1
|
Ficarra S, Scardina A, Nakamura M, Patti A, Şahin FN, Palma A, Bellafiore M, Bianco A, Thomas E. Acute effects of static stretching and proprioceptive neuromuscular facilitation on non-local range of movement. Res Sports Med 2024; 32:1015-1027. [PMID: 38459925 DOI: 10.1080/15438627.2024.2326520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Acute effects of static stretching (SS) and proprioceptive neuromuscular facilitation (PNF) on local and non-local range of motion (ROM) were assessed in 29 participants. Three evaluations were performed one week apart: week-1 Control session (CS); weeks 2-3 either SS or PNF interventions (randomized). Dominant and non-dominant limbs, local (hamstring extensibility) and non-local ROMs (Shoulder extension-ShE) were collected at baseline (T0), immediately after (T1), and fifteen minutes post-intervention (T2). No differences were found between time-points during the CS. Local-ROM significantly increased (p=0.0002, ES=0.74 and 0.0079, 0.56, for dominant and non-dominant lower limbs, respectively) after both SS and PNF. No interaction between time and treatment was detected for ShE in both limbs. However, post-hoc analysis revealed a significant increase in dominant upper limb ShE between T0 and T1 only after SS (p=0.002; +6.5%). Acute bouts of SS and PNF can increase local-ROM, however, no clear effects were observed for non-local ROM.
Collapse
Affiliation(s)
- Salvatore Ficarra
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Scardina
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishikyushu University, Kanzaki, Saga, Japan
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Fatma Neşe Şahin
- Department of Coaching Education, Faculty of Sport Science, Ankara University, Ankara, Turkey
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Popesco T, Gardet Q, Bossard J, Maffiuletti NA, Place N. Centrally mediated responses to NMES are influenced by muscle group and stimulation parameters. Sci Rep 2024; 14:24918. [PMID: 39438501 PMCID: PMC11496505 DOI: 10.1038/s41598-024-75145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Wide-pulse high-frequency neuromuscular electrical stimulation (WPHF NMES) can generate a progressive increase in tetanic force through reflexive recruitment of motor units, called extra force. This phenomenon has previously been observed on different muscle groups, but little is known on potential inter-muscle differences. We compared extra force and sustained electromyographic (EMG) activity induced by NMES between plantar flexors, knee extensors, elbow flexors and within muscle groups using pulse durations of 0.2, 1 and 2 ms and stimulation frequencies of 20, 50, 100 and 147 Hz. Extra force production and sustained EMG activity were higher for plantar flexors compared to elbow flexors at all tested parameters (except 0.2 ms for extra force). When compared to elbow flexors, extra force of the knee extensors was only higher at 100 Hz and with 1 ms while sustained EMG activity was higher at all frequencies with pulse durations of 0.2 and 2 ms. Peripheral nerve architecture as well as muscle typology and function could influence the occurrence and magnitude of centrally-mediated responses to NMES. The present findings suggest that the use of wide-pulse high-frequency NMES to promote reflexive recruitment seems to be more pertinent for lower limb muscles, plantar flexors in particular.
Collapse
Affiliation(s)
- Timothée Popesco
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Quentin Gardet
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jonathan Bossard
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | | | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
3
|
Mesquita RNO, Taylor JL, Heckman CJ, Trajano GS, Blazevich AJ. Persistent inward currents in human motoneurons: emerging evidence and future directions. J Neurophysiol 2024; 132:1278-1301. [PMID: 39196985 DOI: 10.1152/jn.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/30/2024] Open
Abstract
The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage-gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements are suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - C J Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Blazevich AJ, Mesquita RNO, Pinto RS, Pulverenti T, Ratel S. Reduction and recovery of self-sustained muscle activity after fatiguing plantar flexor contractions. Eur J Appl Physiol 2024; 124:1781-1794. [PMID: 38340155 PMCID: PMC11130039 DOI: 10.1007/s00421-023-05403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE Persistent inward calcium and sodium currents (PICs) are crucial for initiation and maintenance of motoneuron firing, and thus muscular force. However, there is a lack of data describing the effects of fatiguing exercise on PIC activity in humans. We simultaneously applied tendon vibration and neuromuscular electrical stimulation (VibStim) before and after fatiguing exercise. VibStim induces self-sustained muscle activity that is proposed to result from PIC activation. METHODS Twelve men performed 5-s maximal isometric plantar flexor contractions (MVC) with 5-s rests until joint torque was reduced to 70%MVC. VibStim trials consisted of five 2-s trains of neuromuscular electrical stimulation (20 Hz, evoking 10% MVC) of triceps surae with simultaneous Achilles tendon vibration (115 Hz) without voluntary muscle activation. VibStim was applied before (PRE), immediately (POST), 5-min (POST-5), and 10-min (POST-10) after exercise completion. RESULTS Sustained torque (Tsust) and soleus electromyogram amplitudes (EMG) measured 3 s after VibStim were reduced (Tsust: -59.0%, p < 0.001; soleus EMG: -38.4%, p < 0.001) but largely recovered by POST-5, and changes in MVC and Tsust were correlated across the four time points (r = 0.69; p < 0.001). After normalisation to values obtained at the end of the vibration phase to control for changes in fibre-specific force and EMG signal characteristics, decreases in Tsust (-42.9%) and soleus EMG (-22.6%) remained significant and were each correlated with loss and recovery of MVC (r = 0.41 and 0.46, respectively). CONCLUSION The parallel changes observed in evoked self-sustained muscle activity and force generation capacity provide motivation for future examinations on the potential influence of fatigue-induced PIC changes on motoneuron output.
Collapse
Affiliation(s)
- Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.
| | - Ricardo N O Mesquita
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Neuroscience Research Australia, Sydney, Australia
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Timothy Pulverenti
- Department of Physical Therapy, College of Staten Island, Staten Island, NY, USA
| | - Sébastien Ratel
- UFR STAPS - Laboratoire AME2P, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 Rue de la Chebarde, 63170, Clermont-Ferrand, France
| |
Collapse
|
5
|
Mackay K, Orssatto LBR, Polman R, Van der Pols JC, Trajano GS. Caffeine does not influence persistent inward current contribution to motoneuron firing. J Neurophysiol 2023; 130:1529-1540. [PMID: 37877186 DOI: 10.1152/jn.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The purpose of this study was to investigate whether caffeine consumption would change persistent inward current (PIC) contribution to motoneuron firing at increased contraction intensities and after repetitive sustained maximal contractions. Before and after the consumption of 6 mg·kg-1 of caffeine or placebo, 16 individuals performed isometric triangular-shaped ramp dorsiflexion contractions (to 20% and 40% of peak torque), followed by four maximal contractions sustained until torque production dropped to 60% of maximum, and consecutive 20% triangular-shaped contractions. Tibialis anterior motor unit firing frequencies were analyzed from high-density surface electromyograms. PIC contribution to motor unit firing was estimated by calculating the delta frequency (ΔF) using the paired motor unit technique. Motoneuron peak firing frequencies at 20% and 40% contractions and total torque-time integral during the repetitive sustained maximal contractions were also assessed. ΔF increased 0.69 peaks per second (pps) (95% CI = -0.98, -0.405; d = -0.87) from 20% to 40% contraction intensities and reduced 0.85 pps (95% CI = 0.66, 1.05; d = 0.99) after the repetitive sustained maximal contractions, regardless of caffeine consumption. Participants produced 337 Nm·s (95% CI = 49.9, 624; d = 0.63) more torque integral during the repetitive sustained maximal contractions after caffeine consumption. A strong repeated-measures correlation (r = 0.61; 95% CI = 0.49, 0.69) was observed between reductions of ΔF and peak firing frequencies after the repetitive sustained maximal contractions. PIC contribution to motoneuron firing increases from 20% to 40% contraction intensities, with no effect of caffeine (on rested tibialis anterior). Repetitive sustained maximal contractions reduced PIC contribution to motoneuron firing, regardless of caffeine or placebo consumption, evidencing that changes in intrinsic motoneuron properties contributed to performance loss. Caffeine-attenuated reduction of torque production capacity was unlikely mediated by PICs.NEW & NOTEWORTHY Persistent inward current (PIC) contribution to motoneuron firing increases with contraction intensities and is reduced after repetitive sustained maximal contractions, regardless of caffeine consumption. Reductions of PIC contribution to motoneuron firing and peak firing frequencies were largely associated, evidencing a novel mechanism underpinning decrements in maximal torque production capacity following repetitive sustained maximal contractions. Caffeine consumption attenuated neuromuscular performance reductions-allowing higher time-torque integral production during repetitive sustained maximal contractions. This was unlikely mediated by PIC.
Collapse
Affiliation(s)
- Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Remco Polman
- Institute of Health and Wellbeing, Federation University, Melbourne, Victoria, Australia
| | - Jolieke C Van der Pols
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Mesquita RNO, Taylor JL, Trajano GS, Holobar A, Gonçalves BAM, Blazevich AJ. Effects of jaw clenching and mental stress on persistent inward currents estimated by two different methods. Eur J Neurosci 2023; 58:4011-4033. [PMID: 37840191 DOI: 10.1111/ejn.16158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Spinal motoneuron firing depends greatly on persistent inward currents (PICs), which in turn are facilitated by the neuromodulators serotonin and noradrenaline. The aim of this study was to determine whether jaw clenching (JC) and mental stress (MS), which may increase neuromodulator release, facilitate PICs in human motoneurons. The paired motor unit (MU) technique was used to estimate PIC contribution to motoneuron firing. Surface electromyograms were collected using a 32-channel matrix on gastrocnemius medialis (GM) during voluntary, ramp, plantar flexor contractions. MU discharges were identified, and delta frequency (ΔF), a measure of recruitment-derecruitment hysteresis, was calculated. Additionally, another technique was used (VibStim) that evokes involuntary contractions that persist after cessation of combined Achilles tendon vibration and triceps surae neuromuscular electrical stimulation. VibStim measures of plantar flexor torque and soleus activity may reflect PIC activation. ΔF was not significantly altered by JC (p = .679, n = 18, 9 females) or MS (p = .147, n = 14, 5 females). However, all VibStim variables quantifying involuntary torque and muscle activity during and after vibration cessation were significantly increased in JC (p < .011, n = 20, 10 females) and some, but not all, increased in MS (p = .017-.05, n = 19, 10 females). JC and MS significantly increased the magnitude of involuntary contractions (VibStim) but had no effect on GM ΔF during voluntary contractions. Effects of increased neuromodulator release on PIC contribution to motoneuron firing might differ between synergists or be context dependent. Based on these data, the background level of voluntary contraction and, hence, both neuromodulation and ionotropic inputs could influence neuromodulatory PIC enhancement.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Basílio A M Gonçalves
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Zhang H, Meng L, Yang Z. Biomechanical mechanism driving typical postural shifts of lower limbs during sleeping in an aircraft seat. Eur J Appl Physiol 2023; 123:2023-2039. [PMID: 37147512 DOI: 10.1007/s00421-023-05220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
The purpose of this study was to determine the biomechanical mechanisms driving passengers' lower-limb postural shifts during seated sleep on a flight to prevent negative effects on passengers' physical health. Twenty subjects participated in an observational study and a subsequent experiment on fatigue development and tissue oxygenation changes during seated sleep in an economy-class aircraft seat. Three of the most frequently used postures, which involved four targeted muscles of the legs and the thigh-buttock region, were selected and examined in the experiment with the following measures: muscle electromyogram, tissue oxygenation, and body contact pressure distribution. The results showed that the fatigue of the tibialis anterior and gastrocnemius and the compression of the region under the medial tuberosities were relieved by alternations among the three positions-position 1 (placing the shanks forwards), position 2 (placing the shanks neutrally), and position 3 (placing the shanks backwards). This research reveals the mechanical properties of the biomechanical factors functioning in lower-limb postural shifts during seated sleep and provides design optimization strategies for economy-class aircraft seats to reduce the negative effects on passenger health.
Collapse
Affiliation(s)
- Huizhong Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lei Meng
- College of Art, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Zhi Yang
- Department of Science and Technology, Beijing Institute of Fashion Technology, Beijing, China
| |
Collapse
|
8
|
Thomas E, Rossi C, Petrigna L, Messina G, Bellafiore M, Şahin FN, Proia P, Palma A, Bianco A. Evaluation of Posturographic and Neuromuscular Parameters during Upright Stance and Hand Standing: A Pilot Study. J Funct Morphol Kinesiol 2023; 8:jfmk8020040. [PMID: 37092372 PMCID: PMC10123693 DOI: 10.3390/jfmk8020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Upright bipedal posture is the physiological human posture; however, it is not the only possible form of human standing; indeed, an inverted position, a handstand, is required during gymnastics or other sports. Thus, this study aimed to understand the differences between the two standing strategies from a postural and neuromuscular perspective. Thirteen gymnasts with at least three years of sports experience underwent a baropodometric assessment and a surface electromyography (sEMG) examination in a standard upright bipodalic stance and during a handstand. The sEMG examination was performed on the gastrocnemius during an upright stance and on the flexor carpi radialis during the handstand. Limb weight distribution presented differences between the two vertical stances (p < 0.01). During the handstand, the weight ratio was prevalently observed on the palm of the hand for both hands with a significant difference between the front and rear aspect of the hand compared to the standing tasks (p < 0.01). Normalized sEMG amplitude showed significant differences during bipedal standing and hand standing; however, over a 5 s period, the normalized median frequency (MDF) value was similar for the two tasks. Both standing tasks presented similar postural weight managing patterns when analysed on the frontal plane, but they were different on the sagittal plane. In addition, the neuromuscular patterns during a 5 s window differ in amplitude but not for the frequency domain.
Collapse
Affiliation(s)
- Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Carlo Rossi
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Luca Petrigna
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy
| | - Giuseppe Messina
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Fatma Neşe Şahin
- Department of Coaching Education, Faculty of Sport Science, Ankara University, Ankara 06830, Türkiye
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| |
Collapse
|
9
|
Orssatto LBR, Rodrigues P, Mackay K, Blazevich AJ, Borg DN, Souza TRD, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motor neuron excitability is increased after resistance training in older adults. J Neurophysiol 2023; 129:635-650. [PMID: 36752407 DOI: 10.1152/jn.00462.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study investigated the effects of high-intensity resistance training on estimates of the motor neuron persistent inward current (PIC) in older adults. Seventeen participants (68.5 ± 2.8 yr) completed a 2-wk nonexercise control period followed by 6 wk of resistance training. Surface electromyographic signals were collected with two 32-channel electrodes placed over soleus to investigate motor unit discharge rates. Paired motor unit analysis was used to calculate delta frequency (ΔF) as an estimate of PIC amplitudes during 1) triangular-shaped contractions to 20% of maximum torque capacity and 2) trapezoidal- and triangular-shaped contractions to 20% and 40% of maximum torque capacity, respectively, to understand their ability to modulate PICs as contraction intensity increases. Maximal strength and functional capacity tests were also assessed. For the 20% triangular-shaped contractions, ΔF [0.58-0.87 peaks per second (pps); P ≤ 0.015] and peak discharge rates (0.78-0.99 pps; P ≤ 0.005) increased after training, indicating increased PIC amplitude. PIC modulation also improved after training. During the control period, mean ΔF differences between 20% trapezoidal-shaped and 40% triangular-shaped contractions were 0.09-0.18 pps (P = 0.448 and 0.109, respectively), which increased to 0.44 pps (P < 0.001) after training. Also, changes in ΔF showed moderate to very large correlations (r = 0.39-0.82) with changes in peak discharge rates and broad measures of motor function. Our findings indicate that increased motor neuron excitability is a potential mechanism underpinning training-induced improvements in motor neuron discharge rate, strength, and motor function in older adults. This increased excitability is likely mediated by enhanced PIC amplitudes, which are larger at higher contraction intensities.NEW & NOTEWORTHY Resistance training elicited important alterations in soleus intrinsic motor neuronal excitability, likely mediated by enhanced persistent inward current (PIC) amplitude, in older adults. Estimates of PICs increased after the training period, accompanied by an enhanced ability to increase PIC amplitudes at higher contraction intensities. Our data also suggest that changes in PIC contribution to self-sustained discharging may contribute to increases in motor neuron discharge rates, maximal strength, and functional capacity in older adults after resistance training.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrick Rodrigues
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - David N Borg
- Australian Centre for Health Services Innovation (AusHSI), School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tiago Rosa de Souza
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raphael L Sakugawa
- Department of Physical Education, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Goodlich BI, Del Vecchio A, Horan SA, Kavanagh JJ. Blockade of 5-HT 2 receptors suppresses motor unit firing and estimates of persistent inward currents during voluntary muscle contraction in humans. J Physiol 2023; 601:1121-1138. [PMID: 36790076 DOI: 10.1113/jp284164] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Serotonergic neuromodulation contributes to enhanced voluntary muscle activation. However, it is not known how the likely motoneurone receptor candidate (5-HT2 ) influences the firing rate and activation threshold of motor units (MUs) in humans. The purpose of this study was to determine whether 5-HT2 receptor activity contributes to human MU behaviour during voluntary ramped contractions of differing intensity. High-density surface EMG (HDsEMG) of the tibialis anterior was assessed during ramped isometric dorsiflexions at 10, 30, 50 and 70% of maximal voluntary contraction (MVC). MU characteristics were successfully extracted from HDsEMG of 11 young adults (four female) pre- and post-ingestion of 8 mg cyproheptadine or a placebo. Antagonism of 5-HT2 receptors caused a reduction in MU discharge rate during steady-state muscle activation that was independent of the level of contraction intensity [P < 0.001; estimated mean difference (∆) = 1.06 pulses/s], in addition to an increase in MU derecruitment threshold (P < 0.013, ∆ = 1.23% MVC), without a change in force during MVC (P = 0.652). A reduction in estimates of persistent inward current amplitude was observed at 10% MVC (P < 0.001, ∆ = 0.99 Hz) and 30% MVC (P = 0.003, ∆ = 0.75 Hz) that aligned with 5-HT changes in MU firing behaviour attributable to 5-HT2 antagonism. Overall, these findings indicate that 5-HT2 receptor activity has a role in regulating the discharge rate in populations of spinal motoneurones when performing voluntary contractions. This study provides evidence of a direct link between MU discharge properties, persistent inward current activity and 5-HT2 receptor activity in humans. KEY POINTS: Activation of 5-HT receptors on the soma and dendrites of motoneurones regulates their excitability. Previous work using chlorpromazine and cyproheptadine has demonstrated that the 5-HT2 receptor regulates motoneurone activity in humans with chronic spinal cord injury and non-injured control subjects. It is not known how the 5-HT2 receptor directly influences motor unit (MU) discharge and MU recruitment in larger populations of human motoneurones during voluntary contractions of differing intensity. Despite the absence of change in force during maximal voluntary dorsiflexions, 5-HT2 receptor antagonism caused a reduction in MU discharge rate during submaximal steady-state muscle contraction, in addition to an increase in MU derecruitment threshold, irrespective of the submaximal contraction intensity. Reductions in estimates of persistent inward currents after 5-HT2 receptor antagonism support the viewpoint that the 5-HT2 receptor plays a crucial role in regulating motor activity, whereby a persistent inward current-based mechanism is involved in regulating the excitability of human motoneurones.
Collapse
Affiliation(s)
- Benjamin I Goodlich
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University (FAU), Erlangen-Nuremberg, Erlangen, Germany
| | - Sean A Horan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
11
|
Lapole T, Mesquita RNO, Baudry S, Souron R, Brownstein CG, Rozand V. Can local vibration alter the contribution of persistent inward currents to human motoneuron firing? J Physiol 2023; 601:1467-1482. [PMID: 36852473 DOI: 10.1113/jp284210] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), which in turn are enhanced by the neuromodulators serotonin and noradrenaline. Local vibration (LV) induces excitatory Ia input onto motoneurons and may alter neuromodulatory inputs. Therefore, we investigated whether LV influences the contribution of PICs to motoneuron firing. This was assessed in voluntary contractions with concurrent, ongoing LV, as well as after a bout of prolonged LV. High-density surface electromyograms (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. Twenty males performed isometric, triangular, dorsiflexion contractions to 20% and 50% of maximal torque at baseline, during LV of the tibialis anterior muscle, and after 30-min of LV. HD-EMG signals were decomposed, and motor units tracked across time points to estimate PICs through a paired motor unit analysis, which quantifies motor unit recruitment-derecruitment hysteresis (ΔF). During ongoing LV, ΔF was lower for both 20% and 50% ramps. Although significant changes in ΔF were not observed after prolonged LV, a differential effect across the motoneuron pool was observed. This study demonstrates that PICs can be non-pharmacologically modulated by LV. Given that LV leads to reflexive motor unit activation, it is postulated that lower PIC contribution to motoneuron firing during ongoing LV results from decreased neuromodulatory inputs associated with lower descending corticospinal drive. A differential effect in motoneurons of different recruitment thresholds after prolonged LV is provocative, challenging the interpretation of previous observations and motivating future investigations. KEY POINTS: Neuromodulatory inputs from the brainstem influence motoneuron intrinsic excitability through activation of persistent inward currents (PICs). PICs make motoneurons more responsive to excitatory input. We demonstrate that vibration applied on the muscle modulates the contribution of PICs to motoneuron firing, as observed through analysis of the firing of single motor units. The effects of PICs on motoneuron firing were lower when vibration was concurrently applied during voluntary ramp contractions, likely due to lower levels of neuromodulation. Additionally, prolonged exposure to vibration led to differential effects of lower- vs. higher-threshold motor units on PICs, with lower-threshold motor units tending to present an increased and higher-threshold motor units a decreased contribution of PICs to motoneuron firing. These results demonstrate that muscle vibration has the potential to influence the effects of neuromodulation on motoneuron firing. The potential of using vibration as a non-pharmacological neuromodulatory intervention should be further investigated.
Collapse
Affiliation(s)
- T Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - R N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - S Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - R Souron
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, 44000 Nantes, France
| | - C G Brownstein
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - V Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| |
Collapse
|
12
|
Mackay Phillips K, Orssatto LBR, Polman R, Van der Pols JC, Trajano GS. The effects of α-lactalbumin supplementation and handgrip contraction on soleus motoneuron excitability. Eur J Appl Physiol 2023; 123:395-404. [PMID: 36443491 DOI: 10.1007/s00421-022-05101-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION We tested two strategies that hypothetically increase serotonin availability (α-lactalbumin consumption and a remote submaximal handgrip contraction) on estimates of persistent inward currents (PICs) amplitude of soleus muscle in healthy participants. METHODS With a randomised, double-blind, and cross-over design, 13 healthy participants performed triangular-shaped ramp contractions with their plantar flexors (20% of maximal torque), followed by a 30-s handgrip sustained contraction (40% of maximal force) and consecutive repeated triangular-shaped contractions. This was performed before and after the consumption of either 40 g of α-lactalbumin, an isonitrogenous beverage (Zein) or an isocaloric beverage (Corn-starch). Soleus motor units discharge rates were analysed from high-density surface electromyography signals. PICs were estimated by calculating the delta frequency (ΔF) of motor unit train spikes using the paired motor unit technique. RESULTS ΔF (0.19 pps; p = 0.001; d = 0.30) and peak discharge rate (0.20 pps; p < 0.001; d = 0.37) increased after the handgrip contraction, irrespective of the consumed supplement. No effects of α-lactalbumin were observed. CONCLUSIONS Our results indicate that 40 g of α-lactalbumin was unable to modify intrinsic motoneuron excitability. However, performing a submaximal handgrip contraction before the plantar flexion triangular contraction was capable of increasing ΔF and discharge rates on soleus motor units. These findings highlight the diffused effects of serotonergic input, its effects on motoneuron discharge behaviour, and suggest a cross-effector effect within human motoneurons.
Collapse
Affiliation(s)
- Karen Mackay Phillips
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| | - Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Remco Polman
- Institute of Health and Wellbeing, Federation University, Berwick, Australia
| | - Jolieke C Van der Pols
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), 149 Victoria Park Rd, Kelvin Grove, Brisbane, QLD, 4059, Australia
| |
Collapse
|
13
|
Thomas E, Ficarra S, Nunes JP, Paoli A, Bellafiore M, Palma A, Bianco A. Does Stretching Training Influence Muscular Strength? A Systematic Review With Meta-Analysis and Meta-Regression. J Strength Cond Res 2022; 37:1145-1156. [PMID: 36525533 DOI: 10.1519/jsc.0000000000004400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT Thomas, E, Ficarra, S, Nunes, JP, Paoli, A, Bellafiore, M, Palma, A, and Bianco, A. Does stretching training influence muscular strength? A systematic review with meta-analysis and meta-regression. J Strength Cond Res 37(5): 1145-1156, 2023-The aim of this study was to review articles that performed stretching training and evaluated the effects on muscular strength. Literature search was performed using 3 databases. Studies were included if they compared the effects on strength following stretching training vs. a nontraining control group or stretching training combined with resistance training (RT) vs. an RT-only group, after at least 4 weeks of intervention. The meta-analyses were performed using a random-effect model with Hedges' g effect size (ES). A total of 35 studies ( n = 1,179 subjects) were included in this review. The interventions lasted for a mean period of 8 weeks (range, 4-24 weeks), 3-4 days per week, applying approximately 4 sets of stretching of approximately 1-minute duration. The meta-analysis for the stretching vs. nontraining control group showed a significant small effect on improving dynamic (k = 14; ES = 0.33; p = 0.007) but not isometric strength (k = 8; ES = 0.10; p = 0.377), following static stretching programs (k = 17; ES = 0.28; p = 0.006). When stretching was added to RT interventions, the main analysis indicated no significant effect (k = 17; ES = -0.15; p = 0.136); however, moderator analysis indicated that performing stretching before RT sessions has a small but negative effect (k = 7; ES = -0.43; p = 0.014); the meta-regression revealed a significant negative association with study length (β = -0.100; p = 0.004). Chronic static stretching programs increase dynamic muscular strength to a small magnitude. Performing stretching before RT and for a prolonged time (>8 weeks) can blunt the strength gains to a small-to-moderate magnitude. Performing stretching in sessions distant from RT sessions might be a strategy to not hinder strength development.
Collapse
Affiliation(s)
- Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Salvatore Ficarra
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil; and
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Orssatto LBR, Fernandes GL, Blazevich AJ, Trajano GS. Facilitation-inhibition control of motor neuronal persistent inward currents in young and older adults. J Physiol 2022; 600:5101-5117. [PMID: 36284446 PMCID: PMC10092053 DOI: 10.1113/jp283708] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 01/05/2023] Open
Abstract
A well-coordinated facilitation-inhibition control of motor neuronal persistent inward currents (PICs) via diffuse neuromodulation and local inhibition is essential to ensure motor units discharge at required times and frequencies. Present best estimates indicate that PICs are reduced in older adults; however, it is not yet known whether PIC facilitation-inhibition control is also altered with ageing. We investigated the responses of PICs to (i) a remote handgrip contraction, which is believed to diffusely increase serotonergic input onto motor neurones, and (ii) tendon vibration of the antagonist muscle, which elicits reciprocal inhibition, in young and older adults. High-density surface electromyograms were collected from soleus and tibialis anterior of 18 young and 26 older adults during triangular-shaped plantar and dorsiflexion contractions to 20% (handgrip experiments) and 30% (vibration experiments) of maximum torque (rise-decline rate of 2%/s). A paired-motor-unit analysis was used to calculate ∆F, which is assumed to be proportional to PIC strength. ΔF increased in both soleus (0.55 peaks per second (pps), 16.0%) and tibialis anterior (0.42 pps, 11.4%) after the handgrip contraction independent of age. Although antagonist tendon vibration reduced ΔF in soleus (0.28 pps, 12.6%) independent of age, less reduction was observed in older (0.42 pps, 10.7%) than young adults (0.72 pps, 17.8%) in tibialis anterior. Our data indicate a preserved ability of older adults to amplify PICs following a remote handgrip contraction, during which increased serotonergic input onto the motor neurones is expected, in both lower leg muscles. However, PIC deactivation in response to reciprocal inhibition was impaired with ageing in tibialis anterior despite being preserved in soleus. KEY POINTS: Motor neuronal persistent inward currents (PICs) are facilitated via diffuse neuromodulation and deactivated by local inhibition to ensure motor units discharge at required times and frequencies, allowing normal motor behaviour. PIC amplitudes appear to be reduced with ageing; however, it is not known whether PIC facilitation-inhibition control is also altered. Remote handgrip contraction, which should diffusely increase serotonergic input onto motor neurones, facilitated PICs similarly in both soleus and tibialis anterior of young and older adults. Antagonist tendon vibration, which induces reciprocal inhibition, reduced PICs in soleus in both young and older adults but had less effect in tibialis anterior in older adults. Data from lower-threshold motor units during low-force contractions suggest that PIC facilitation is preserved with ageing in soleus and tibialis anterior. However, the effect of reciprocal inhibition on the contribution of PICs to motor neurone discharge seems reduced in tibialis anterior but preserved in soleus.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel L Fernandes
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - A J Blazevich
- School of Medical and Exercise Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
15
|
Thomas E, Ficarra S, Scardina A, Bellafiore M, Palma A, Maksimovic N, Drid P, Bianco A. Positional transversal release is effective as stretching on range of movement, performance and balance: a cross-over study. BMC Sports Sci Med Rehabil 2022; 14:202. [PMID: 36451202 PMCID: PMC9714235 DOI: 10.1186/s13102-022-00599-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Abstract
Background
The aim of this study was to compare the positional transversal release (PTR) technique to stretching and evaluate the acute effects on range of movement (ROM), performance and balance.
Methods
Thirty-two healthy individuals (25.3 ± 5.6 years; 68.8 ± 12.5 kg; 172.0 ± 8.8 cm) were tested on four occasions 1 week apart. ROM through a passive straight leg raise, jumping performance through a standing long jump (SLJ) and balance through the Y-balance test were measured. Each measure was assessed before (T0), immediately after (T1) and after 15 min (T2) of the provided intervention. On the first occasion, no intervention was administered (CG). The intervention order was randomized across participants and comprised static stretching (SS), proprioceptive neuromuscular facilitation (PNF) and the PTR technique. A repeated measure analysis of variance was used for comparisons.
Results
No differences across the T0 of the four testing sessions were observed. No differences between T0, T1 and T2 were present for the CG session. A significant time × group interaction for ROM in both legs from T0 to T1 (mean increase of 5.4° and 4.9° for right and left leg, respectively) was observed for SS, PNF and the PTR. No differences for all groups were present between T1 and T2. No differences in the SLJ and in measures of balance were observed across interventions.
Conclusions
The PTR is equally effective as SS and PNF in acutely increasing ROM of the lower limbs. However, the PTR results less time-consuming than SS and PNF. Performance and balance were unaffected by all the proposed interventions.
Collapse
|
16
|
Kavanagh JJ, Taylor JL. Voluntary activation of muscle in humans: does serotonergic neuromodulation matter? J Physiol 2022; 600:3657-3670. [PMID: 35864781 PMCID: PMC9541597 DOI: 10.1113/jp282565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Ionotropic inputs to motoneurones have the capacity to depolarise and hyperpolarise the motoneurone, whereas neuromodulatory inputs control the state of excitability of the motoneurone. Intracellular recordings of motoneurones from in vitro and in situ animal preparations have provided extraordinary insight into the mechanisms that underpin how neuromodulators regulate neuronal excitability. However, far fewer studies have attempted to translate the findings from cellular and molecular studies into a human model. In this review, we focus on the role that serotonin (5-HT) plays in muscle activation in humans. 5-HT is a potent regulator of neuronal firing rates, which can influence the force that can be generated by muscles during voluntary contractions. We firstly outline structural and functional characteristics of the serotonergic system, and then describe how motoneurone discharge can be facilitated and suppressed depending on the 5-HT receptor subtype that is activated. We then provide a narrative on how 5-HT effects can influence voluntary activation during muscle contractions in humans, and detail how 5-HT may be a mediator of exercise-induced fatigue that arises from the central nervous system.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Neural Control of Movement laboratoryMenzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Janet L. Taylor
- Centre for Human Performance, School of Medical and Health SciencesEdith Cowan UniversityPerthAustralia
- Neuroscience Research AustraliaSydneyAustralia
| |
Collapse
|
17
|
Nakamura M, Suzuki Y, Yoshida R, Kasahara K, Murakami Y, Hirono T, Nishishita S, Takeuchi K, Konrad A. The Time-Course Changes in Knee Flexion Range of Motion, Muscle Strength, and Rate of Force Development After Static Stretching. Front Physiol 2022; 13:917661. [PMID: 35721554 PMCID: PMC9201101 DOI: 10.3389/fphys.2022.917661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that longer-duration static stretching (SS) interventions can cause a decrease in muscle strength, especially explosive muscle strength. Furthermore, force steadiness is an important aspect of muscle force control, which should also be considered. However, the time course of the changes in these variables after an SS intervention remains unclear. Nevertheless, this information is essential for athletes and coaches to establish optimal warm-up routines. The aim of this study was to investigate the time course of changes in knee flexion range of motion (ROM), maximal voluntary isometric contraction (MVIC), rate of force development (RFD), and force steadiness (at 5 and 20% of MVIC) after three 60-s SS interventions. Study participants were sedentary healthy adult volunteers (n = 20) who performed three 60-s SS interventions of the knee extensors, where these variables were measured before and after SS intervention at three different periods, i.e., immediately after, 10 min, and 20 min the SS intervention (crossover design). The results showed an increase in ROM at all time points (d = 0.86-1.01). MVIC was decreased immediately after the SS intervention (d = -0.30), but MVIC showed a recovery trend for both 10 min (d = -0.17) and 20 min (d = -0.20) after the SS intervention. However, there were significant impairments in RFD at 100 m (p = 0.014, F = 6.37, ηp 2 = 0.101) and 200 m (p < 0.01, F = 28.0, ηp 2 = 0.33) up to 20 min after the SS intervention. Similarly, there were significant impairments in force steadiness of 5% (p < 0.01, F = 16.2, ηp 2 = 0.221) and 20% MVIC (p < 0.01, F = 16.0, ηp 2 = 0.219) at 20 min after the SS intervention. Therefore, it is concluded that three 60-s SS interventions could increase knee flexion ROM but impair explosive muscle strength and muscle control function until 20 min after the SS intervention.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki, Japan,*Correspondence: Masatoshi Nakamura, ; Andreas Konrad,
| | - Yusuke Suzuki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan,S/PARK Business Planning Group, MIRAI Technology Institute, R&D Integrated Operation Department, Shiseido Co, Ltd., Global Innovation Center, Kanagawa, Japan
| | - Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuki Kasahara
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Tetsuya Hirono
- School of Health and Sport Sciences, Chukyo University, Toyota, Japan,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoru Nishishita
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Osaka, Japan,Kansai Rehabilitation Hospital, Tokuyukai Medical Corporation, Osaka, Japan
| | - Kosuke Takeuchi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Hyogo, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria,*Correspondence: Masatoshi Nakamura, ; Andreas Konrad,
| |
Collapse
|
18
|
Orssatto LBR, Borg DN, Blazevich AJ, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motoneuron excitability is reduced in soleus and tibialis anterior of older adults. GeroScience 2021; 43:2719-2735. [PMID: 34716899 PMCID: PMC8556797 DOI: 10.1007/s11357-021-00478-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related deterioration within both motoneuron and monoaminergic systems should theoretically reduce neuromodulation by weakening motoneuronal persistent inward current (PIC) amplitude. However, this assumption remains untested. Surface electromyographic signals were collected using two 32-channel electrode matrices placed on soleus and tibialis anterior of 25 older adults (70 ± 4 years) and 17 young adults (29 ± 5 years) to investigate motor unit discharge behaviors. Participants performed triangular-shaped plantar and dorsiflexion contractions to 20% of maximum torque at a rise-decline rate of 2%/s of each participant's maximal torque. Pairwise and composite paired-motor unit analyses were adopted to calculate delta frequency (ΔF), which has been used to differentiate between the effects of synaptic excitation and intrinsic motoneuronal properties and is assumed to be proportional to PIC amplitude. Soleus and tibialis anterior motor units in older adults had lower ΔFs calculated with either the pairwise [-0.99 and -1.46 pps; -35.4 and -33.5%, respectively] or composite (-1.18 and -2.28 pps; -32.1 and -45.2%, respectively) methods. Their motor units also had lower peak discharge rates (-2.14 and -2.03 pps; -19.7 and -13.9%, respectively) and recruitment thresholds (-1.50 and -2.06% of maximum, respectively) than young adults. These results demonstrate reduced intrinsic motoneuron excitability during low-force contractions in older adults, likely mediated by decreases in the amplitude of persistent inward currents. Our findings might be explained by deterioration in the motoneuron or monoaminergic systems and could contribute to the decline in motor function during aging; these assumptions should be explicitly tested in future investigations.
Collapse
Affiliation(s)
- Lucas B. R. Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - David N. Borg
- Menzies Health Institute Queensland, The Hopkins Centre, Griffith University, Brisbane, Australia
| | | | - Raphael L. Sakugawa
- Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Anthony J. Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S. Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
19
|
Hassan AS, Fajardo ME, Cummings M, McPherson LM, Negro F, Dewald JPA, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents are reduced in upper limb motor units of older adults. J Physiol 2021; 599:4865-4882. [PMID: 34505294 DOI: 10.1113/jp282063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Ageing is a natural process causing alterations in the neuromuscular system, which contributes to reduced quality of life. Motor unit (MU) contributes to weakness, but the mechanisms underlying reduced firing rates are unclear. Persistent inward currents (PICs) are crucial for initiation, gain control and maintenance of motoneuron firing, and are directly proportional to the level of monoaminergic input. Since concentrations of monoamines (i.e. serotonin and noradrenaline) are reduced with age, we sought to determine if estimates of PICs are reduced in older (>60 years old) compared to younger adults (<35 years old). We decomposed MU spike trains from high-density surface electromyography over the biceps and triceps brachii during isometric ramp contractions to 20% of maximum. Estimates of PICs (ΔFrequency; or simply ΔF) were computed using the paired MU analysis technique. Regardless of the muscle, peak firing rates of older adults were reduced by ∼1.6 pulses per second (pps) (P = 0.0292), and ΔF was reduced by ∼1.9 pps (P < 0.0001), compared to younger adults. We further found that age predicted ΔF in older adults (P = 0.0261), resulting in a reduction of ∼1 pps per decade, but there was no relationship in younger adults (P = 0.9637). These findings suggest that PICs are reduced in the upper limbs of older adults during submaximal isometric contractions. Reduced PIC magnitude represents one plausible mechanism for reduced firing rates and function in older individuals, but further work is required to understand the implications in other muscles and during a variety of motor tasks. KEY POINTS: Persistent inward currents play an important role in the neural control of human movement and are influenced by neuromodulation via monoamines originating in the brainstem. During ageing, motor unit firing rates are reduced, and there is deterioration of brainstem nuclei, which may reduce persistent inward currents in alpha motoneurons. Here we show that estimates of persistent inward currents (ΔF) of both elbow flexor and extensor motor units are reduced in older adults. Estimates of persistent inward currents have a negative relationship with age in the older adults, but not in the young. This novel mechanism may play a role in the alteration of motor firing rates that occurs with ageing, which may have consequences for motor control.
Collapse
Affiliation(s)
- Altamash S Hassan
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Melissa E Fajardo
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark Cummings
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura Miller McPherson
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita' degli Studi di Brescia, Brescia, Italy
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
20
|
Mazzo MR, Weinman LE, Giustino V, Mclagan B, Maldonado J, Enoka RM. Changes in neural drive to calf muscles during steady submaximal contractions after repeated static stretches. J Physiol 2021; 599:4321-4336. [PMID: 34292610 DOI: 10.1113/jp281875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Repeated static-stretching interventions consistently increase the range of motion about a joint and decrease total joint stiffness, but findings on the changes in muscle and connective-tissue properties are mixed. The influence of these stretch-induced changes on muscle function at submaximal forces is unknown. To address this gap in knowledge, the changes in neural drive to the plantar flexor muscles after a static-stretch intervention were estimated. Neural drive to the plantar flexor muscles during a low-force contraction increased after repeated static stretches. These findings suggest that adjustments in motor unit activity are necessary at low forces to accommodate reductions in the force-generating and transmission capabilities of the muscle-tendon unit after repeated static stretches of the calf muscles. ABSTRACT Static stretching decreases stiffness about a joint, but its influence on muscle-tendon unit function and muscle activation is unclear. We investigated the influence of three static stretches on changes in neural drive to the plantar flexor muscles, both after a stretch intervention and after a set of maximal voluntary contractions (MVCs). Estimates of neural drive were obtained during submaximal isometric contractions by decomposing high-density electromyographic signals into the activity of individual motor units from medial gastrocnemius, lateral gastrocnemius and soleus. Motor units were matched across contractions and an estimate of neural drive to the plantar flexors was calculated by normalizing the cumulative spike train to the number of active motor units (normalized neural drive). Mean discharge rate increased after the stretch intervention during the 10% MVC task for all recorded motor units and those matched across conditions (all, P = 0.0046; matched only, P = 0.002), recruitment threshold decreased for motor units matched across contractions (P = 0.022), and discharge rate at recruitment was elevated (P = 0.004). Similarly, the estimate of normalized neural drive was significantly greater after the stretch intervention at 10% MVC torque (P = 0.029), but not at 35% MVC torque. The adjustments in motor unit activity required to complete the 10% MVC task after stretch may have been partially attenuated by a set of plantar flexor MVCs. The increase in neural drive required to produce low plantar-flexion torques after repeated static stretches of the calf muscles suggests stretch-induced changes in muscle and connective tissue properties.
Collapse
Affiliation(s)
- Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Logan E Weinman
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Valerio Giustino
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Bailey Mclagan
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - John Maldonado
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
21
|
Trajano GS, Blazevich AJ. Static Stretching Reduces Motoneuron Excitability: The Potential Role of Neuromodulation. Exerc Sport Sci Rev 2021; 49:126-132. [PMID: 33720914 PMCID: PMC7967995 DOI: 10.1249/jes.0000000000000243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Prolonged static muscle stretching transiently reduces maximal muscle force, and this force loss has a strong neural component. In this review, we discuss the evidence suggesting that stretching reduces the motoneuron's ability to amplify excitatory drive. We propose a hypothetical model in which stretching causes physiological relaxation, reducing the brainstem-derived neuromodulatory drive necessary to maximize motoneuron discharge rates.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
22
|
Orssatto LBR, Mackay K, Shield AJ, Sakugawa RL, Blazevich AJ, Trajano GS. Estimates of persistent inward currents increase with the level of voluntary drive in low-threshold motor units of plantar flexor muscles. J Neurophysiol 2021; 125:1746-1754. [PMID: 33788617 DOI: 10.1152/jn.00697.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study tested whether estimates of persistent inward currents (PICs) in the human plantar flexors would increase with the level of voluntary drive. High-density surface electromyograms were collected from soleus and gastrocnemius medialis of 21 participants (29.2 ± 2.6 yr) during ramp-shaped isometric contractions to 10%, 20%, and 30% (torque rise and decline of 2%/s and 30-s duration) of each participant's maximal torque. Motor units identified in all the contraction intensities were included in the paired-motor unit analysis to calculate delta frequency (ΔF) and estimate the PICs. ΔF is the difference in discharge rate of the control unit at the time of recruitment and derecruitment of the test unit. Increases in PICs were observed from 10% to 20% [Δ = 0.6 pulse per second (pps); P < 0.001] and from 20% to 30% (Δ = 0.5 pps; P < 0.001) in soleus and from 10% to 20% (Δ = 1.2 pps; P < 0.001) but not from 20% to 30% (Δ = 0.09 pps; P = 0.724) in gastrocnemius medialis. Maximal discharge rate increased for soleus and gastrocnemius medialis from 10% to 20% [Δ = 1.75 pps (P < 0.001) and Δ = 2.43 pps (P < 0.001), respectively] and from 20% to 30% [Δ = 0.80 pps (P < 0.017) and Δ = 0.92 pps (P = 0.002), respectively]. The repeated-measures correlation identified associations between ΔF and increases in maximal discharge rate for soleus (r = 0.64; P < 0.001) and gastrocnemius medialis (r = 0.77; P < 0.001). An increase in voluntary drive tends to increase PIC strength, which has key implications for the control of force but also for comparisons between muscles or studies when relative force levels might be different. Increases in voluntary descending drive amplify PICs in humans and provide an important spinal mechanism for motor unit discharging, and thus force output modulation.NEW & NOTEWORTHY Animal experiments and computational models have shown that motor neurons can amplify the synaptic input they receive via persistent inward currents. Here we show in humans that this amplification varies proportionally to the magnitude of the voluntary drive to the muscle.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Raphael L Sakugawa
- Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Pulverenti TS, Trajano GS, Kirk BJC, Bochkezanian V, Blazevich AJ. Plantar flexor muscle stretching depresses the soleus late response but not tendon tap reflexes. Eur J Neurosci 2021; 53:3185-3198. [PMID: 33675055 DOI: 10.1111/ejn.15178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to investigate changes in muscle spindle sensitivity with early and late soleus reflex responses via tendon taps and transcranial magnetic stimulation, respectively, after an acute bout of prolonged static plantar flexor muscle stretching. Seventeen healthy males were tested before and after 5 min (5 × 60-s stretches) of passive static stretching of the plantar flexor muscles. Maximal voluntary isometric torque and M wave-normalized triceps surae muscle surface electromyographic activity were recorded. Both soleus tendon reflexes, evoked by percussion of the Achilles tendon during rest and transcranial magnetic stimulation-evoked soleus late responses during submaximal isometric dorsiflexion were also quantified. Significant decreases in maximal voluntary isometric plantar flexion torque (-19.2 ± 13.6%, p = .002) and soleus electromyographic activity (-20.1 ± 11.4%, p < .001) were observed immediately after stretching, and these changes were highly correlated (r = 0.76, p < .001). No changes were observed in tendon reflex amplitude or latency or peak muscle twitch torque (p > .05). Significant reductions in soleus late response amplitudes (-46.9 ± 36.0%, p = .002) were detected, although these changes were not correlated with changes in maximal electromyographic activity, torque or tendon reflex amplitudes. No changes in soleus late response latency were detected. In conclusion, impaired neural drive was implicated in the stretch-induced force loss; however, no evidence was found that this loss was related to changes in muscle spindle sensitivity. We hypothesize that the decrease in soleus late response indicates a stretch-induced reduction in a polysynaptic postural reflex rather than spindle reflex sensitivity.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Benjamin J C Kirk
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
24
|
Behm DG, Alizadeh S, Drury B, Granacher U, Moran J. Non-local acute stretching effects on strength performance in healthy young adults. Eur J Appl Physiol 2021; 121:1517-1529. [PMID: 33715049 DOI: 10.1007/s00421-021-04657-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. OBJECTIVE The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. METHODS A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. RESULTS Unilateral stretching protocols from six studies involved 6.3 ± 2 repetitions of 36.3 ± 7.4 s with 19.3 ± 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 ± 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 ± 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. CONCLUSION The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Gloucester, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| |
Collapse
|
25
|
Mesquita RNO, Taylor JL, Kirk B, Blazevich AJ. Involuntary sustained firing of plantar flexor motor neurones: effect of electrical stimulation parameters during tendon vibration. Eur J Appl Physiol 2021; 121:881-891. [PMID: 33392744 PMCID: PMC7892516 DOI: 10.1007/s00421-020-04563-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Simultaneous application of tendon vibration and neuromuscular electrical stimulation (NMES) induces an involuntary sustained torque. We examined the effect of different NMES parameters (intensity, pattern of stimulation and pulse width) on the magnitude of the evoked involuntary torque. METHODS Plantar flexor torque was recorded during 33-s Achilles tendon vibration with simultaneous 20-Hz NMES bouts on triceps surae (n = 20; 13 women). Intensity was set to elicit 10, 20 or 30% of maximal voluntary contraction torque (MVC), pulse width was narrow (0.2 ms) or wide (1 ms), and the stimulus pattern varied (5 × 2-s or 10 × 1-s). Up to 12 different trials were performed in a randomized order, and then repeated in those who produced a sustained involuntary torque after the cessation of vibration. RESULTS Six of 7 men and 5 of 13 women produced a post-vibration sustained torque. Eight of 20 participants did not complete the 30% trials, as they were perceived as painful. Torque during vibration at the end of NMES and the increase in torque throughout the trial were significantly higher in 20 than 10% trials (n = 11; 9.7 ± 9.0 vs 7.1 ± 6.1% MVC and 4.3 ± 4.5 vs 3.6 ± 3.5% MVC, respectively). Post-vibration sustained torque was higher in wide pulse-width trials (5.4 ± 5.9 vs 4.1 ± 4.3% MVC). Measures of involuntary torque were not different between 20 and 30% trials (n = 8). CONCLUSION Bouts of 5 × 2-s NMES with wide pulse width eliciting 20% MVC provides the most robust responses and could be used to maximise the production of involuntary torque in triceps surae.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| | - Janet L Taylor
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Benjamin Kirk
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|