1
|
Waldrop LD, He Y, Khatri S. What Can Computational Modeling Tell Us about the Diversity of Odor-Capture Structures in the Pancrustacea? J Chem Ecol 2018; 44:1084-1100. [PMID: 30242545 DOI: 10.1007/s10886-018-1017-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
A major transition in the history of the Pancrustacea was the invasion of several lineages of these animals onto land. We investigated the functional performance of odor-capture organs, antennae with olfactory sensilla arrays, through the use of a computational model of advection and diffusion of odorants to olfactory sensilla while varying three parameters thought to be important to odor capture (Reynolds number, gap-width-to-sensillum-diameter ratio, and angle of the sensilla array with respect to oncoming flow). We also performed a sensitivity analysis on these parameters using uncertainty quantification to analyze their relative contributions to odor-capture performance. The results of this analysis indicate that odor capture in water and in air are fundamentally different. Odor capture in water and leakiness of the array are highly sensitive to Reynolds number and moderately sensitive to angle, whereas odor capture in air is highly sensitive to gap widths between sensilla and moderately sensitive to angle. Leakiness is not a good predictor of odor capture in air, likely due to the relative importance of diffusion to odor transport in air compared to water. We also used the sensitivity analysis to make predictions about morphological and kinematic diversity in extant groups of aquatic and terrestrial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and little-to-no animal-induced currents.
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Depatment of Biology, New Mexico Institute of Mining and Technology Socorro, Socorro, NM, 87801, USA.
| | - Yanyan He
- Depatment of Mathematics, New Mexico Institute of Mining and Technology Socorro, Socorro, NM, 87801, USA
| | - Shilpa Khatri
- Applied Mathematics Unit School of Natural Sciences, University of California, Merced, CA, 95343, USA
| |
Collapse
|
2
|
Waldrop LD, Reidenbach MA, Koehl MAR. Flexibility of crab chemosensory sensilla enables flicking antennules to sniff. THE BIOLOGICAL BULLETIN 2015; 229:185-198. [PMID: 26504159 DOI: 10.1086/bblv229n2p185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The first step in smelling is capture of odorant molecules from the surrounding fluid. We used lateral flagella of olfactory antennules of crabs Callinectes sapidus to study the physical process of odor capture by antennae bearing dense tufts of hair-like chemosensory sensilla (aesthetascs). Fluid flow around and through aesthetasc arrays on dynamically scaled models of lateral flagella of C. sapidus was measured by particle image velocimetry to determine how antennules sample the surrounding water when they flick. Models enabled separate evaluation of the effects of flicking speed, aesthetasc spacing, and antennule orientation. We found that crab antennules, like those of other malacostracan crustaceans, take a discrete water sample during each flick by having a rapid downstroke, during which water flows into the aesthetasc array, and a slow recovery stroke, when water is trapped in the array and odorants have time to diffuse to aesthetascs. However, unlike antennules of crustaceans with sparse aesthetasc arrays, crabs enhance sniffing via additional mechanisms: 1) Aesthetascs are flexible and splay as a result of the hydrodynamic drag during downstrokes, then clump together during return strokes; and 2) antennules flick with aesthetascs on the upstream side of the stalk during downstrokes, but are hidden downstream during return strokes. Aiming aesthetascs into ambient flow maintains sniffing. When gaps between aesthetascs are wide, changes in antennule speed are more effective at altering flow through the array than when gaps are narrow. Nonetheless, if crabs had fixed gap widths, their ability to take discrete samples of their odorant environment would be diminished.
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140; and
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904
| | - M A R Koehl
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140; and
| |
Collapse
|
3
|
Waldrop LD, Hann M, Henry AK, Kim A, Punjabi A, Koehl MAR. Ontogenetic changes in the olfactory antennules of the shore crab, Hemigrapsus oregonensis, maintain sniffing function during growth. J R Soc Interface 2015; 12:20141077. [PMID: 25411408 PMCID: PMC4277101 DOI: 10.1098/rsif.2014.1077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/27/2014] [Indexed: 11/12/2022] Open
Abstract
Malacostracan crustaceans capture odours using arrays of chemosensory hairs (aesthetascs) on antennules. Lobsters and stomatopods have sparse aesthetascs on long antennules that flick with a rapid downstroke when water flows between the aesthetascs and a slow return stroke when water is trapped within the array (sniffing). Changes in velocity only cause big differences in flow through an array in a critical range of hair size, spacing and speed. Crabs have short antennules bearing dense arrays of flexible aesthetascs that splay apart during downstroke and clump together during return. Can crabs sniff, and when during ontogeny are they big enough to sniff? Antennules of Hemigrapsus oregonensis representing an ontogenetic series from small juveniles to adults were used to design dynamically scaled physical models. Particle image velocimetry quantified fluid flow through each array and showed that even very small crabs capture a new water sample in their arrays during the downstroke and retain that sample during return stroke. Comparison with isometrically scaled antennules suggests that reduction in aesthetasc flexural stiffness during ontogeny, in addition to increase in aesthetasc number and decrease in relative size, maintain sniffing as crabs grow. Sniffing performance of intermediate-sized juveniles was worse than for smaller and larger crabs.
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Department of Mathematics, University of North Carolina, CB# 3250, Chapel Hill, NC 27599-3250, USA Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Miranda Hann
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Amy K Henry
- Department of Integrative Biology, University of California, Berkeley, CA, USA Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
| | - Agnes Kim
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ayesha Punjabi
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - M A R Koehl
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Lin LY, Pang W, Chuang WM, Hung GY, Lin YH, Horng JL. Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol 2013; 305:C1060-8. [DOI: 10.1152/ajpcell.00077.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zebrafish lateral-line hair cells are an in vivo model for studying hair cell development, function, and ototoxicity. However, the molecular identification and properties of the mechanotransducer (MET) channel in hair cells are still controversial. In this study, a noninvasive electrophysiological method, the scanning ion-electrode technique (SIET), was applied for the first time to investigate properties of MET channels in intact zebrafish embryos. With the use of a Ca2+-selective microelectrode to deflect hair bundles and simultaneously record the Ca2+ flux, the inward Ca2+ flux was detected at stereocilia of hair cells in 2- to ∼4-day postfertilization embryos. Ca2+ influx was blocked by MET channel blockers (BAPTA, La3+, Gd3+, and curare). In addition, 10 μM aminoglycoside antibiotics (neomycin and gentamicin) were found to effectively block Ca2+ influx within 10 min. Elevating the external Ca2+ level (0.2–2 mM) neutralized the effects of neomycin and gentamicin. However, elevating the Mg2+ level up to 5 mM neutralized blockade by gentamicin but not by neomycin. This study demonstrated MET channel-mediated Ca2+ entry at hair cells and showed that the SIET to be a sensitive approach for functionally assaying MET channels in zebrafish.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei Pang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei-Min Chuang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yuan-Hsiang Lin
- Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China; and
| | - Jiun-Lin Horng
- Department of Anatomy, Taipei Medical University, Taipei, Taiwan, Republic of China
| |
Collapse
|
5
|
Waldrop LD. Ontogenetic scaling of the olfactory antennae and flicking behavior of the shore crab, Hemigrapsus oregonensis. Chem Senses 2013; 38:541-50. [PMID: 23761682 DOI: 10.1093/chemse/bjt024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Malacostracan crustaceans such as crabs flick antennae with arrays of olfactory sensilla called aesthetascs through the water to sense odors. Flicking by crabs consists of a quick downstroke, in which aesthetascs are deflected laterally (splayed), and a slower, reversed return stroke, in which aesthetascs clump together. This motion causes water to be flushed within and then held in between aesthetascs to deliver odor molecules to olfactory receptors. Although this odor sampling method relies on a narrow range of speeds, sizes, and specific arrangements of aesthetascs, most crabs dramatically change these during ontogeny. In this study, the morphometrics of the aesthetascs, array, and antennae and the flicking kinematics of the Oregon shore crab, Hemigrapsus oregonensis (Decapoda: Brachyura), are examined to determine their scaling relationships during ontogeny. The morphometrics of the array and antennae increase more slowly than would be predicted by isometry. Juvenile crabs' aesthetascs splay relatively further apart than adults, likely due to changing material properties of aesthetasc cuticle during growth. These results suggest that disproportionate growth and altered aesthetasc splay during flicking will mediate the size changes due to growth that would otherwise lead to a loss of function.
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Department of Mathematics, University of North Carolina at Chapel Hill, CB#3420, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Messerli MA, Smith PJS. Construction, theory, and practical considerations for using self-referencing of Ca(2+)-selective microelectrodes for monitoring extracellular Ca(2+) gradients. Methods Cell Biol 2011; 99:91-111. [PMID: 21035684 DOI: 10.1016/b978-0-12-374841-6.00004-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Ca(2+) signaling in the extra- and intracellular domains is linked to Ca(2+) transport across the plasma membrane. Noninvasive monitoring of these resulting extracellular Ca(2+) gradients with self-referencing of Ca(2+)-selective microelectrodes is used for studying Ca(2+) signaling across Kingdoms. The quantitated Ca(2+) flux enables comparison with changes to intracellular [Ca(2+)] measured with other methods and determination of Ca(2+) transport stoichiometry. Here, we review the construction of Ca(2+)-selective microelectrodes, their physical characteristics, and their use in self-referencing mode to calculate Ca(2+) flux. We also discuss potential complications when using them to measure Ca(2+) gradients near the boundary layers of single cells and tissues.
Collapse
Affiliation(s)
- Mark A Messerli
- BioCurrents Research Center, Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | |
Collapse
|
7
|
Steullet P, Krützfeldt DR, Hamidani G, Flavus T, Ngo V, Derby CD. Dual antennular chemosensory pathways mediate odor-associative learning and odor discrimination in the Caribbean spiny lobsterPanulirus argus. J Exp Biol 2002; 205:851-67. [PMID: 11914393 DOI: 10.1242/jeb.205.6.851] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYChemosensory neurons in the antennular flagella of lobsters mediate long-range responses to chemicals. These neurons are part of two parallel chemosensory pathways with different peripheral and central components. Aesthetasc sensilla on the lateral flagella are innervated by chemosensory neurons that project to the olfactory lobes. A diversity of other ‘non-aesthetasc’ sensilla on both lateral and medial flagella are innervated by mechano- and chemosensory neurons, and most of these non-aesthetasc neurons project to the lateral antennular neuropils. We investigated the roles of these two pathways in odor-associative learning and odor discrimination by selectively removing either aesthetasc or non-aesthetasc sensilla from the spiny lobster Panulirus argus. Lobsters lacking both aesthetasc and non-aesthetasc antennular sensilla show very reduced or no odor-mediated searching behavior. We associatively conditioned lobsters using two paradigms: aversive conditioning with generalization testing (which reveals the similarity in the lobsters’ perception of odorants) and discrimination conditioning (which reveals the lobsters’ ability to discriminate odorants). Sham-control intact lobsters performed these tasks well, as did lobsters lacking either aesthetascs or non-aesthetasc setae. There was a strong but statistically non-significant trend that lobsters lacking either aesthetascs or non-aesthetasc setae generalized more between complex odor mixtures than did intact lobsters. After aversive conditioning with generalization testing, aesthetasc-ablated lobsters had more difficulty discriminating among the most closely related complex mixtures than did intact or non-aesthetasc-ablated lobsters. However, after discrimination conditioning, aesthetasc-ablated lobsters were as proficient as intact animals in discriminating highly similar mixtures. These results indicate overlap and redundancy in the function of these two chemosensory pathways in odor-associative learning and odor discrimination, but these pathways also complement each other to enable better discrimination. This study presents the first evidence for a role of non-aesthetasc chemosensory neurons in complex odor-mediated behaviors such as learning and discrimination.
Collapse
Affiliation(s)
- Pascal Steullet
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | |
Collapse
|