1
|
Grunst ML, Grunst AS, Grémillet D, Kato A, Gentès S, Fort J. Keystone seabird may face thermoregulatory challenges in a warming Arctic. Sci Rep 2023; 13:16733. [PMID: 37794049 PMCID: PMC10550970 DOI: 10.1038/s41598-023-43650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Climate change affects the Arctic more than any other region, resulting in evolving weather, vanishing sea ice and altered biochemical cycling, which may increase biotic exposure to chemical pollution. We tested thermoregulatory impacts of these changes on the most abundant Arctic seabird, the little auk (Alle alle). This small diving species uses sea ice-habitats for foraging on zooplankton and resting. We equipped eight little auks with 3D accelerometers to monitor behavior, and ingested temperature recorders to measure body temperature (Tb). We also recorded weather conditions, and collected blood to assess mercury (Hg) contamination. There were nonlinear relationships between time engaged in different behaviors and Tb. Tb increased on sea ice, following declines while foraging in polar waters, but changed little when birds were resting on water. Tb also increased when birds were flying, and decreased at the colony after being elevated during flight. Weather conditions, but not Hg contamination, also affected Tb. However, given our small sample size, further research regarding thermoregulatory effects of Hg is warranted. Results suggest that little auk Tb varies with behavior and weather conditions, and that loss of sea ice due to global warming may cause thermoregulatory and energic challenges during foraging trips at sea.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, CEBC, UMR 7372 CNRS-La Rochelle Université, La Rochelle, France
| | - Sophie Gentès
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
2
|
Fry TL, Friedrichs KR, Ketz AC, Duncan C, Van Deelen TR, Goldberg TL, Atwood TC. Long-term assessment of relationships between changing environmental conditions and the physiology of southern Beaufort Sea polar bears (Ursus maritimus). GLOBAL CHANGE BIOLOGY 2023; 29:5524-5539. [PMID: 37503782 DOI: 10.1111/gcb.16883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Climate change is influencing polar bear (Ursus maritimus) habitat, diet, and behavior but the effects of these changes on their physiology is not well understood. Blood-based biomarkers are used to assess the physiologic health of individuals but their usefulness for evaluating population health, especially as it relates to changing environmental conditions, has rarely been explored. We describe links between environmental conditions and physiologic functions of southern Beaufort Sea polar bears using data from blood samples collected from 1984 to 2018, a period marked by extensive environmental change. We evaluated associations between 13 physiologic biomarkers and circumpolar (Arctic oscillation index) and regional (wind patterns and ice-free days) environmental metrics and seasonal and demographic co-variates (age, sex, season, and year) known to affect polar bear ecology. We observed signs of dysregulation of water balance in polar bears following years with a lower annual Arctic oscillation index. In addition, liver enzyme values increased over time, which is suggestive of potential hepatocyte damage as the Arctic has warmed. Biomarkers of immune function increased with regional-scale wind patterns and the number of ice-free days over the Beaufort Sea continental shelf and were lower in years with a lower winter Arctic oscillation index, suggesting an increased allocation of energetic resources for immune processes under these conditions. We propose that the variation in polar bear immune and metabolic function is likely indicative of physiologic plasticity, a response that allows polar bears to remain in homeostasis even as they experience changes in nutrition and habitat in response to changing environments.
Collapse
Affiliation(s)
- Tricia L Fry
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Alison C Ketz
- Department of Forest and Wildlife Ecology, Wisconsin Cooperative Research Unit, University of Wisconsin, Madison, Wisconsin, USA
| | - Colleen Duncan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Timothy R Van Deelen
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| | - Tony L Goldberg
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| |
Collapse
|
3
|
Barratclough A, Ferguson SH, Lydersen C, Thomas PO, Kovacs KM. A Review of Circumpolar Arctic Marine Mammal Health-A Call to Action in a Time of Rapid Environmental Change. Pathogens 2023; 12:937. [PMID: 37513784 PMCID: PMC10385039 DOI: 10.3390/pathogens12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The impacts of climate change on the health of marine mammals are increasingly being recognised. Given the rapid rate of environmental change in the Arctic, the potential ramifications on the health of marine mammals in this region are a particular concern. There are eleven endemic Arctic marine mammal species (AMMs) comprising three cetaceans, seven pinnipeds, and the polar bear (Ursus maritimus). All of these species are dependent on sea ice for survival, particularly those requiring ice for breeding. As air and water temperatures increase, additional species previously non-resident in Arctic waters are extending their ranges northward, leading to greater species overlaps and a concomitant increased risk of disease transmission. In this study, we review the literature documenting disease presence in Arctic marine mammals to understand the current causes of morbidity and mortality in these species and forecast future disease issues. Our review highlights potential pathogen occurrence in a changing Arctic environment, discussing surveillance methods for 35 specific pathogens, identifying risk factors associated with these diseases, as well as making recommendations for future monitoring for emerging pathogens. Several of the pathogens discussed have the potential to cause unusual mortality events in AMMs. Brucella, morbillivirus, influenza A virus, and Toxoplasma gondii are all of concern, particularly with the relative naivety of the immune systems of endemic Arctic species. There is a clear need for increased surveillance to understand baseline disease levels and address the gravity of the predicted impacts of climate change on marine mammal species.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Steven H. Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada;
| | - Christian Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| | - Peter O. Thomas
- Marine Mammal Commission, 4340 East-West Highway, Room 700, Bethesda, MD 20814, USA;
| | - Kit M. Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; (C.L.); (K.M.K.)
| |
Collapse
|
4
|
Brandhuber M, Atkinson S, Cunningham C, Roth T, Curry E. Assessing Dehydroepiandrosterone Sulfate (DHEAS) as a novel biomarker for monitoring estrus and successful reproduction in polar bears. Gen Comp Endocrinol 2023; 338:114276. [PMID: 36940836 PMCID: PMC10319433 DOI: 10.1016/j.ygcen.2023.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Polar bears (Ursus maritimus) in the wild are under threat due to climate change, primarily loss of sea ice, and experience poor reproductive success in zoos. The polar bear is a seasonally polyestrous species that exhibits embryonic diapause and pseudopregnancy, complicating characterization of reproductive function. Fecal excretion of testosterone and progesterone have been studied in polar bears, but accurately predicting reproductive success remains difficult. Dehydroepiandrosterone (DHEA) is a steroid hormone precursor correlated with reproductive success in other species, but has not been well studied in the polar bear. The purpose of the present study was to characterize the longitudinal excretion of DHEAS, the sulfated form of DHEA, from zoo-housed polar bears using a validated enzyme immunoassay. Lyophilized fecal samples from parturient females (n = 10), breeding non-parturient females (n = 11), a non-breeding adult female, a juvenile female, and a breeding adult male were investigated. Five of the breeding non-parturient females had been previously contracepted, while six were never contracepted. DHEAS concentrations were closely associated with testosterone concentrations (p < 0.05, rho > 0.57) for all reproductive statuses. Breeding females exhibited statistically significant (p < 0.05) increases in DHEAS concentration on or near breeding dates, which were not observed outside of the breeding season, or in the non-breeding or juvenile animals. Breeding non-parturient females exhibited higher median and baseline DHEAS concentrations than parturient females over the course of the breeding season. Previously contracepted (PC) breeding non-parturient females also exhibited higher season-long median and baseline DHEAS concentrations than non-previously (NPC) contracepted breeding non-parturient females. These findings suggest that DHEA is related to estrus or ovulation in the polar bear, that there is an optimal DHEA concentration window, and concentrations exceeding that threshold may be associated with reproductive dysfunction.
Collapse
Affiliation(s)
- Monica Brandhuber
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Dept., Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, USA.
| | - Shannon Atkinson
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Dept., Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, USA.
| | - Curry Cunningham
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Dept., Juneau Center, 17101 Pt. Lena Loop Road, Juneau, AK 99801, USA.
| | - Terri Roth
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo and Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA.
| | - Erin Curry
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo and Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA.
| |
Collapse
|
5
|
Decadal migration phenology of a long-lived Arctic icon keeps pace with climate change. Proc Natl Acad Sci U S A 2022; 119:e2121092119. [PMID: 36279424 PMCID: PMC9659343 DOI: 10.1073/pnas.2121092119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals migrate in response to seasonal environments, to reproduce, to benefit from resource pulses, or to avoid fluctuating hazards. Although climate change is predicted to modify migration, only a few studies to date have demonstrated phenological shifts in marine mammals. In the Arctic, marine mammals are considered among the most sensitive to ongoing climate change due to their narrow habitat preferences and long life spans. Longevity may prove an obstacle for species to evolutionarily respond. For species that exhibit high site fidelity and strong associations with migration routes, adjusting the timing of migration is one of the few recourses available to respond to a changing climate. Here, we demonstrate evidence of significant delays in the timing of narwhal autumn migrations with satellite tracking data spanning 21 y from the Canadian Arctic. Measures of migration phenology varied annually and were explained by sex and climate drivers associated with ice conditions, suggesting that narwhals are adopting strategic migration tactics. Male narwhals were found to lead the migration out of the summering areas, while females, potentially with dependent young, departed later. Narwhals are remaining longer in their summer areas at a rate of 10 d per decade, a similar rate to that observed for climate-driven sea ice loss across the region. The consequences of altered space use and timing have yet to be evaluated but will expose individuals to increasing natural changes and anthropogenic activities on the summering areas.
Collapse
|
6
|
Wang J, Xiao J, Zhu Z, Wang S, Zhang L, Fan Z, Deng Y, Hu Z, Peng F, Shen S, Deng F. Diverse viromes in polar regions: A retrospective study of metagenomic data from Antarctic animal feces and Arctic frozen soil in 2012-2014. Virol Sin 2022; 37:883-893. [PMID: 36028202 PMCID: PMC9797369 DOI: 10.1016/j.virs.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Antarctica and the Arctic are the coldest places, containing a high diversity of microorganisms, including viruses, which are important components of polar ecosystems. However, owing to the difficulties in obtaining access to animal and environmental samples, the current knowledge of viromes in polar regions is still limited. To better understand polar viromes, this study performed a retrospective analysis using metagenomic sequencing data of animal feces from Antarctica and frozen soil from the Arctic collected during 2012-2014. The results reveal diverse communities of DNA and RNA viruses from at least 23 families from Antarctic animal feces and 16 families from Arctic soils. Although the viral communities from Antarctica and the Arctic show a large diversity, they have genetic similarities with known viruses from different ecosystems and organisms with similar viral proteins. Phylogenetic analysis of Microviridae, Parvoviridae, and Larvidaviridae was further performed, and complete genomic sequences of two novel circular replication-associated protein (rep)-encoding single-stranded (CRESS) DNA viruses closely related to Circoviridae were identified. These results reveal the high diversity, complexity, and novelty of viral communities from polar regions, and suggested the genetic similarity and functional correlations of viromes between the Antarctica and Arctic. Variations in viral families in Arctic soils, Arctic freshwater, and Antarctic soils are discussed. These findings improve our understanding of polar viromes and suggest the importance of performing follow-up in-depth investigations of animal and environmental samples from Antarctica and the Arctic, which would reveal the substantial role of these viruses in the global viral community.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Xiao
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zheng Zhu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Siyuan Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Lei Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaojun Fan
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yali Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China,Corresponding authors.
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| |
Collapse
|
7
|
Cooper JA, Hutchinson JR, Bernvi DC, Cliff G, Wilson RP, Dicken ML, Menzel J, Wroe S, Pirlo J, Pimiento C. The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling. SCIENCE ADVANCES 2022; 8:eabm9424. [PMID: 35977007 PMCID: PMC9385135 DOI: 10.1126/sciadv.abm9424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Although shark teeth are abundant in the fossil record, their bodies are rarely preserved. Thus, our understanding of the anatomy of the extinct Otodus megalodon remains rudimentary. We used an exceptionally well-preserved fossil to create the first three-dimensional model of the body of this giant shark and used it to infer its movement and feeding ecology. We estimate that an adult O. megalodon could cruise at faster absolute speeds than any shark species today and fully consume prey the size of modern apex predators. A dietary preference for large prey potentially enabled O. megalodon to minimize competition and provided a constant source of energy to fuel prolonged migrations without further feeding. Together, our results suggest that O. megalodon played an important ecological role as a transoceanic superpredator. Hence, its extinction likely had large impacts on global nutrient transfer and trophic food webs.
Collapse
Affiliation(s)
- Jack A. Cooper
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - David C. Bernvi
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, KZN, South Africa
| | - Rory P. Wilson
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Matt L. Dicken
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Jan Menzel
- JanMenzelArt, Stellenbosch 7600, South Africa
| | - Stephen Wroe
- Function, Evolution, and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Jeanette Pirlo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biological Sciences, California State University Stanislaus, Turlock, CA 95382, USA
| | - Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
- Paleontological Institute and Museum, University of Zurich, Zurich CH-8006, Switzerland
- Smithsonian Tropical Research Institution, Balboa, Panama
| |
Collapse
|
8
|
McHuron EA, Adamczak S, Arnould JPY, Ashe E, Booth C, Bowen WD, Christiansen F, Chudzinska M, Costa DP, Fahlman A, Farmer NA, Fortune SME, Gallagher CA, Keen KA, Madsen PT, McMahon CR, Nabe-Nielsen J, Noren DP, Noren SR, Pirotta E, Rosen DAS, Speakman CN, Villegas-Amtmann S, Williams R. Key questions in marine mammal bioenergetics. CONSERVATION PHYSIOLOGY 2022; 10:coac055. [PMID: 35949259 PMCID: PMC9358695 DOI: 10.1093/conphys/coac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key' questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.
Collapse
Affiliation(s)
- Elizabeth A McHuron
- Corresponding author: Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, WA, 98195, USA.
| | - Stephanie Adamczak
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Erin Ashe
- Oceans Initiative, Seattle, WA, 98102, USA
| | - Cormac Booth
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
| | - W Don Bowen
- Biology Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Center for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch, Murdoch University, WA 6150, Australia
| | - Magda Chudzinska
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 9XL, UK
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, 46005 Valencia, Spain
- Kolmården Wildlife Park, 618 92 Kolmården, Sweden
| | - Nicholas A Farmer
- NOAA/National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, FL, 33701, USA
| | - Sarah M E Fortune
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cara A Gallagher
- Plant Ecology and Nature Conservation, University of Potsdam, 14476 Potsdam, Germany
| | - Kelly A Keen
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Clive R McMahon
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| | | | - Dawn P Noren
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Shawn R Noren
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, UK
| | - David A S Rosen
- Institute for Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1ZA, Canada
| | - Cassie N Speakman
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Stella Villegas-Amtmann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | |
Collapse
|
9
|
Autumn migration phenology of polar bears (Ursus maritimus) in Hudson Bay, Canada. Polar Biol 2022. [DOI: 10.1007/s00300-022-03050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Merkel B, Aars J. Shifting polar bear Ursus maritimus denning habitat availability in the European Arctic. Polar Biol 2022. [DOI: 10.1007/s00300-022-03016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractClimate warming has resulted in extensive sea ice loss across the Arctic. Polar bears (Ursus maritimus) rely on sea ice for hunting, resting, travelling and in some parts of the Arctic also maternity denning. In the European Arctic, polar bears rely on snow drifts on land to den and give birth. Consequently, timely arrival of sea ice around land masses during autumn is important for pregnant females to reach their denning habitat from their sea ice hunting grounds. We defined denning habitat as landforms necessary to accumulate snow to a depth sufficient for dens. We quantified availability of terrestrial denning habitat across the three European Arctic archipelagos throughout the last four (1979–2020) and the next eight decades (until 2100) using arrival of autumn sea ice around these islands. Across the study area, a clear trend was visible towards later sea ice arrival, varying up to 102 days. Female polar bears in the European Arctic now have 33% denning habitat available compared to the 1980's as many areas became inaccessible in time to start maternity denning. By the 2090's, all areas were projected to be inaccessible to pregnant bears. This decline was unequally distributed, with most reduction in Svalbard and Novaya Zemlya until 2020, whilst denning habitat availability in Franz Josef Land remained unchanged until 2020 but is predicted to become inaccessible by the end of the century. This work emphasizes the importance of the temporal dimension of sea ice dynamics for the persistence of polar bear populations.
Collapse
|
11
|
Desforges JP, Outridge P, Hobson KA, Heide-Jørgensen MP, Dietz R. Anthropogenic and Climatic Drivers of Long-Term Changes of Mercury and Feeding Ecology in Arctic Beluga ( Delphinapterus leucas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:271-281. [PMID: 34914363 DOI: 10.1021/acs.est.1c05389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We assessed long-term changes in the feeding ecology and mercury (Hg) accumulation in Eastern High Arctic-Baffin Bay beluga (Delphinapterus leucas) using total Hg and stable isotope (δ13C, δ15N) assays in teeth samples from historical (1854-1905) and modern (1985-2000) populations. Mean δ13C values in teeth declined significantly over time, from -13.01 ± 0.55‰ historically to -14.41 ± 0.28‰ in 2000, while no consistent pattern was evident for δ15N due to high individual variability within each period. The temporal shift in isotopic niche is consistent with beluga feeding ecology changing in recent decades to a more pelagic and less isotopically diverse diet or an ecosystem wide change in isotope profiles. Mercury concentrations in modern beluga teeth were 3-5 times higher on average than those in historical beluga. These results are similar to the long-term trends of Hg and feeding ecology reported in other beluga populations and in other Arctic marine predators. Similar feeding ecology shifts across regions and species indicate a consistent increased pelagic diet response to climate change as the Arctic Ocean progressively warmed and lost sea ice. Previously, significant temporal Hg increase in beluga and other Arctic animals was attributed solely to direct inputs of anthropogenic Hg from long-range sources. Recent advances in understanding the Arctic marine Hg cycle suggest an additional, complementary possibility─increased inputs of terrestrial Hg of mixed anthropogenic-natural origin, mobilized from permafrost and other Arctic soils by climate warming. At present, it is not possible to assign relative importance to the two processes in explaining the rise of Hg concentrations in modern Arctic marine predators.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Department of Environmental Studies and Sciences, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Peter Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario K1A 0E8, Canada
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N6, Canada
| | - Keith A Hobson
- Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 0X4, Canada
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
Davidson SC, Ruhs EC. Understanding the dynamics of Arctic animal migrations in a changing world. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2020-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This is submitted as an introduction to the special collection on, “Arctic Migrations in a Changing World”.
Collapse
Affiliation(s)
- Sarah C. Davidson
- Department of Animal Migration , Max Plank Institute of Animal Behavior , Radolfzell , Germany ; Department of Biology , University of Konstanz , Konstanz , Germany Department of Civil, Environmental and Geodetic Engineering , The Ohio State University , Columbus , OH, USA
| | | |
Collapse
|
13
|
Franklin CE, Hoppeler HH. Elucidating mechanism is important in forecasting the impact of a changing world on species survival. J Exp Biol 2021; 224:224/Suppl_1/jeb242284. [PMID: 33627471 DOI: 10.1242/jeb.242284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Hans H Hoppeler
- Department of Anatomy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|