1
|
Orita R, Taniguchi Y, Tsuge K, Yamaguchi K. Metabolic characteristics involved in the tolerance of bivalves to marine hypoxia: Verification by inter-and intraspecific comparisons of species with different hypoxia tolerance. MARINE POLLUTION BULLETIN 2024; 211:117486. [PMID: 39709782 DOI: 10.1016/j.marpolbul.2024.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Bivalves survive exposure to hypoxic water through anaerobic metabolism. However, the characteristics of anaerobic metabolism that determine the differences in hypoxic tolerance observed between and within species remain unclear. In this study, we examined three species belonging to the superfamily Arcoidea (Anadara kagoshimensis, Tegillarca granosa, and Estellacar olivacea) with differences in hypoxia tolerance as well as one species (A. kagoshimensis) with differences in hypoxia tolerance between the locations. The species were exposed to hypoxic water in a laboratory manipulation experiment to compare temporal changes in metabolites involved in anaerobic metabolism. Comparison of anaerobic metabolic processes showed that the rate of decrease in aspartic acid was strongly correlated with the hypoxia tolerance (LT50) of the target species. Aspartic acid appears to be the main source of energy production during anaerobic metabolism, and the slow rate of its consumption is an indicator of the strength of hypoxia tolerance in Arcoidea bivalves.
Collapse
Affiliation(s)
- Ryo Orita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Yuki Taniguchi
- Graduate School of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Keisuke Tsuge
- Industrial Technology Center of Saga, 114 Nabeshimacho, Saga 849-0932, Japan
| | - Keiko Yamaguchi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan; Estuary Research Center, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
| |
Collapse
|
2
|
Morris MM, Hao 郝赵哲 ZZ, Berkowitz A. Electrophysiological Activity of Multifunctional and Behaviorally Specialized Spinal Neurons Involved in Swimming, Scratching, and Flexion Reflex in Turtles. eNeuro 2024; 11:ENEURO.0038-24.2024. [PMID: 38969499 PMCID: PMC11265262 DOI: 10.1523/eneuro.0038-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The adult turtle spinal cord can generate multiple kinds of limb movements, including swimming, three forms of scratching, and limb withdrawal (flexion reflex), even without brain input and sensory feedback. There are many multifunctional spinal neurons, activated during multiple motor patterns, and some behaviorally specialized neurons, activated during only one. How do multifunctional and behaviorally specialized neurons each contribute to motor output? We analyzed in vivo intracellular recordings of multifunctional and specialized neurons. Neurons tended to spike in the same phase of the hip-flexor (HF) activity cycle during swimming and scratching, though one preferred opposite phases. During both swimming and scratching, a larger fraction of multifunctional neurons than specialized neurons were highly rhythmic. One group of multifunctional neurons was active during the HF-on phase and another during the HF-off phase. Thus, HF-extensor alternation may be generated by a subset of multifunctional spinal neurons during both swimming and scratching. Scratch-specialized neurons and flexion reflex-selective neurons may instead trigger their respective motor patterns, by biasing activity of multifunctional neurons. In phase-averaged membrane potentials of multifunctional neurons, trough phases were more highly correlated between swimming and scratching than peak phases, suggesting that rhythmic inhibition plays a greater role than rhythmic excitation. We also provide the first intracellular recording of a turtle swim-specialized neuron: tonically excited during swimming but inactive during scratching and flexion reflex. It displayed an excitatory postsynaptic potential following each swim-evoking electrical stimulus and thus may be an intermediary between reticulospinal axons and the swimming CPG they activate.
Collapse
Affiliation(s)
- Madison M Morris
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma 73019
| | - Zhao-Zhe Hao 郝赵哲
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma 73019
| | - Ari Berkowitz
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
3
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Wang Y, Jiang P, Xia F, Bai Q, Zhang X. Transcriptional and physiological profiles reveal the respiratory, antioxidant and metabolic adaption to intermittent hypoxia in the clam Tegillarca granosa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101215. [PMID: 38359602 DOI: 10.1016/j.cbd.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Tegillarca granosa can survive intermittent hypoxia for a long-term. We used the clam T. granosa as model to investigate the respiratory, antioxidant and metabolic responses to consecutive hypoxia-reoxygenation (H/R) stress at both physiological and transcriptional levels. The results showed that the clams were able to rapidly regulate oxygen consumption and ammonia excretion during H/R stress, and alleviate oxidative stress during the second-time challenge. The clams also efficiently balanced energy metabolism through the rapid conversion and decomposition of glycogen. According to the transcriptome profile, KEGG pathways of starch and sucrose metabolism, ECM-receptor interaction, and protein processing in endoplasmic reticulum were significantly enriched in H group (the second-time 24 h hypoxia exposure), while pathways associated with lipid metabolism were significantly enriched in h group (the first-time 24 h hypoxia exposure). DEGs including hspa5, birc2/3, and map3k5 might play important roles in alleviating endoplasmic reticulum stress, cpla2 and pla2g16 might mitigate oxidative stress by adjusting the composition of cellular membrane. In conclusions, our findings suggest that rapid adjustment of oxygen consumption, ammonia metabolism, glycogen metabolism, and the ability to adjust the composition of the membrane lipid may be critical for T. granosa in maintaining energy homeostasis and reducing oxidative damage during intermittent H/R exposure. This study preliminarily clarified the response of T. granosa to intermittent hypoxia stress on the physiological and molecular levels, offering insights into the hypoxia-tolerant mechanisms in this species and providing a reference for the following study on the other hypoxic-tolerant species.
Collapse
Affiliation(s)
- Yihang Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Puyuan Jiang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feiyu Xia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qingqing Bai
- The Government of Guanhaiwei Town, Cixi 315315, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Diot A, Groth G, Blanchet S, Chervin C. Responses of animals and plants to physiological doses of ethanol: a molecular messenger of hypoxia? FEBS J 2024; 291:1102-1110. [PMID: 38232057 DOI: 10.1111/febs.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Our viewpoint is that ethanol could act as a molecular messenger in animal and plant organisms under conditions of hypoxia or other stresses and could elicit physiological responses to such conditions. There is evidence that both animal and plant organisms have endogenous levels of ethanol, but reports on the changes induced by this alcohol at physiological levels are sparse. Studies have shown that ethanol has different effects on cell metabolism at low and high concentrations, resembling a hormetic response. Further studies have addressed the potential cellular and molecular mechanisms used by organisms to sense changes in physiological concentrations of ethanol. This article summarizes the possible mechanisms by which ethanol may be sensed, particularly at the cell membrane level. Our analysis shows that current knowledge on this subject is limited. More research is required on the effects of ethanol at very low doses, in plants and animals at both molecular and physiological levels. We believe that further research on this topic could lead to new discoveries in physiology and may even help us understand metabolic adjustments related to climate change. As temperatures rise more frequently, dissolved oxygen levels drop, leading to hypoxic conditions and consequently, an increase in cellular ethanol levels.
Collapse
Affiliation(s)
- Alice Diot
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Simon Blanchet
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Christian Chervin
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
| |
Collapse
|
6
|
Hawrysh PJ, Myrka AM, Buck LT. Review: A history and perspective of mitochondria in the context of anoxia tolerance. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110733. [PMID: 35288242 DOI: 10.1016/j.cbpb.2022.110733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Symbiosis is found throughout nature, but perhaps nowhere is it more fundamental than mitochondria in all eukaryotes. Since mitochondria were discovered and mechanisms of oxygen reduction characterized, an understanding gradually emerged that these organelles were involved not just in the combustion of oxygen, but also in the sensing of oxygen. While multiple hypotheses exist to explain the mitochondrial involvement in oxygen sensing, key elements are developing that include potassium channels and reactive oxygen species. To understand how mitochondria contribute to oxygen sensing, it is informative to study a model system which is naturally adapted to survive extended periods without oxygen. Amongst air-breathing vertebrates, the most highly adapted are western painted turtles (Chrysemys picta bellii), which overwinter in ice-covered and anoxic water bodies. Through research of this animal, it was postulated that metabolic rate depression is key to anoxic survival and that mitochondrial regulation is a key aspect. When faced with anoxia, excitatory neurotransmitter receptors in turtle brain are inhibited through mitochondrial calcium release, termed "channel arrest". Simultaneously, inhibitory GABAergic signalling contributes to the "synaptic arrest" of excitatory action potential firing through a pathway dependent on mitochondrial depression of ROS generation. While many pathways are implicated in mitochondrial oxygen sensing in turtles, such as those of adenosine, ATP turnover, and gaseous transmitters, an apparent point of intersection is the mitochondria. In this review we will explore how an organelle that was critical for organismal complexity in an oxygenated world has also become a potentially important oxygen sensor.
Collapse
Affiliation(s)
- Peter John Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Alexander Morley Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie Thomas Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
7
|
Menail HA, Cormier SB, Ben Youssef M, Jørgensen LB, Vickruck JL, Morin P, Boudreau LH, Pichaud N. Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species. Front Physiol 2022; 13:897174. [PMID: 35547573 PMCID: PMC9081799 DOI: 10.3389/fphys.2022.897174] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria have been suggested to be paramount for temperature adaptation in insects. Considering the large range of environments colonized by this taxon, we hypothesized that species surviving large temperature changes would be those with the most flexible mitochondria. We thus investigated the responses of mitochondrial oxidative phosphorylation (OXPHOS) to temperature in three flying insects: the honeybee (Apis mellifera carnica), the fruit fly (Drosophila melanogaster) and the Colorado potato beetle (Leptinotarsa decemlineata). Specifically, we measured oxygen consumption in permeabilized flight muscles of these species at 6, 12, 18, 24, 30, 36, 42 and 45°C, sequentially using complex I substrates, proline, succinate, and glycerol-3-phosphate (G3P). Complex I respiration rates (CI-OXPHOS) were very sensitive to temperature in honeybees and fruit flies with high oxygen consumption at mid-range temperatures but a sharp decline at high temperatures. Proline oxidation triggers a major increase in respiration only in potato beetles, following the same pattern as CI-OXPHOS for honeybees and fruit flies. Moreover, both succinate and G3P oxidation allowed an important increase in respiration at high temperatures in honeybees and fruit flies (and to a lesser extent in potato beetles). However, when reaching 45°C, this G3P-induced respiration rate dropped dramatically in fruit flies. These results demonstrate that mitochondrial functions are more resilient to high temperatures in honeybees compared to fruit flies. They also indicate an important but species-specific mitochondrial flexibility for substrate oxidation to sustain high oxygen consumption levels at high temperatures and suggest previously unknown adaptive mechanisms of flying insects’ mitochondria to temperature.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Pier Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Luc H Boudreau
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
8
|
Okoye CN, Chinnappareddy N, Stevens D, Kamunde C. Anoxia-reoxygenation modulates cadmium-induced liver mitochondrial reactive oxygen species emission during oxidation of glycerol 3-phosphate. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109227. [PMID: 34728389 DOI: 10.1016/j.cbpc.2021.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Abstract
Aquatic organisms are frequently exposed to multiple stressors including low dissolved oxygen (O2) and metals such as cadmium (Cd). Reduced O2 concentration and Cd exposure alter cellular function in part by impairing energy metabolism and dysregulating reactive oxygen species (ROS) homeostasis. However, little is known about the role of mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) in ROS homeostasis in fish and its response to environmental stress. In this study, mGPDH activity and the effects of anoxia-reoxygenation (A-RO) and Cd on ROS (as hydrogen peroxide, H2O2) emission in rainbow trout liver mitochondria during oxidation of glycerol 3-phosphate (G3P) were probed. Trout liver mitochondria exhibited low mGPDH activity that supported a low respiratory rate but substantial H2O2 emission rate. Cd evoked a low concentration stimulatory-high concentration inhibitory H2O2 emission pattern that was blunted by A-RO. At specific redox centers, Cd suppressed H2O2 emission from site IQ, but stimulated emission from sites IIIQo and GQ. In contrast, A-RO stimulated H2O2 emission from site IQ following 15 min exposure and augmented Cd-stimulated emission from site IIF after 30 min exposure but did not alter the rate of H2O2 emission from sites IIIQo and GQ. Additionally, Cd neither altered the activities of catalase, glutathione peroxidase, or thioredoxin reductase nor the concentrations of total glutathione, reduced glutathione, or oxidized glutathione. Overall, this study indicates that oxidation of G3P drives ROS production from mGPDH and complexes I, II and III, whereas Cd directly modulates redox sites but not antioxidant defense systems to alter mitochondrial H2O2 emission.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Nirmala Chinnappareddy
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
9
|
Isei MO, Chinnappareddy N, Stevens D, Kamunde C. Anoxia-reoxygenation alters H 2O 2 efflux and sensitivity of redox centers to copper in heart mitochondria. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109111. [PMID: 34146700 DOI: 10.1016/j.cbpc.2021.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) have been implicated in organ damage caused by environmental stressors, prompting studies on the effect of oxygen deprivation and metal exposure on ROS metabolism. However, how anoxia and copper (Cu) jointly influence heart mitochondrial ROS metabolism is not understood. We used rainbow trout heart mitochondria to probe the effects of anoxia-reoxygenation and Cu on hydrogen peroxide (H2O2) emission during oxidation of palmitoylcarnitine (PC), succinate, or glutamate-malate. In addition, we examined the influence of anoxia-reoxygenation and Cu on site-specific H2O2 emission capacities and key antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Results showed that anoxia-reoxygenation suppressed H2O2 emission regardless of substrate type or duration of anoxia. Anoxia-reoxygenation reduced mitochondrial sensitivity to Cu during oxidation of succinate or glutamate-malate whereas high Cu concentration additively stimulated H2O2 emission in mitochondria oxidizing PC. Prolonged anoxia-reoxygenation stimulated H2O2 emission from sites OF and IF, inhibited emission from sites IQ, IIF and IIIQo, and disparately altered the sensitivity of the sites to Cu. Interestingly, anoxia-reoxygenation increased GPx and TrxR activities, more prominently when reoxygenation followed a short duration of anoxia. Cu did not alter GPx but reduced TrxR activity in normoxic and anoxic-reoxygenated mitochondria. Overall, our study revealed potential mechanisms that may reduce oxidative damage associated with anoxia-reoxygenation and Cu exposure in heart mitochondria. The increased and decreased H2O2 emission from NADH/NAD+ and QH2/Q isopotential sites, respectively, may represent a balance between H2O2 required for oxygen deprivation-induced signaling and prevention of ROS burst associated with anoxia-reoxygenation.
Collapse
Affiliation(s)
- Michael O Isei
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada
| | - Nirmala Chinnappareddy
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada.
| |
Collapse
|
10
|
Alderman SL, Riggs CL, Bullingham OMN, Gillis TE, Warren DE. Cold acclimation induces life stage-specific responses in the cardiac proteome of western painted turtles (Chrysemys picta bellii): implications for anoxia tolerance. J Exp Biol 2021; 224:271114. [PMID: 34328184 DOI: 10.1242/jeb.242387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Western painted turtles (Chrysemys picta bellii) are the most anoxia-tolerant tetrapod. Survival time improves at low temperature and during ontogeny, such that adults acclimated to 3°C survive far longer without oxygen than either warm-acclimated adults or cold-acclimated hatchlings. As protein synthesis is rapidly suppressed to save energy at the onset of anoxia exposure, this study tested the hypothesis that cold acclimation would evoke preparatory changes in protein expression to support enhanced anoxia survival in adult but not hatchling turtles. To test this, adult and hatchling turtles were acclimated to either 20°C (warm) or 3°C (cold) for 5 weeks, and then the heart ventricles were collected for quantitative proteomic analysis. The relative abundance of 1316 identified proteins was compared between temperatures and developmental stages. The effect of cold acclimation on the cardiac proteome was only evident in the context of an interaction with life stage, suggesting that ontogenic differences in anoxia tolerance may be predicated on successful maturation of the heart. The main differences between the hatchling and adult cardiac proteomes reflect an increase in metabolic scope with age that included more myoglobin and increased investment in both aerobic and anaerobic energy pathways. Mitochondrial structure and function were key targets of the life stage- and temperature-induced changes to the cardiac proteome, including reduced Complex II proteins in cold-acclimated adults that may help down-regulate the electron transport system and avoid succinate accumulation during anoxia. Therefore, targeted cold-induced changes to the cardiac proteome may be a contributing mechanism for stage-specific anoxia tolerance in turtles.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Claire L Riggs
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, ON, Canada, N1G 2W1
| | - Daniel E Warren
- Department of Biology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
11
|
Martin KE, Currie S, Pichaud N. Mitochondrial physiology and responses to elevated hydrogen sulphide in two isogenic lineages of an amphibious mangrove fish. J Exp Biol 2021; 224:jeb.241216. [PMID: 33688059 DOI: 10.1242/jeb.241216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Hydrogen sulphide (H2S) is toxic and can act as a selective pressure on aquatic organisms, facilitating a wide range of adaptations for life in sulphidic environments. Mangrove rivulus (Kryptolebias marmoratus) inhabit mangrove swamps and have developed high tolerance to environmental H2S. They are hermaphroditic and can self-fertilize, producing distinct isogenic lineages with different sensitivity to H2S. Here, we tested the hypothesis that observed differences in responses to H2S are the result of differences in mitochondrial functions. For this purpose, we performed two experimental series, testing (1) the overall mitochondrial oxidizing capacities and (2) the kinetics of apparent H2S mitochondrial oxidation and inhibition in two distinct lineages of mangrove rivulus, originally collected from Belize and Honduras. We used permeabilized livers from both lineages, measured mitochondrial oxidation, and monitored changes during gradual increases of sulphide. Ultimately, we determined that each lineage has a distinct strategy for coping with elevated H2S, indicating divergences in mitochondrial function and metabolism. The Honduras lineage has higher anaerobic capacity substantiated by higher lactate dehydrogenase activity and higher apparent H2S oxidation rates, likely enabling them to tolerate H2S by escaping aquatic H2S in a terrestrial environment. However, Belize fish have increased cytochrome c oxidase and citrate synthase activities as well as increased succinate contribution to mitochondrial respiration, allowing them to tolerate higher levels of aquatic H2S without inhibition of mitochondrial oxygen consumption. Our study reveals distinct physiological strategies in genetic lineages of a single species, indicating possible genetic and/or functional adaptations to sulphidic environments at the mitochondrial level.
Collapse
Affiliation(s)
- Keri E Martin
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Suzanne Currie
- Department of Biology, Acadia University, Wolfville, NS, Canada, B4P 2R6
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, University of Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
12
|
Dai YW, Lu XJ, Jiang R, Lu JF, Yang GJ, Chen J. Hypoxia-inducible factor-1α involved in macrophage regulation in ayu (Plecoglossus altivelis) under hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110575. [PMID: 33609806 DOI: 10.1016/j.cbpb.2021.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays a critical role in immune and inflammatory responses and is important in controlling a variety of processes in monocytes and macrophages. However, the role of HIF-1α in the teleost immune system remains less known. In this study, we cloned the cDNA sequence of HIF-1α from the ayu (Plecoglossus altivelis, PaHIF-1α). Sequence and phylogenetic tree analysis showed that PaHIF-1α clustered within the fish HIF-1α tree and was closely related to that of Northern pike (Esox lucius). PaHIF-1α was expressed in all tested tissues and expression increased in liver, head kidney, and body kidney upon Vibrio anguillarum infection. PaHIF-1α was found to regulate the expression of cytokines in ayu monocytes/macrophages (MO/MФ). PaHIF-1α mediated hypoxia-induced enhancement of MO/MФ phagocytic and bactericidal activities to enhance host defenses. Compared with the control, intermittent hypoxia further increased the expression of PaHIF-1α mRNA, improved the survival rate, and reduced the bacterial load of V. anguillarum-infected ayu. Therefore, PaHIF-1α may play a predominant role in the modulation of ayu MO/MФ function.
Collapse
Affiliation(s)
- You-Wu Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|