1
|
Elices I, Kulkarni A, Escoubet N, Pontani LL, Prevost AM, Brette R. An electrophysiological and kinematic model of Paramecium, the "swimming neuron". PLoS Comput Biol 2023; 19:e1010899. [PMID: 36758112 PMCID: PMC9946239 DOI: 10.1371/journal.pcbi.1010899] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/22/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Paramecium is a large unicellular organism that swims in fresh water using cilia. When stimulated by various means (mechanically, chemically, optically, thermally), it often swims backward then turns and swims forward again in a new direction: this is called the avoiding reaction. This reaction is triggered by a calcium-based action potential. For this reason, several authors have called Paramecium the "swimming neuron". Here we present an empirically constrained model of its action potential based on electrophysiology experiments on live immobilized paramecia, together with simultaneous measurement of ciliary beating using particle image velocimetry. Using these measurements and additional behavioral measurements of free swimming, we extend the electrophysiological model by coupling calcium concentration to kinematic parameters, turning it into a swimming model. In this way, we obtain a model of autonomously behaving Paramecium. Finally, we demonstrate how the modeled organism interacts with an environment, can follow gradients and display collective behavior. This work provides a modeling basis for investigating the physiological basis of autonomous behavior of Paramecium in ecological environments.
Collapse
Affiliation(s)
- Irene Elices
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Anirudh Kulkarni
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Nicolas Escoubet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Léa-Laetitia Pontani
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Alexis Michel Prevost
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Romain Brette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
2
|
ten Hagen B, Kümmel F, Wittkowski R, Takagi D, Löwen H, Bechinger C. Gravitaxis of asymmetric self-propelled colloidal particles. Nat Commun 2014; 5:4829. [DOI: 10.1038/ncomms5829] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 07/09/2014] [Indexed: 01/25/2023] Open
|
3
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Abstract
SUMMARY
An analysis of swimming patterns in the ciliate Paramecium shows that the ability to swim preferentially upwards (negative gravitaxis) is primarily the result of upwardly curving trajectories. The trajectory characteristics are consistent with those produced by mechanical orientation. Cell profile measurements from microscope images suggest that the characteristic front–rear body asymmetry accounts for the observed orientation rates. Gravikinesis may result from interactions between the propelling cilia and the sedimentary flow around the cell, and it seems unlikely that an internal physiological gravity receptor exists in Paramecium.
Collapse
Affiliation(s)
- A. M. Roberts
- Department of Applied Science, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
5
|
Krause M, Bräucker R, Hemmersbach R. Gravikinesis in Stylonychia mytilus is based on membrane potential changes. J Exp Biol 2010; 213:161-71. [DOI: 10.1242/jeb.030940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The graviperception of the hypotrichous ciliate Stylonychia mytilus was investigated using electrophysiological methods and behavioural analysis. It is shown that Stylonychia can sense gravity and thereby compensates sedimentation rate by a negative gravikinesis. The graviresponse consists of a velocity-regulating physiological component (negative gravikinesis) and an additional orientational component. The latter is largely based on a physical mechanism but might, in addition, be affected by the frequency of ciliary reversals, which is under physiological control. We show that the external stimulus of gravity is transformed to a physiological signal, activating mechanosensitive calcium and potassium channels. Earlier electrophysiological experiments revealed that these ion channels are distributed in the manner of two opposing gradients over the surface membrane. Here, we show, for the first time, records of gravireceptor potentials in Stylonychia that are presumably based on this two-gradient system of ion channels. The gravireceptor potentials had maximum amplitudes of approximately 4 mV and slow activation characteristics (0.03 mV s–1). The presumptive number of involved graviperceptive ion channels was calculated and correlates with the analysis of the locomotive behaviour.
Collapse
Affiliation(s)
- Martin Krause
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | - Ruth Hemmersbach
- DLR, Institute of Aerospace Medicine, Linder Höhe, D-51174 Köln, Germany
| |
Collapse
|
6
|
Krause M, Bräucker R. Gravitaxis of Bursaria truncatella: Electrophysiological and behavioural analyses of a large ciliate cell. Eur J Protistol 2009; 45:98-111. [DOI: 10.1016/j.ejop.2008.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/09/2008] [Accepted: 07/19/2008] [Indexed: 10/21/2022]
|
7
|
Svidersky VL, Lobzin YV, Gorelkin VS, Plotnikova SI. Motor activity of infusoria: Theoretical and applied aspects. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007050015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Krause M, Bräucker R, Hemmersbach R. Graviresponses of Paramecium biaurelia during parabolic flights. PROTOPLASMA 2006; 229:109-16. [PMID: 17180491 DOI: 10.1007/s00709-006-0207-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/28/2005] [Indexed: 05/13/2023]
Abstract
The thresholds of graviorientation and gravikinesis in Paramecium biaurelia were investigated during the 5th DLR (German Aerospace Center) parabolic-flight campaign at Bordeaux in June 2003. Parabolic flights are a useful tool for the investigation of swimming behaviour in protists at different accelerations. At normal gravity (1 g) and hypergravity (1 g to 1.8 g), precision of orientation and locomotion rates depend linearly on the applied acceleration as seen in earlier centrifuge experiments. After transition from hypergravity to decreased gravity (minimal residual acceleration of <10(-2) g), graviorientation as well as gravikinesis show a full relaxation with different kinetics. The use of twelve independent cell samples per flight guarantees high data numbers and secures the statistical significance of the obtained data. The relatively slow change of acceleration between periods of microgravity and hypergravity (0.4 g/s) enabled us to determine the thresholds of graviorientation at 0.6 g and of gravikinesis at 0.4 g. The gravity-unrelated propulsion rate of the sample was found to be 874 microm/s, exceeding the locomotion rate of horizontally swimming cells (855 microm/s). The measured thresholds of graviresponses were compared with data obtained from earlier centrifuge experiments on the sounding rocket Maxus-2. Measured thresholds of gravireactions indicate that small energies, close to the thermal noise level, are sufficient for the gravitransduction process. Data from earlier hypergravity experiments demonstrate that mechanosensitive ion channels are functioning over a relative wide range of acceleration. From this, we may speculate that gravireceptor channels derive from mechanoreceptor channels.
Collapse
Affiliation(s)
- Martin Krause
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Bochum, Federal Republic of Germany.
| | | | | |
Collapse
|
9
|
Abstract
As they negotiate their environs, unicellular organisms adjust their swimming in response to various physical fields such as temperature, chemical gradients, and electric fields. Because of the weak magnetic properties of most biological materials, however, they do not respond to the earth's magnetic field (5 x 10(-5) Tesla) except in rare cases. Here, we show that the trajectories of Paramecium caudatum align with intense static magnetic fields >3 Tesla. Otherwise straight trajectories curve in magnetic fields and eventually orient parallel or antiparallel to the applied field direction. Neutrally buoyant immobilized paramecia also align with their long axis in the direction of the field. We model this magneto-orientation as a strictly passive, nonphysiological response to a magnetic torque exerted on the diamagnetically anisotropic components of the paramecia. We have determined the average net anisotropy of the diamagnetic susceptibility, Deltachi(p), of a whole Paramecium: Deltachi(p) = (6.7+/- 0.7) x 10(-23) m(3). We show how the measured Deltachi(p) compares to the anisotropy of the diamagnetic susceptibilities of the components in the cell. We suggest that magnetic fields can be exploited as a novel, noninvasive, quantitative means to manipulate swimming populations of unicellular organisms.
Collapse
Affiliation(s)
- Karine Guevorkian
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
10
|
Yoshimura K, Matsuo Y, Kamiya R. Gravitaxis in Chlamydomonas reinhardtii Studied with Novel Mutants. ACTA ACUST UNITED AC 2003; 44:1112-8. [PMID: 14581636 DOI: 10.1093/pcp/pcg134] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Many free-swimming unicellular organisms show negative gravitaxis, i.e. tend to swim upward, although their specific densities are higher than the medium density. To obtain clues to the mechanism of this behavior, we examined how a mutation in motility or behavior affects the gravitaxis in Chlamydomonas. A phototaxis mutant, ptx3, deficient in membrane excitability showed weakened gravitaxis, whereas another phototaxis mutant, ptx1, deficient in regulation of flagellar dominance displayed normal gravitaxis. Two mutants that swim backwards only, mbo1 and mbo2, did not show any clear gravitaxis. We also isolated two novel mutants deficient in gravitaxis, gtx1 and gtx2. These mutants displayed normal motility and physical characteristics of cell body as assessed by the behavior of anesthetized cells. However, these cells were found to have defects in physiological responses involving membrane excitation. These observations are consistent with the idea that the gravitaxis in Chlamydomonas involves a physiological signal transduction system, which is at least partially independent of the system used for phototaxis.
Collapse
Affiliation(s)
- Kenjiro Yoshimura
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan.
| | | | | |
Collapse
|
11
|
Braucker R, Machemer H. CECILIA, a versatile research tool for cellular responses to gravity. MICROGRAVITY SCIENCE AND TECHNOLOGY 2002; 13:3-13. [PMID: 12206161 DOI: 10.1007/bf02872071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We describe a centrifuge designed and constructed according to current demands for a versatile instrument in cellular gravitational research, in particular protists (ciliates, flagellates). The instrument (called CECILIA, centrifuge for ciliates) is suited for videomonitoring, videorecording, and quantitative evaluation of data from large numbers of swimming cells in a ground-based laboratory or in a drop tower/drop shaft under microgravity conditions. The horizontal rotating platform holds up to six 8mm-camcorders and six chambers holding the experimental cells. Under hypergravity conditions (up to 15 g) chambers can be rotated about 2 axes to adjust the swimming space at right angles or parallel to the resulting gravity vector. Evaluations of cellular responses to central acceleration-- in the presence of gravitational 1 g--are used for extrapolation of cellular behaviour under hypogravity conditions. CECILIA is operated and monitored by computer using a custom-made software. Times and slopes of rising and decreasing acceleration, values and and quality of steady acceleration are supervised online. CECILIA can serve as an on-ground research instrument for precursor investigations of the behaviour of ciliates and flagellates under microgravity conditions such as long-term experiments in the International Space Station.
Collapse
Affiliation(s)
- Richard Braucker
- Institut fur Zoologie, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany
| | | |
Collapse
|
12
|
Machemer H. The swimming cell and its world: Structures and mechanisms of orientation in protists. Eur J Protistol 2001. [DOI: 10.1078/0932-4739-00816] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Nagel U, Machemer H. Effects of gadolinium on electrical membrane properties and behaviour in Paramecium tetraurelia. Eur J Protistol 2000. [DOI: 10.1016/s0932-4739(00)80036-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|