1
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
2
|
Blanchard A, Aminot M, Gould N, Léger A, Pichaud N. Flies on the rise: acclimation effect on mitochondrial oxidation capacity at normal and high temperatures in Drosophila melanogaster. J Exp Biol 2024; 227:jeb247706. [PMID: 38841909 DOI: 10.1242/jeb.247706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Increased average temperatures and extreme thermal events (such as heatwaves) brought forth by climate change impose important constraints on aerobic metabolism. Notably, mitochondrial metabolism, which is affected by both long- and short-term temperature changes, has been put forward as an important determinant for thermal tolerance of organisms. This study examined the influence of phenotypic plasticity on metabolic and physiological parameters in Drosophila melanogaster and the link between mitochondrial function and their upper thermal limits. We showed that D. melanogaster acclimated to 15°C have a 0.65°C lower critical thermal maximum (CTmax) compared with those acclimated to 24°C. Drosophila melanogaster acclimated to 15°C exhibited a higher proportion of shorter saturated and monounsaturated fatty acids, concomitant with lower proportions of polyunsaturated fatty acids. No mitochondrial quantitative changes (fractional area and number) were detected between acclimation groups, but changes of mitochondrial oxidation capacities were observed. Specifically, in both 15°C- and 24°C-acclimated flies, complex I-induced respiration was increased when measured between 15 and 24°C, but drastically declined when measured at 40°C. When succinate and glycerol-3-phosphate were added, this decrease was however compensated for in flies acclimated to 24°C, suggesting an important impact of acclimation on mitochondrial function related to thermal tolerance. Our study reveals that the use of oxidative substrates at high temperatures is influenced by acclimation temperature and strongly related to upper thermal tolerance as a difference of 0.65°C in CTmax translates into significant mitochondrial changes.
Collapse
Affiliation(s)
- Arianne Blanchard
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Mélanie Aminot
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Nathalie Gould
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB E1C8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
3
|
Léger A, Cormier SB, Blanchard A, Menail HA, Pichaud N. Investigating the thermal sensitivity of key enzymes involved in the energetic metabolism of three insect species. J Exp Biol 2024; 227:jeb247221. [PMID: 38680096 DOI: 10.1242/jeb.247221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.
Collapse
Affiliation(s)
- Adèle Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Simon B Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Arianne Blanchard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Hichem A Menail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| |
Collapse
|
4
|
Adzigbli L, Ponsuksili S, Sokolova I. Mitochondrial responses to constant and cyclic hypoxia depend on the oxidized fuel in a hypoxia-tolerant marine bivalve Crassostrea gigas. Sci Rep 2024; 14:9658. [PMID: 38671046 PMCID: PMC11053104 DOI: 10.1038/s41598-024-60261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
Sessile benthic organisms like oysters inhabit the intertidal zone, subject to alternating hypoxia and reoxygenation (H/R) episodes during tidal movements, impacting respiratory chain activities and metabolome compositions. We investigated the effects of constant severe hypoxia (90 min at ~ 0% O2 ) followed by 10 min reoxygenation, and cyclic hypoxia (5 cycles of 15 min at ~ 0% O2 and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of Crassostrea gigas respiring on pyruvate, palmitate, or succinate. Constant hypoxia suppressed oxidative phosphorylation (OXPHOS), particularly during Complex I-linked substrates oxidation. It had no effect on mitochondrial reactive oxygen species (ROS) efflux but increased fractional electron leak (FEL). In mitochondria oxidizing Complex I substrates, exposure to cyclic hypoxia prompted a significant drop after the first H/R cycle. In contrast, succinate-driven respiration only showed significant decline after the third to fifth H/R cycle. ROS efflux saw little change during cyclic hypoxia regardless of the oxidized substrate, but Complex I-driven FEL tended to increase with each subsequent H/R cycle. These observations suggest that succinate may serve as a beneficial stress fuel under H/R conditions, aiding in the post-hypoxic recovery of oysters by reducing oxidative stress and facilitating rapid ATP re-synthesis. The impacts of constant and cyclic hypoxia of similar duration on mitochondrial respiration and oxidative lesions in the proteins were comparable indicating that the mitochondrial damage is mostly determined by the lack of oxygen and mitochondrial depolarization. The ROS efflux in the mitochondria of oysters was minimally affected by oxygen fluctuations indicating that tight regulation of ROS production may contribute to robust mitochondrial phenotype of oysters and protect against H/R induced stress.
Collapse
Affiliation(s)
- Linda Adzigbli
- Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
5
|
Coulson SZ, Duffy BM, Staples JF. Mitochondrial techniques for physiologists. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110947. [PMID: 38278207 DOI: 10.1016/j.cbpb.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Mitochondria serve several important roles in maintaining cellular homeostasis, including adenosine triphosphate (ATP) synthesis, apoptotic signalling, and regulation of both reactive oxygen species (ROS) and calcium. Therefore, mitochondrial studies may reveal insights into metabolism at higher levels of physiological organization. The apparent complexity of mitochondrial function may be daunting to researchers new to mitochondrial physiology. This review is aimed, therefore, at such researchers to provide a brief, yet approachable overview of common techniques used to assess mitochondrial function. Here we discuss the use of high-resolution respirometry in mitochondrial experiments and common analytical platforms used for this technique. Next, we compare the use of common mitochondrial preparation techniques, including adherent cells, tissue homogenate, permeabilized fibers and isolated mitochondria. Finally, we outline additional techniques that can be used in tandem with high-resolution respirometry to assess additional aspects of mitochondrial metabolism, including ATP synthesis, calcium uptake, membrane potential and reactive oxygen species emission. We also include limitations to each of these techniques and outline recommendations for experimental design and interpretation. With a general understanding of methodologies commonly used to study mitochondrial physiology, experimenters may begin contributing to our understanding of this organelle, and how it affects other physiological phenotypes.
Collapse
Affiliation(s)
- Soren Z Coulson
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada.
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada. https://twitter.com/BrynneDuffy
| | - James F Staples
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada
| |
Collapse
|
6
|
Hunter-Manseau F, Cormier SB, Strang R, Pichaud N. Fasting as a precursor to high-fat diet enhances mitochondrial resilience in Drosophila melanogaster. INSECT SCIENCE 2024. [PMID: 38514255 DOI: 10.1111/1744-7917.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.
Collapse
Affiliation(s)
- Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
| | - Simon B Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
| | - Rebekah Strang
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
| |
Collapse
|
7
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
8
|
Justs KA, Sempertegui S, Riboul DV, Oliva CD, Durbin RJ, Crill S, Stawarski M, Su C, Renden RB, Fily Y, Macleod GT. Mitochondrial phosphagen kinases support the volatile power demands of motor nerve terminals. J Physiol 2023; 601:5705-5732. [PMID: 37942946 PMCID: PMC10841428 DOI: 10.1113/jp284872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Motor neurons are the longest neurons in the body, with axon terminals separated from the soma by as much as a meter. These terminals are largely autonomous with regard to their bioenergetic metabolism and must burn energy at a high rate to sustain muscle contraction. Here, through computer simulation and drawing on previously published empirical data, we determined that motor neuron terminals in Drosophila larvae experience highly volatile power demands. It might not be surprising then, that we discovered the mitochondria in the motor neuron terminals of both Drosophila and mice to be heavily decorated with phosphagen kinases - a key element in an energy storage and buffering system well-characterized in fast-twitch muscle fibres. Knockdown of arginine kinase 1 (ArgK1) in Drosophila larval motor neurons led to several bioenergetic deficits, including mitochondrial matrix acidification and a faster decline in the cytosol ATP to ADP ratio during axon burst firing. KEY POINTS: Neurons commonly fire in bursts imposing highly volatile demands on the bioenergetic machinery that generates ATP. Using a computational approach, we built profiles of presynaptic power demand at the level of single action potentials, as well as the transition from rest to sustained activity. Phosphagen systems are known to buffer ATP levels in muscles and we demonstrate that phosphagen kinases, which support such phosphagen systems, also localize to mitochondria in motor nerve terminals of fruit flies and mice. By knocking down phosphagen kinases in fruit fly motor nerve terminals, and using fluorescent reporters of the ATP:ADP ratio, lactate, pH and Ca2+ , we demonstrate a role for phosphagen kinases in stabilizing presynaptic ATP levels. These data indicate that the maintenance of phosphagen systems in motor neurons, and not just muscle, could be a beneficial initiative in sustaining musculoskeletal health and performance.
Collapse
Affiliation(s)
- Karlis A. Justs
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Sergio Sempertegui
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Danielle V. Riboul
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Carlos D. Oliva
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ryan J. Durbin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Sarah Crill
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Chenchen Su
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Robert B. Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gregory T. Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Fahimi P, Matta CF, Okie JG. Are size and mitochondrial power of cells inter-determined? J Theor Biol 2023; 572:111565. [PMID: 37369290 DOI: 10.1016/j.jtbi.2023.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are the central hub of ATP production in most eukaryotic cells. Cellular power (energy per unit time), which is primarily generated in these organelles, is crucial to our understanding of cell function in health and disease. We investigated the relation between a mitochondrion's power (metabolic rate) and host cell size by combining metabolic theory with the analysis of two recent databases, one covering 109 protists and the other 63 species including protists, metazoans, microalgae, and vascular plants. We uncovered an interesting statistical regularity: in well-fed protists, relatively elevated values of mitochondrion power cluster around the smallest cell sizes and the medium-large cell sizes. In contrast, in starved protists and metazoans, the relation between mitochondrion power and cell size is inconclusive, and in microalgae and plants, mitochondrion power seems to increase from smaller cells to larger ones (where this investigation includes plant cells of volume up to ca. 2.18 × 105 μm3). Using these results, estimates are provided of the number of active ATP synthase molecules and basal uncouplers.
Collapse
Affiliation(s)
- Peyman Fahimi
- Département de Chimie, Université Laval, Québec, QC G1V0A6, Canada
| | - Chérif F Matta
- Département de Chimie, Université Laval, Québec, QC G1V0A6, Canada; Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS B3M2J6, Canada.
| | - Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
10
|
Roussel D, Janillon S, Teulier L, Pichaud N. Succinate oxidation rescues mitochondrial ATP synthesis at high temperature in Drosophila melanogaster. FEBS Lett 2023; 597:2221-2229. [PMID: 37463836 DOI: 10.1002/1873-3468.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Decreased NADH-induced and increased reduced FADH2 -induced respiration rates at high temperatures are associated with thermal tolerance in Drosophila. Here, we determined whether this change was associated with adjustments of adenosine triphosphate (ATP) production rate and coupling efficiency (ATP/O) in Drosophila melanogaster. We show that decreased pyruvate + malate oxidation at 35°C is associated with a collapse of ATP synthesis and a drop in ATP/O ratio. However, adding succinate triggered a full compensation of both oxygen consumption and ATP synthesis rates at this high temperature. Addition of glycerol-3-phosphate (G3P) led to a huge increase in respiration with no further advantage in terms of ATP production. We conclude that succinate is the only alternative substrate able to compensate both oxygen consumption and ATP production rates during oxidative phosphorylation at high temperature, which has important implications for thermal adaptation.
Collapse
Affiliation(s)
- Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Sonia Janillon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558 LBBE, Villeurbanne, France
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, New Brunswick, Canada
| |
Collapse
|
11
|
Lebenzon JE, Overgaard J, Jørgensen LB. Chilled, starved or frozen: Insect mitochondrial adaptations to overcome the cold. CURRENT OPINION IN INSECT SCIENCE 2023:101076. [PMID: 37331596 DOI: 10.1016/j.cois.2023.101076] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Physiological adaptations to tackle cold exposure are crucial for insects living in temperate and arctic environments and here we review how cold adaptation is manifested in terms of mitochondrial function. Cold challenges are diverse, and different insect species have evolved metabolic and mitochondrial adaptations to: i) energize homeostatic regulation at low temperature, ii) stretch energy reserves during prolonged cold exposure, and iii) preserve structural organization of organelles following extracellular freezing. While the literature is still sparse, our review suggests that cold-adapted insects preserve ATP production at low temperatures by maintaining preferred mitochondrial substrate oxidation, which is otherwise challenged in cold-sensitive species. Chronic cold exposure and metabolic depression during dormancy is linked to reduced mitochondrial metabolism and may involve mitochondrial degradation. Finally, adaptation to extracellular freezing could be associated with superior structural integrity of the mitochondrial inner membrane following freezing which is linked to cellular and organismal survival.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
12
|
Wilmsen SM, Dzialowski E. Substrate use and temperature effects in flight muscle mitochondria from an endothermic insect, the hawkmoth Manduca sexta. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111439. [PMID: 37119960 DOI: 10.1016/j.cbpa.2023.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Manduca sexta are endothermic insects, requiring adult thorax temperatures to be elevated above 35 °C for flight muscles to produce the wing beat frequencies necessary for flight. During flight, these animals rely on aerobic production of ATP by flight muscle mitochondria with several potential metabolic pathways providing the fuel. Along with typical carbohydrate substrates, mitochondria of other endothermic insects including bumblebees and wasps can use the amino acid proline or glycerol 3-phosphate (G3P) as metabolic fuel for prewarm up and flight. Here we examine flight muscle mitochondria physiology and the role of temperature and substrates in oxidative phosphorylation from 3-day old adult Manduca sexta. Mitochondria oxygen flux from flight muscle fibers were temperature sensitive with Q10 values ranging from 1.99 to 2.90, with a large increase in LEAK respiration with increased temperature. Mitochondria oxygen flux was stimulated by carbohydrate-based substrates, with flux through Complex I substrates providing the greatest oxygen flux. Neither proline nor G3P produced an increase in oxygen flux of the flight muscle mitochondria. Unlike other endothermic insects, Manduca are unable to supplement carbohydrate oxidation with either proline or G3P entering through Coenzyme Q and rely on substrates entering at complex I and II.
Collapse
Affiliation(s)
- Sara M Wilmsen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.
| | - Edward Dzialowski
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America
| |
Collapse
|
13
|
Sokolova IM. Ectotherm mitochondrial economy and responses to global warming. Acta Physiol (Oxf) 2023; 237:e13950. [PMID: 36790303 DOI: 10.1111/apha.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature is a key abiotic factor affecting ecology, biogeography, and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism affects cellular bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion, or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species(ROS), and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Owing to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of ROS and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
15
|
Quéméneur JB, Danion M, Cabon J, Collet S, Zambonino-Infante JL, Salin K. The relationships between growth rate and mitochondrial metabolism varies over time. Sci Rep 2022; 12:16066. [PMID: 36167968 PMCID: PMC9515119 DOI: 10.1038/s41598-022-20428-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial metabolism varies significantly between individuals of the same species and can influence animal performance, such as growth. However, growth rate is usually determined before the mitochondrial assay. The hypothesis that natural variation in mitochondrial metabolic traits is linked to differences in both previous and upcoming growth remains untested. Using biopsies to collect tissue in a non-lethal manner, we tested this hypothesis in a fish model (Dicentrarchus labrax) by monitoring individual growth rate, measuring mitochondrial metabolic traits in the red muscle, and monitoring the growth of the same individuals after the mitochondrial assay. Individual variation in growth rate was consistent before and after the mitochondrial assay; however, the mitochondrial traits that explained growth variation differed between the growth rates determined before and after the mitochondrial assay. While past growth was correlated with the activity of the cytochrome c oxidase, a measure of mitochondrial density, future growth was linked to mitochondrial proton leak respiration. This is the first report of temporal shift in the relationship between growth rate and mitochondrial metabolic traits, suggesting an among-individual variation in temporal changes in mitochondrial traits. Our results emphasize the need to evaluate whether mitochondrial metabolic traits of individuals can change over time.
Collapse
Affiliation(s)
- Jean-Baptiste Quéméneur
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280, Plouzané, France
| | - Morgane Danion
- Anses, Ploufragan-Plouzané Niort Laboratory, VIMEP Unit, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Joëlle Cabon
- Anses, Ploufragan-Plouzané Niort Laboratory, VIMEP Unit, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Sophie Collet
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280, Plouzané, France
| | | | - Karine Salin
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280, Plouzané, France.
| |
Collapse
|
16
|
Cormier SB, Léger A, Boudreau LH, Pichaud N. Overwintering in North American domesticated honeybees (Apis mellifera) causes mitochondrial reprogramming while enhancing cellular immunity. J Exp Biol 2022; 225:276355. [PMID: 35938391 DOI: 10.1242/jeb.244440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
Many factors negatively impact domesticated honeybee (Apis mellifera) health causing a global decrease in their population year after year with major losses occurring during winter, and the cause remains thus far unknown. Here, we monitored for 12 months North American colonies of honeybees enduring important temperature variations throughout the year, to assess the metabolism and immune system of honeybees of summer and winter individuals. Our results show that in flight muscle, mitochondrial respiration via complex I during winter is drastically reduced compared to summer. However, the capacity for succinate and glycerol-3-phosphate (G3P) oxidation by mitochondria is increased during winter, resulting in higher mitochondrial oxygen consumption when complex I substrates, succinate and G3P were assessed altogether. Pyruvate kinase, lactate dehydrogenase, aspartate aminotransferase, citrate synthase and malate dehydrogenase tend to have reduced activity levels in winter unlike hexokinase, NADH dehydrogenase and pyruvate dehydrogenase. Transcript abundance of highly important immunity proteins like Vitellogenin and Defensin-1 were also increased in winter bees, and a stronger phagocytic response as well as a better hemocyte viability was observed during winter. Thus, a reorganization of substrate utilization favoring succinate and G3P while negatively affecting complex I of the ETS is occurring during winter. We suggest that this might be due to complex I transitioning to a dormant conformation through post-translational modification. Winter bees also have an increased response for antibacterial elimination in honeybees. Overall, this study highlights previously unknown cellular mechanisms between summer and winter honeybees that further our knowledge about this important species.
Collapse
Affiliation(s)
- Simon B Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| | - Adèle Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A3E9, Canada.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, E1C8X3, Canada
| |
Collapse
|
17
|
Graham C, Stefanatos R, Yek AEH, Spriggs RV, Loh SHY, Uribe AH, Zhang T, Martins LM, Maddocks ODK, Scialo F, Sanz A. Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. GeroScience 2022; 44:1961-1974. [PMID: 35355221 PMCID: PMC9616974 DOI: 10.1007/s11357-022-00555-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial reactive oxygen species (mtROS) are cellular messengers essential for cellular homeostasis. In response to stress, reverse electron transport (RET) through respiratory complex I generates high levels of mtROS. Suppression of ROS production via RET (ROS-RET) reduces survival under stress, while activation of ROS-RET extends lifespan in basal conditions. Here, we demonstrate that ROS-RET signalling requires increased electron entry and uninterrupted electron flow through the electron transport chain (ETC). We find that in old fruit flies, ROS-RET is abolished when electron flux is decreased and that their mitochondria produce consistently high levels of mtROS. Finally, we demonstrate that in young flies, limiting electron exit, but not entry, from the ETC phenocopies mtROS generation observed in old individuals. Our results elucidate the mechanism by which ROS signalling is lost during ageing.
Collapse
Affiliation(s)
- Charlotte Graham
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Angeline E H Yek
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
| | - Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
- Novartis Institutes for BioMedical Research, Shanghai, 201203, China
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
| | - Filippo Scialo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
- Dipartimento Di Scienze Mediche Traslazionali, Università Degli Studi Della Campania "Luigi Vanvitelli", 80131, Naples, Italy.
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
18
|
Menail HA, Cormier SB, Ben Youssef M, Jørgensen LB, Vickruck JL, Morin P, Boudreau LH, Pichaud N. Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species. Front Physiol 2022; 13:897174. [PMID: 35547573 PMCID: PMC9081799 DOI: 10.3389/fphys.2022.897174] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria have been suggested to be paramount for temperature adaptation in insects. Considering the large range of environments colonized by this taxon, we hypothesized that species surviving large temperature changes would be those with the most flexible mitochondria. We thus investigated the responses of mitochondrial oxidative phosphorylation (OXPHOS) to temperature in three flying insects: the honeybee (Apis mellifera carnica), the fruit fly (Drosophila melanogaster) and the Colorado potato beetle (Leptinotarsa decemlineata). Specifically, we measured oxygen consumption in permeabilized flight muscles of these species at 6, 12, 18, 24, 30, 36, 42 and 45°C, sequentially using complex I substrates, proline, succinate, and glycerol-3-phosphate (G3P). Complex I respiration rates (CI-OXPHOS) were very sensitive to temperature in honeybees and fruit flies with high oxygen consumption at mid-range temperatures but a sharp decline at high temperatures. Proline oxidation triggers a major increase in respiration only in potato beetles, following the same pattern as CI-OXPHOS for honeybees and fruit flies. Moreover, both succinate and G3P oxidation allowed an important increase in respiration at high temperatures in honeybees and fruit flies (and to a lesser extent in potato beetles). However, when reaching 45°C, this G3P-induced respiration rate dropped dramatically in fruit flies. These results demonstrate that mitochondrial functions are more resilient to high temperatures in honeybees compared to fruit flies. They also indicate an important but species-specific mitochondrial flexibility for substrate oxidation to sustain high oxygen consumption levels at high temperatures and suggest previously unknown adaptive mechanisms of flying insects’ mitochondria to temperature.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Pier Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Luc H Boudreau
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
19
|
Lemieux H, Blier PU. Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways. Metabolites 2022; 12:metabo12040360. [PMID: 35448547 PMCID: PMC9025460 DOI: 10.3390/metabo12040360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6C 4G9, Canada
- Correspondence: (H.L.); (P.U.B.)
| | - Pierre U. Blier
- Department Biologie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Correspondence: (H.L.); (P.U.B.)
| |
Collapse
|
20
|
Touaibia M, St-Coeur PD, Duff P, Faye DC, Pichaud N. 5-Benzylidene, 5-benzyl, and 3-benzylthiazolidine-2,4-diones as potential inhibitors of the mitochondrial pyruvate carrier: Effects on mitochondrial functions and survival in Drosophila melanogaster. Eur J Pharmacol 2021; 913:174627. [PMID: 34774497 DOI: 10.1016/j.ejphar.2021.174627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
A series of thiazolidinediones (TZDs) were synthesized and screened for their effect on the mitochondrial respiration as well as on several mitochondrial respiratory system components of Drosophila melanogaster. Substituted and non-substituted 5-benzylidene and 5-benzylthiazolidine-2,4-diones were investigated. The effect of a substitution in position 3, at the nitrogen atom, of the thiozolidine heterocycle was also investigated. The designed TZDs were compared to UK5099, the most potent mitochondrial pyruvate carrier (MPC) inhibitor, in in vitro and in vivo tests. Compared to 5-benzylthiazolidine-2,4-diones 6-7 and 3-benzylthiazolidine-2,4-dione 8, 5-benzylidenethiazolidine-2,4-diones 2-5 showed more inhibitory capacity on mitochondrial respiration. 5-(4-Hydroxybenzylidene)thiazolidine-2,4-dione (3) and 5-(3-hydroxy-4-methoxybenzylidene)thiazolidine-2,4-dione (5) were among the best compounds that compared well with UK5099. Additionally, TZDs 3 and 5, showed no effects on the non-coupled respiration and weak effects on pathways using substrates such as proline, succinate, and G3P. 5-Benzylidenethiazolidine-2,4-dione 3 showed a positive effect on survival and lifespan when added to Drosophila standard and high fat diet. Interestingly, analog 3 completely reversed the effects of high fat diet on Drosophila longevity and induced metabolic changes which suggests an in vivo inhibition of MPC at the mitochondrial level.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| | | | - Patrick Duff
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Diene Codou Faye
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
21
|
Adzigbli L, Sokolov EP, Ponsuksili S, Sokolova IM. Tissue- and substrate-dependent mitochondrial responses to acute hypoxia-reoxygenation stress in a marine bivalve Crassostrea gigas (Thunberg, 1793). J Exp Biol 2021; 225:273950. [PMID: 34904172 DOI: 10.1242/jeb.243304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared to the mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates exposure to H/R stress suppressed oxygen consumption and ROS generation in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations such as commonly observed in estuaries and intertidal zones.
Collapse
Affiliation(s)
- Linda Adzigbli
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
22
|
Rodríguez E, Grover Thomas F, Camus MF, Lane N. Mitonuclear Interactions Produce Diverging Responses to Mild Stress in Drosophila Larvae. Front Genet 2021; 12:734255. [PMID: 34603395 PMCID: PMC8482813 DOI: 10.3389/fgene.2021.734255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines.
Collapse
Affiliation(s)
- Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Finley Grover Thomas
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
23
|
Hraoui G, Breton S, Miron G, Boudreau LH, Hunter-Manseau F, Pichaud N. Mitochondrial responses towards intermittent heat shocks in the eastern oyster, Crassostrea virginica. J Exp Biol 2021; 224:272029. [PMID: 34401903 DOI: 10.1242/jeb.242745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Frequent heat waves caused by climate change can give rise to physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves, which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of the eastern oyster, Crassostrea virginica, which play a key role in setting the thermal tolerance of ectotherms. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15 and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted by an increased contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery 10 days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in the oyster's capacity to weather intermittent heat shock.
Collapse
Affiliation(s)
- Georges Hraoui
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada, H2X 1Y4.,Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Gilles Miron
- Department of Biology, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| |
Collapse
|
24
|
Knight K. Fruit fly mitochondria switch fuel when the going gets hot. J Exp Biol 2021. [DOI: 10.1242/jeb.242422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|