1
|
Diaz T, Treidel LA, Menze MA, Williams CM, Lebenzon JE. Beclin-mediated Autophagy Drives Dorsal Longitudinal Flight Muscle Histolysis in the Variable Field Cricket, Gryllus lineaticeps. Integr Comp Biol 2024; 64:565-575. [PMID: 38760886 DOI: 10.1093/icb/icae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight-capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene that encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.
Collapse
Affiliation(s)
- Tomás Diaz
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Lisa A Treidel
- School of Biological Sciences, University of Nebraska Lincoln, 1104 T Street, Lincoln, NE 68588, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, 139 Life Sciences Bldg. Louisville, KY 40292, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California Berkeley, 2040 Valley Life Sciences Building, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Kwon W, Lee KP. Macronutrient regulation in nymphs of the two-spotted cricket, Gryllus bimaculatus (Orthoptera: Gryllidae). JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104684. [PMID: 39074715 DOI: 10.1016/j.jinsphys.2024.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Crickets have been extensively studied in recent insect nutritional research, but it remains largely unexplored how they balance the intake of multiple nutrients. Here, we used the nutritional geometry framework to examine the behavioural and physiological regulation of dietary protein and carbohydrate in nymphs of the two-spotted cricket, Gryllus bimaculatus (Orthoptera: Gryllidae). Growth, intake, utilization efficiencies, and body composition were measured from the eighth instar nymphs that received either food pairs or single foods with differing protein and carbohydrate content. When food choices were available, crickets preferentially selected a carbohydrate-biased protein:carbohydrate (P:C) ratio of 1:1.74. During this nutrient selection, carbohydrate intake was more tightly regulated than protein intake. When confined to nutritionally imbalanced foods, crickets adopted a nutrient balancing strategy that maximized the nutrient intake regardless of the nutrient imbalance, reflecting their omnivorous feeding habit. Intake was significantly reduced when crickets were confined to the most carbohydrate-biased food (P:C = 1:5). When nutrients were ingested in excess of the requirements, the post-ingestive utilization efficiencies of these nutrients were down-regulated, thereby buffering the impacts of nutrient imbalances on body nutrient composition. Crickets reared on the most carbohydrate-biased food (P:C = 1:5) suffered delayed development and reduced growth. Our data provide the most accurate description of nutrient regulation in G. bimaculatus and lay the foundation for further nutritional research in this omnivorous insect.
Collapse
Affiliation(s)
- Woomin Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Zhu Y, Song L, Chen L, Yun Y, Zhang W, Zhao Y, Peng Y. Energy Allocation of the Wolf Spider Pardosa pseudoannulata under Dietary Restriction. INSECTS 2023; 14:579. [PMID: 37504586 PMCID: PMC10380717 DOI: 10.3390/insects14070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The phenomenon of food shortage is widespread in spider populations, which has a great impact on their growth, development, and survival. Pardosa pseudoannulata is a dominant spider species in rice fields and has an important controlling effect on rice pests. In this study, three feeding levels were tested at the juvenile stage (H, high feeding; M, medium dietary restriction; L, severe dietary restriction) and two at the adult stage (H and L). A total of six feeding levels were tested to explore the effects of dietary restriction on the development, longevity, nutrient content, and predation by P. pseudoannulata [HH (control group), HL, MH, ML, LH, LL]. The results showed that continuous dietary restriction (ML and LL groups) had negative impacts on the growth of P. pseudoannulata and positive impacts on longevity. Spiderlings suffered from dietary restrictions during the juvenile period, and when the restrictions were removed upon reaching adulthood (MH and LH groups), their lifespan started decreasing whilst their weight began returning to normal. This suggested that there might be a trade-off between the growth and longevity of the spider under dietary restrictions. The study also found that when food was severely restricted in the juvenile stage (LH and LL groups), the nutrient contents of the adult spider could return to the same level as the control group, but the predatory ability decreased. When food was moderately restricted in the juvenile stage (MH and ML groups), the predatory ability of the adult spiders improved, while nutrients of the adult spiders declined. Our results will provide an empirical basis for the protection and effective use of dominant spider species in agricultural fields.
Collapse
Affiliation(s)
- Yang Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Li Song
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Limi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Simon OG, Manu SA, Nwaogu CJ, Omotoriogun TC. Supplementing a grain diet with insects instead of fruits sustains the body condition of an omnivorous bird. Ecol Evol 2023; 13:e10141. [PMID: 37250450 PMCID: PMC10213486 DOI: 10.1002/ece3.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Omnivores utilize dietary sources which differ in nutrients, hence dietary limitations due to environmental change or habitat alteration could cause nutrient limitations, and thus deterioration of body condition if omnivory is obligate. We investigated how the body condition of the omnivorous Village weaver Ploceus cucullatus (weavers), which forages predominantly on grains, responds to the supplementation of its grain diet with insects instead of fruits. Forty wild-caught weavers held in aviaries were fed a combination of grains and fruits, or grains and insects ad libitum for 8 weeks. We determined diet preference by recording the number of birds on each diet option per minute for 1 h and the amount of food left-over after 3 h of foraging. Fortnightly, we assessed indices of body condition including body mass, pectoral muscle, and fat scores, packed cell volume (PCV), and hemoglobin concentration (HBC). We modeled the number of foragers, food left-over, and body condition indices as functions of diet, while accounting for time (weeks) and sex effects. Grains were the preferred diet, but males ate more fruits and insects than females. Weavers fed on grains and fruits lost body and pectoral muscle mass and accumulated less fat than those fed on grains and insects. This effect was sex-dependent: females supplemented with fruits lost more pectoral muscle mass than males of the same group and males but not females, supplemented with insects accumulated more fat reserve than those supplemented with fruits. PCV and HBC did not differ between diets but increased over the 8 weeks. Weavers are likely obligate rather than facultative omnivores, with insects as being a more nutritive supplement than fruits. Nutrient limitation arising from environmental change or habitat alteration could impair body condition and affect physiological function to environmental seasonality in obligate omnivores like the weavers.
Collapse
Affiliation(s)
- Ojodomo G. Simon
- A. P. Leventis Ornithological Research InstituteUniversity of JosJosNigeria
- Department of ZoologyAhmadu Bello UniversityZariaNigeria
| | - Shiiwua A. Manu
- A. P. Leventis Ornithological Research InstituteUniversity of JosJosNigeria
- Department of ZoologyUniversity of JosJosNigeria
| | - Chima J. Nwaogu
- A. P. Leventis Ornithological Research InstituteUniversity of JosJosNigeria
- FitzPatrick Institute of African OrnithologyUniversity of Cape TownCape TownSouth Africa
| | - Taiwo C. Omotoriogun
- A. P. Leventis Ornithological Research InstituteUniversity of JosJosNigeria
- Biotechnology Unit, Department of Biological SciencesElizade UniversityIlara‐MokinNigeria
| |
Collapse
|
5
|
Morimoto J, Conceição P, Mirth C, Lihoreau M. Nutrigonometry I: using right-angle triangles to quantify nutritional trade-offs in performance landscapes. Am Nat 2022; 201:725-740. [PMID: 37130232 DOI: 10.1086/723599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractAnimals regulate their food intake to maximize the expression of fitness traits but are forced to trade off the optimal expression of some fitness traits because of differences in the nutrient requirements of each trait ("nutritional trade-offs"). Nutritional trade-offs have been experimentally uncovered using the geometric framework for nutrition (GF). However, current analytical methods to measure such responses rely on either visual inspection or complex models of vector calculations applied to multidimensional performance landscapes, making these approaches subjective or conceptually difficult, computationally expensive, and, in some cases, inaccurate. Here, we present a simple trigonometric model to measure nutritional trade-offs in multidimensional landscapes (nutrigonometry) that relies on the trigonometric relationships of right-angle triangles and thus is both conceptually and computationally easier to understand and use than previous quantitative approaches. We applied nutrigonometry to a landmark GF data set for comparison of several standard statistical models to assess model performance in finding regions in the performance landscapes. This revealed that polynomial (Bayesian) regressions can be used for precise and accurate predictions of peaks and valleys in performance landscapes, irrespective of the underlying structure of the data (i.e., individual food intakes vs. fixed diet ratios). We then identified the known nutritional trade-off between life span and reproductive rate in terms of both nutrient balance and concentration for validation of the model. This showed that nutrigonometry enables a fast, reliable, and reproducible quantification of nutritional trade-offs in multidimensional performance landscapes, thereby broadening the potential for future developments in comparative research on the evolution of animal nutrition.
Collapse
|
6
|
Morimoto J. Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes. Ecol Evol 2022; 12:e9174. [PMID: 35949523 PMCID: PMC9353123 DOI: 10.1002/ece3.9174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Animals regulate their nutrient consumption to maximize the expression of fitness traits with competing nutritional needs ("nutritional trade-offs"). Nutritional trade-offs have been studied using a response surface modeling approach known as the Geometric Framework for nutrition (GF). Current experimental design in GF studies does not explore the entire area of the nutritional space resulting in performance landscapes that may be incomplete. This hampers our ability to understand the properties of the performance landscape (e.g., peak shape) from which meaningful biological insights can be obtained. Here, I tested alternative experimental designs to explore the full range of the performance landscape in GF studies. I compared the performance of the standard GF design strategy with three alternatives: hexagonal, square, and random points grid strategies with respect to their accuracy in reconstructing baseline performance landscapes from a landmark GF dataset. I showed that standard GF design did not reconstruct the properties of baseline performance landscape appropriately particularly for traits that respond strongly to the interaction between nutrients. Moreover, the peak estimates in the reconstructed performance landscape using standard GF design were accurate in terms of the nutrient ratio but incomplete in terms of peak shape. All other grid designs provided more accurate reconstructions of the baseline performance landscape while also providing accurate estimates of nutrient ratio and peak shape. Thus, alternative experimental designs can maximize information from performance landscapes in GF studies, enabling reliable biological insights into nutritional trade-offs and physiological limits within and across species.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of MathematicsKing's College, University of AberdeenAberdeenUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
| |
Collapse
|
7
|
Stahlschmidt ZR. Flight capacity drives circadian patterns of metabolic rate and alters resource dynamics. JOURNAL OF EXPERIMENTAL ZOOLOGY PART A: ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:666-674. [PMID: 35438260 PMCID: PMC9324922 DOI: 10.1002/jez.2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Animals must acquire, use, and allocate resources, and this balancing act may be influenced by the circadian clock and life‐history strategy. Field (Gryllus) crickets exhibit two distinct life‐history strategies during early adulthood—flight‐capable females invest in flight muscle at a cost to ovary mass, whereas flight‐incapable females instead invest solely into ovaries. In female Gryllus lineaticeps, I investigated the role of life‐history strategy in resource (food) acquisition and allocation, and in circadian patterns of energy use. Flight capacity increased the standard metabolic rate (SMR) due to greater late‐day SMR and flight‐capable crickets exhibited greater circadian rhythmicity in SMR. Flight‐capable crickets also ate less food and were less efficient at converting ingested food into body or ovary mass. Thus, investment into flight capacity reduced fecundity and the amount of resources available for allocation to other life‐history traits. Given the increasing uncertainty of food availability in many global regions, work in Gryllus may clarify the important roles of food and circadian patterns in life‐history evolution in a changing world. In a field cricket, investment into flight capacity (1) increased the circadian rhythmicity of resource use (standard metabolic rate), (2) reduced resource acquisition (food intake), and (3) reduced the efficiency by which ingested food was converted to reproductive tissue.
Collapse
|
8
|
Limberger GM, Esteves KP, Halal LM, Nery LEM, da Fonseca DB. Chronic immune challenge is detrimental to female survival, feeding behavior, and reproduction in the field cricket Gryllus assimilis (Fabricius, 1775). J Comp Physiol B 2022; 192:423-434. [PMID: 35195757 DOI: 10.1007/s00360-022-01431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Physiological trade-offs among expensive fitness-related traits, such as reproduction and immunity, are common in life histories of animals. An immune challenge can have different effects on female reproduction mediated by resource allocation and acquisition. In this study, employing a widely used method to challenge the insect immune system (nylon implant), we assessed the effects of mounting a chronic immune response simulating three successive immune assaults on survival and reproduction of mated females of Gryllus assimilis. We also verified feeding behavior following an implantation, which can be important in explaining trade-off dynamics in terms of energy acquisition. For this, three experimental groups were designed (Control, Sham, and Implant) with oviposition rates, egg morphometry, and nymph vigour observed over 3 weeks, at which ovarian mass and unlaid eggs were quantified from remaining individuals. The results showed that chronic implants were detrimental to female survival and reproduction throughout the experiments; Surgical Sham had no effect on survival compared to the control, but did on reproductive aspects such as oviposition rates and hatchling vigour. These negative effects on reproduction in Sham disappeared in the last experimental week, but still strong in the implanted females. Such immune challenge affected the feeding behavior of implanted females by reducing food consumption compared to control after infection, which is probably explained by illness-induced anorexia that takes place to maximize the immune system performance as a part of sickness behavior, exacerbating the adverse effects observed on reproduction (i.e., fewer and smaller eggs, and low vigour of nymphs) and survival.
Collapse
Affiliation(s)
- Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| | | | - Lamia Marques Halal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | |
Collapse
|
9
|
Treidel LA, Huebner C, Roberts KT, Williams CM. Life history strategy dictates thermal preferences across the diel cycle and in response to starvation in variable field crickets, Gryllus lineaticeps. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100038. [PMID: 36003265 PMCID: PMC9387437 DOI: 10.1016/j.cris.2022.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Diel thermal preferences are higher in fully fed long- vs. short-wing crickets Starvation decreases thermal preference more in long- vs. short-wing crickets Thermal preference differences associated with life history are context dependent
Insects behaviorally thermoregulate across the diel cycle, and their preferred microhabitats change based on current resources available and the thermal performance optima of traits. Specific combinations of traits being prioritized are set by life history strategies, making life history an important intrinsic determinant of thermal preferences. However, we do not know how life history strategies shape plasticity of behavioral thermoregulation, limiting our ability to predict responses to environmental variability. We compared female variable field crickets (Gryllus lineaticeps) that are flight-capable (long-winged) and flightless (short-winged) to test the hypothesis that life history strategy determines plasticity of thermal preferences across the diel cycle and following starvation. Thermal preferences were elevated during the nocturnal activity period, and long-winged crickets preferred warmer temperatures compared to short-winged crickets across the diel cycle when fully fed. However, thermal preferences of starved crickets were reduced compared to fed crickets. The reduction in thermal preferences was greater in long-winged crickets, resulting in similar thermal preferences between starved long- and short-winged individuals and reflecting a more plastic response. Thus, life history does determine plasticity in thermoregulatory behaviors following resource limitations and effects of life history on thermal preferences are context dependent.
Collapse
|
10
|
Pruett JE, Warner DA. Spatial and temporal variation in phenotypes and fitness in response to developmental thermal environments. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jenna E. Pruett
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Daniel A. Warner
- Department of Biological Sciences Auburn University Auburn Alabama USA
| |
Collapse
|