation-induced cell stimulation and/or damage in microcarrier cultures, the present study allows for the verification of hypotheses and development of novel mechanisms of cell damage in bioreactors.
Collapse
Affiliation(s)
- Antony K Chen
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
28
|
|
29
|
Blaser S, Kurisu F, Satoh H, Mino T. Hydromechanical stimulation of bioluminescent plankton. LUMINESCENCE 2002; 17:370-80. [PMID: 12444590 DOI: 10.1002/bio.696] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The response of the bioluminescent dinoflagellate Pyrocystis fusiformis was investigated for different hydraulic conditions ('hydromechanical stimulation'). Pipe flow and oscillating shear produced luminescence, whereas changes in hydrostatic pressure were not stimulating. More intense fluid motion led to higher intensity, mainly due to a higher probability of cell response. The organism was also able to emit light in a glucose-salt mixture. The experiments suggest that the cells are effectively stimulated if the flow conditions change in time.
Collapse
Affiliation(s)
- Stefan Blaser
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|
30
|
Abstract
Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout complete undulatory cycles of their propulsive motions. The Reynolds number based on length, Re, ranged from 3×10(3) to 3×10(5). In general, boundary layer profiles were found to match known laminar and turbulent profiles including those of Blasius, Falkner and Skan and the law of the wall. In still water, boundary layer profile shape always suggested laminar flow. In flowing water, boundary layer profile shape suggested laminar flow at lower Reynolds numbers and turbulent flow at the highest Reynolds numbers. In some cases, oscillation between laminar and turbulent profile shapes with body phase was observed. Local friction coefficients, boundary layer thickness and fluid velocities at the edge of the boundary layer were suggestive of local oscillatory and mean streamwise acceleration of the boundary layer. The behavior of these variables differed significantly in the boundary layer over a rigid fish. Total skin friction was determined. Swimming fish were found to experience greater friction drag than the same fish stretched straight in the flow. Nevertheless, the power necessary to overcome friction drag was determined to be within previous experimentally measured power outputs. No separation of the boundary layer was observed around swimming fish, suggesting negligible form drag. Inflected boundary layers, suggestive of incipient separation, were observed sporadically, but appeared to be stabilized at later phases of the undulatory cycle. These phenomena may be evidence of hydrodynamic sensing and response towards the optimization of swimming performance.
Collapse
Affiliation(s)
- E J Anderson
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
31
|
Mauck B, Eysel U, Dehnhardt G. Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guianensis). J Exp Biol 2000; 203:2125-31. [PMID: 10862725 DOI: 10.1242/jeb.203.14.2125] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thermal characteristics of the mystacial vibrissae of harbour seals (Phoca vitulina) and of the follicle crypts on the rostrum of the dolphin Sotalia fluviatilis guianensis were measured using an infrared imaging system. Thermograms demonstrate that, in both species, single vibrissal follicles are clearly defined units of high thermal radiation, indicating a separate blood supply to these cutaneous structures. It is suggested that the high surface temperatures measured in the area of the mouth of the follicles is a function of the sinus system. In seals and dolphins, surface temperature gradually decreased with increasing distance from the centre of a follicle, indicating heat conduction from the sinus system via the follicle capsule to adjacent tissues. It is suggested that the follicular sinus system is a thermoregulatory structure responsible for the maintenance of high tactile sensitivity at the extremely low ambient temperatures demonstrated for the vibrissal system of seals. The vibrissal follicles of odontocetes have been described as vestigial structures, but the thermograms obtained in the present study provide the first evidence that, in Sotalia fluviatilis, the follicles possess a well-developed sinus system, suggesting that they are part of a functional mechanosensory system.
Collapse
Affiliation(s)
- B Mauck
- Institut für Zoologie, Universität Bonn, Germany. Germany
| | | | | |
Collapse
|
32
|
Abstract
Drag forces acting on Steller sea lions (Eumetopias jubatus) were investigated from ‘deceleration during glide’ measurements. A total of 66 glides from six juvenile sea lions yielded a mean drag coefficient (referenced to total wetted surface area) of 0.0056 at a mean Reynolds number of 5.5×10(6). The drag values indicate that the boundary layer is largely turbulent for Steller sea lions swimming at these Reynolds numbers, which are past the point of expected transition from laminar to turbulent flow. The position of maximum thickness (at 34 % of the body length measured from the tip of the nose) was more anterior than for a ‘laminar’ profile, supporting the idea that there is little laminar flow. The Steller sea lions in our study were characterized by a mean fineness ratio of 5.55. Their streamlined shape helps to delay flow separation, reducing total drag. In addition, turbulent boundary layers are more stable than laminar ones. Thus, separation should occur further back on the animal. Steller sea lions are the largest of the otariids and swam faster than the smaller California sea lions (Zalophus californianus). The mean glide velocity of the individual Steller sea lions ranged from 2.9 to 3.4 m s(−)(1) or 1.2-1.5 body lengths s(−)(1). These length-specific speeds are close to the optimum swim velocity of 1.4 body lengths s(−)(1) based on the minimum cost of transport for California sea lions.
Collapse
Affiliation(s)
- L L Stelle
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
33
|
Skrovan RC, Williams TM, Berry PS, Moore PW, Davis RW. The diving physiology of bottlenose dolphins (Tursiops truncatus). II. Biomechanics and changes in buoyancy at depth. J Exp Biol 1999; 202:2749-61. [PMID: 10504311 DOI: 10.1242/jeb.202.20.2749] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During diving, marine mammals must balance the conservation of limited oxygen reserves with the metabolic costs of swimming exercise. As a result, energetically efficient modes of locomotion provide an advantage during periods of submergence and will presumably increase in importance as the animals perform progressively longer dives. To determine the effect of a limited oxygen supply on locomotor performance, we compared the kinematics and behavior of swimming and diving bottlenose dolphins. Adult bottlenose dolphins (Tursiops truncatus) were trained to swim horizontally near the water surface or submerged at 5 m and to dive to depths ranging from 12 to 112 m. Swimming kinematics (preferred swimming mode, stroke frequency and duration of glides) were monitored using submersible video cameras (Sony Hi-8) held by SCUBA divers or attached to a pack on the dorsal fin of the animal. Drag and buoyant forces were calculated from patterns of deceleration for horizontally swimming and vertically diving animals. The results showed that dolphins used a variety of swimming gaits that correlated with acceleration. The percentage of time spent gliding during the descent phase of dives increased with depth. Glide distances ranged from 7.1+/−1.9 m for 16 m dives to 43.6+/−7.0 m (means +/− s.e.m.) for 100 m dives. These gliding patterns were attributed to changes in buoyancy associated with lung compression at depth. By incorporating prolonged glide periods, the bottlenose dolphin realized a theoretical 10–21 % energetic savings in the cost of a 100 m dive in comparison with dives based on neutral buoyancy models. Thus, modifying locomotor patterns to account for physical changes with depth appears to be one mechanism that enables diving mammals with limited oxygen stores to extend the duration of a dive.
Collapse
Affiliation(s)
- R C Skrovan
- Department of Biology, Earth and Marine Science Building, A-316, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|