1
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Johnson CJ, Ali HS, Mohana Sundaram S, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in a non-vertebrate chordate. Development 2024; 151:dev202719. [PMID: 38895900 PMCID: PMC11273300 DOI: 10.1242/dev.202719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are replaced by adult-specific ones. The regulatory mechanisms underlying this replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the 'neck', a cellular compartment set aside in the larva to give rise to cranial motor neuron-like neurons post-metamorphosis. Using bulk and single-cell RNA-sequencing analyses, we characterize the transcriptome of the neck downstream of Pax2/5/8. We present evidence that neck-derived adult ciliomotor neurons begin to differentiate in the larva and persist through metamorphosis, contrary to the assumption that the adult nervous system is formed after settlement and the death of larval neurons during metamorphosis. Finally, we show that FGF signaling during the larval phase alters the patterning of the neck and its derivatives. Suppression of FGF converts neck cells into larval neurons that fail to survive metamorphosis, whereas prolonged FGF signaling promotes an adult neural stem cell-like fate.
Collapse
Affiliation(s)
- Eduardo D. Gigante
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexandra Gurgis
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leslie Cohen
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Florian Razy-Krajka
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sydney Popsuj
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher J. Johnson
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hussan S. Ali
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shruthi Mohana Sundaram
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Fujikake Y, Fukuda K, Matsushita K, Iwatani Y, Fujimoto K, Nishino AS. Pulsation waves along the Ciona heart tube reverse by bimodal rhythms expressed by a remote pair of pacemakers. J Exp Biol 2024; 227:jeb246810. [PMID: 38682233 DOI: 10.1242/jeb.246810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
The heart of ascidians (marine invertebrate chordates) has a tubular structure, and heartbeats propagate from one end to the other. The direction of pulsation waves intermittently reverses in the heart of ascidians and their relatives; however, the underlying mechanisms remain unclear. We herein performed a series of experiments to characterize the pacemaker systems in isolated hearts and their fragments, and applied a mathematical model to examine the conditions leading to heart reversals. The isolated heart of Ciona robusta autonomously generated pulsation waves at ∼20 to 25 beats min-1 with reversals at ∼1 to 10 min intervals. Experimental bisections of isolated hearts revealed that independent pacemakers resided on each side and also that their beating frequencies periodically changed as they expressed bimodal rhythms, which comprised an ∼1.25 to 5.5 min acceleration/deceleration cycle of a beating rate of between 0 and 25 beats min-1. Only fragments including 5% or shorter terminal regions of the heart tube maintained autonomous pulsation rhythms, whereas other regions did not. Our mathematical model, based on FitzHugh-Nagumo equations applied to a one-dimensional alignment of cells, demonstrated that the difference between frequencies expressed by the two independent terminal pacemakers determined the direction of propagated waves. Changes in the statuses of terminal pacemakers between the excitatory and oscillatory modes as well as in their endogenous oscillation frequencies were sufficient to lead to heart reversals. These results suggest that the directions of pulsation waves in the Ciona heart reverse according to the changing rhythms independently expressed by remotely coupled terminal pacemakers.
Collapse
Affiliation(s)
- Yuma Fujikake
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki 036-8561, Japan
| | - Kéita Fukuda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Katsuyoshi Matsushita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yasushi Iwatani
- Department of Science and Technology, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
- Department of Robotics, Faculty of Engineering, Kindai University, Higashi-Hiroshima 739-2116, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsuo S Nishino
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki 036-8561, Japan
| |
Collapse
|
3
|
Taniguchi S, Nakayama S, Iguchi R, Sasakura Y, Satake H, Wada S, Suzuki N, Ogasawara M, Sekiguchi T. Distribution of cionin, a cholecystokinin/gastrin family peptide, and its receptor in the central nervous system of Ciona intestinalis type A. Sci Rep 2024; 14:6277. [PMID: 38491056 PMCID: PMC10942981 DOI: 10.1038/s41598-024-55908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The cholecystokinin (CCK)/gastrin family peptides are involved in regulation of feeding and digestion in vertebrates. In the ascidian Ciona intestinalis type A (Ciona robusta), cionin, a CCK/gastrin family peptide, has been identified. Cionin is expressed exclusively in the central nervous system (CNS). In contrast, cionin receptor expression has been detected in the CNS, digestive tract, and ovary. Although cionin has been reported to be involved in ovulation, its physiological function in the CNS remains to be investigated. To elucidate its neural function, in the present study, we analyzed the expression of cionin and cionin receptors in the CNS. Cionin was expressed mainly in neurons residing in the anterior region of the cerebral ganglion. In contrast, the gene expressin of the cionin receptor gene CioR1, was detected in the middle part of the cerebral ganglion and showed a similar expression pattern to that of VACHT, a cholinergic neuron marker gene. Moreover, CioR1 was found to be expressed in cholinergic neurons. Consequently, these results suggest that cionin interacts with cholinergic neurons as a neurotransmitter or neuromodulator via CioR1. This study provides insights into a biological role of a CCK/gastrin family peptide in the CNS of ascidians.
Collapse
Affiliation(s)
- Shiho Taniguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Satoshi Nakayama
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seikacho, Kyoto, 619-0284, Japan
| | - Shuichi Wada
- Department of Animal Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-Cho, Ishikawa, 927-0553, Japan.
| |
Collapse
|
4
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Ali HS, Sundaram SM, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in the hindbrain of a non-vertebrate chordate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545305. [PMID: 37645866 PMCID: PMC10461979 DOI: 10.1101/2023.06.16.545305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are largely replaced by adult-specific ones. Yet the regulatory mechanisms underlying this neural replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the "Neck", a compartment of cells set aside in the larva to give rise to cranial motor neuron-like neurons in the adult. Using bulk and single-cell RNAseq analyses, we also characterize the transcriptome of the Neck downstream of Pax2/5/8. Surprisingly, we find that Neck-derived adult ciliomotor neurons begin to differentiate in the larva, contrary to the long-held assumption that the adult nervous system is formed only after settlement and the death of larval neurons during metamorphosis. Finally, we show that manipulating FGF signaling during the larval phase alters the patterning of the Neck and its derivatives. Suppression of FGF converts Neck cells into larval neurons that fail to survive metamorphosis, while prolonged FGF signaling promotes an adult neural stem cell-like fate instead.
Collapse
Affiliation(s)
- Eduardo D Gigante
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Alexandra Gurgis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106; USA
| | - Leslie Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Hussan S Ali
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| |
Collapse
|
5
|
Hara T, Hasegawa S, Iwatani Y, Nishino AS. The trunk-tail junctional region in Ciona larvae autonomously expresses tail-beating bursts at ∼20 second intervals. J Exp Biol 2022; 225:275646. [PMID: 35678124 DOI: 10.1242/jeb.243828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Swimming locomotion in aquatic vertebrates, such as fish and tadpoles, is expressed through neuron networks in the spinal cord. These networks are arranged in parallel, ubiquitously distributed and mutually coupled along the spinal cord to express undulation patterns accommodated to various inputs into the networks. While these systems have been widely studied in vertebrate swimmers, their evolutionary origin along the chordate phylogeny remains unclear. Ascidians, representing a sister group of vertebrates, give rise to tadpole larvae that swim freely in seawater. In the present study, we examined the locomotor ability of the anterior and posterior body fragments of larvae of the ascidian Ciona that had been cut at an arbitrary position. Examination of more than 200 fragments revealed a necessary and sufficient body region that spanned only ∼10% of the body length and included the trunk-tail junction. 'Mid-piece' body fragments, which included the trunk-tail junctional region, but excluded most of the anterior trunk and posterior tail, autonomously expressed periodic tail-beating bursts at ∼20 s intervals. We compared the durations and intervals of tail-beating bursts expressed by mid-piece fragments, and also by whole larvae under different sensory conditions. The results suggest that body parts outside the mid-piece effect shortening of swimming intervals, particularly in the dark, and vary the burst duration. We propose that Ciona larvae express swimming behaviors by modifying autonomous and periodic locomotor drives that operate locally in the trunk-tail junctional region.
Collapse
Affiliation(s)
- Takashi Hara
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Shuya Hasegawa
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Yasushi Iwatani
- Department of Science and Technology, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Atsuo S Nishino
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.,Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki 036-8561, Japan
| |
Collapse
|
6
|
Popsuj S, Stolfi A. Ebf Activates Expression of a Cholinergic Locus in a Multipolar Motor Ganglion Interneuron Subtype in Ciona. Front Neurosci 2022; 15:784649. [PMID: 34975385 PMCID: PMC8719597 DOI: 10.3389/fnins.2021.784649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Conserved transcription factors termed “terminal selectors” regulate neuronal sub-type specification and differentiation through combinatorial transcriptional regulation of terminal differentiation genes. The unique combinations of terminal differentiation gene products in turn contribute to the functional identities of each neuron. One well-characterized terminal selector is COE (Collier/Olf/Ebf), which has been shown to activate cholinergic gene batteries in C. elegans motor neurons. However, its functions in other metazoans, particularly chordates, is less clear. Here we show that the sole COE ortholog in the non-vertebrate chordate Ciona robusta, Ebf, controls the expression of the cholinergic locus VAChT/ChAT in a single dorsal interneuron of the larval Motor Ganglion, which is presumed to be homologous to the vertebrate spinal cord. We propose that, while the function of Ebf as a regulator of cholinergic neuron identity conserved across bilaterians, its exact role may have diverged in different cholinergic neuron subtypes (e.g., interneurons vs. motor neurons) in chordate-specific motor circuits.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|