1
|
Kosowska K, Korycka P, Jankowska-Snopkiewicz K, Gierałtowska J, Czajka M, Florys-Jankowska K, Dec M, Romanik-Chruścielewska A, Małecki M, Westphal K, Wszoła M, Klak M. Graphene Oxide (GO)-Based Bioink with Enhanced 3D Printability and Mechanical Properties for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:760. [PMID: 38727354 PMCID: PMC11085087 DOI: 10.3390/nano14090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.
Collapse
Affiliation(s)
- Katarzyna Kosowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Paulina Korycka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Kamila Jankowska-Snopkiewicz
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Joanna Gierałtowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Milena Czajka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Katarzyna Florys-Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Magdalena Dec
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Agnieszka Romanik-Chruścielewska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland;
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Kinga Westphal
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| |
Collapse
|
2
|
Silk Nanofibrous Electrospun Scaffold Amplifies Proliferation and Stemness Profile of Mouse Spermatogonial Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00189-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Bojnordi MN, Ebrahimi-Barough S, Vojoudi E, Hamidabadi HG. Silk nanofibrous electrospun scaffold enhances differentiation of embryonic stem like cells derived from testis in to mature neuron. J Biomed Mater Res A 2019; 106:2662-2669. [PMID: 29901281 DOI: 10.1002/jbm.a.36463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/06/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023]
Abstract
The scaffolds accompanied with stem cells have great potential for applications in neural tissue engineering. Fabrication of nanofibrous scaffold similar to extracellular matrix is one of the applicable methods in neural tissue regeneration. The aim of this study was the fabrication of a silk nanofibrous scaffold as a microenvironment for neural guiding differentiation of embryonic stem like cells (ES Like cells) derived from testis toward neuron-like cells. ES Like derived from culturing of testicular cells in vitro, were seeded on silk scaffolds and induced to neuronal phenotype using 4-/4± RA technique following culturing the cells in the neurobasal medium supplemented with 20 ng/mL bFGF,10 ng/mL EGF, B27, and N2 for 8-12 days. The neural differentiation was confirmed via the evaluation of specific neural markers; Nestin, NF68, MAP2 and β tubulin using immunocytochemistry and real-time polymerase chain reaction. Our results showed that silk scaffold support the attachment and proliferation of ES Like cells. The expression of Nestin, NF68, Map2, and ß tubulin markers were higher in cells grown on silk scaffold in compare to monolayer group. This study suggests electrospun silk nanofibrous scaffold as an appropriate substrate for neural induction of stem cells that is applicable for repairmen of damaged neural tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2662-2669, 2018.
Collapse
Affiliation(s)
- Maryam Nazm Bojnordi
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, P.O. Box, Sari, 48471-91971, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Vojoudi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, P.O. Box, Sari, 48471-91971, Iran
| |
Collapse
|
4
|
Aminuddin NI, Ahmad R, Akbar SA, Pingguan-Murphy B. Osteoblast and stem cell response to nanoscale topographies: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:698-714. [PMID: 27933112 PMCID: PMC5127258 DOI: 10.1080/14686996.2016.1242999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
To understand how cells respond to the nanoscale extracellular environment in vivo, cells from various sources have been cultured on nanoscale patterns fabricated using bottom-up and top-down techniques. Human fetal osteoblasts (hFOBs) and stem cells are some of them and they are known to be overtly responsive to nanoscale topographies - allowing us to investigate the hows and whys of the response in vitro. Information gathered from these in vitro studies could be used to control the cells, i.e. make the stem cells differentiate or retain their characteristics without the use of medium supplements. In this review, hFOB and stem cell responses to nanotopographies are summarized and discussed to shed some light on the influence of patterns on the reactions. Although both types of cells are responsive to nanoscale topographies, the responses are found to be unique to topographical dimension, shape, orientation and the types of cells used. This implies that cellular responses are influenced by multitude of factors and that if done right, cheaper self-assembled nanotopographies can be tailored to control the cells. A new self-assembly, powder-based technique is also included to provide an insight into the future of nanofabrication.
Collapse
Affiliation(s)
- Nur Izzati Aminuddin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Roslina Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheikh Ali Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Cai Y, Edin F, Jin Z, Alexsson A, Gudjonsson O, Liu W, Rask-Andersen H, Karlsson M, Li H. Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond. Acta Biomater 2016; 31:211-220. [PMID: 26593784 DOI: 10.1016/j.actbio.2015.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/14/2022]
Abstract
Cochlear implants (CI) have been used for several decades to treat patients with profound hearing loss. Nevertheless, results vary between individuals, and fine hearing is generally poor due to the lack of discrete neural stimulation from the individual receptor hair cells. A major problem is the deliverance of independent stimulation signals to individual auditory neurons. Fine hearing requires significantly more stimulation contacts with intimate neuron/electrode interphases from ordered axonal re-growth, something current CI technology cannot provide. Here, we demonstrate the potential application of micro-textured nanocrystalline diamond (NCD) surfaces on CI electrode arrays. Such textured NCD surfaces consist of micrometer-sized nail-head-shaped pillars (size 5×5μm(2)) made with sequences of micro/nano-fabrication processes, including sputtering, photolithography and plasma etching. The results show that human and murine inner-ear ganglion neurites and, potentially, neural progenitor cells can attach to patterned NCD surfaces without an extracellular matrix coating. Microscopic methods revealed adhesion and neural growth, specifically along the nail-head-shaped NCD pillars in an ordered manner, rather than in non-textured areas. This pattern was established when the inter-NCD pillar distance varied between 4 and 9μm. The findings demonstrate that regenerating auditory neurons show a strong affinity to the NCD pillars, and the technique could be used for neural guidance and the creation of new neural networks. Together with the NCD's unique anti-bacterial and electrical properties, patterned NCD surfaces could provide designed neural/electrode interfaces to create independent electrical stimulation signals in CI electrode arrays for the neural population. STATEMENT OF SIGNIFICANCE Cochlear implant is currently a successful way to treat sensorineural hearing loss and deafness especially in children. Although clinically successful, patients' fine hearing cannot be completely restored. One problem is the amount of the electrodes; 12-20 electrodes are used to replace the function of 3400 inner hair cells. Intense research is ongoing aiming to increase the number of electrodes. This study demonstrates the use of nanocrystalline diamond as a potential nerve-electrode interface. Micrometer-sized nanocrystalline diamond pillars showed high affinity to regenerated human neurons, which grew into a pre-defined network based on the pillar design. Our findings are of particular interest since they can be applied on any silicon-based implant to increase electrode count and to achieve individual neuron stimulation patterns.
Collapse
Affiliation(s)
- Yixiao Cai
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Edin
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Physiology; Molecular Physiology and Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Olafur Gudjonsson
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Wei Liu
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael Karlsson
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Hao Li
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Gluck JM, Delman C, Chyu J, MacLellan WR, Shemin RJ, Heydarkhan-Hagvall S. Microenvironment influences vascular differentiation of murine cardiovascular progenitor cells. J Biomed Mater Res B Appl Biomater 2014; 102:1730-9. [PMID: 24687591 DOI: 10.1002/jbm.b.33155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 02/13/2014] [Accepted: 03/13/2014] [Indexed: 01/25/2023]
Abstract
We examined the effects of the microenvironment on vascular differentiation of murine cardiovascular progenitor cells (CPCs). We isolated CPCs and seeded them in culture exposed to the various extracellular matrix (ECM) proteins in both two-dimensional (2D) and 3D culture systems. To better understand the contribution of the microenvironment to vascular differentiation, we analyzed endothelial and smooth muscle cell differentiation at both day 7 and day 14. We found that laminin and vitronectin enhanced vascular endothelial cell differentiation while fibronectin enhanced vascular smooth muscle cell differentiation. We also observed that the effects of the 3D electrospun scaffolds were delayed and not noticeable until the later time point (day 14), which may be due to the amount of time necessary for the cells to migrate to the interior of the scaffold. The study characterized the contributions of both ECM proteins and the addition of a 3D culture system to continued vascular differentiation. Additionally, we demonstrated the capability bioengineer a CPC-derived vascular graft.
Collapse
Affiliation(s)
- Jessica M Gluck
- Department of Surgery, Cardiovascular Tissue Engineering Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
7
|
Tissue engineered vascular grafts--preclinical aspects. Int J Cardiol 2012; 167:1091-100. [PMID: 23040078 DOI: 10.1016/j.ijcard.2012.09.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 06/01/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022]
Abstract
Tissue engineering enables the development of fully biological vascular substitutes that restore, maintain and improve tissue function in a manner identical to natural host tissue. However the development of the appropriate preclinical evaluation techniques for the generation of fully functional tissue-engineered vascular graft (TEVG) is required to establish their safety for use in clinical trials and to test clinical effectiveness. This review gives an insight on the various preclinical studies performed in the area of tissue engineered vascular grafts highlighting the different strategies used with respect to cells and scaffolds, typical animal models used and the major in vivo evaluation studies that have been carried out. The review emphasizes the combined effort of engineers, biologists and clinicians which can take this clinical research to new heights of regenerative therapy.
Collapse
|
8
|
Xia L, Lenaghan SC, Wills AB, Chen Y, Zhang M. Evaluation of the nanofibrillar structure of Dioscorea opposite extract for cell attachment. Colloids Surf B Biointerfaces 2011; 88:425-31. [DOI: 10.1016/j.colsurfb.2011.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/21/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
|
9
|
Gluck JM, Rahgozar P, Ingle NP, Rofail F, Petrosian A, Cline MG, Jordan MC, Roos KP, Maclellan WR, Shemin RJ, Heydarkhan-Hagvall S. Hybrid coaxial electrospun nanofibrous scaffolds with limited immunological response created for tissue engineering. J Biomed Mater Res B Appl Biomater 2011; 99:180-90. [PMID: 21732530 DOI: 10.1002/jbm.b.31885] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/25/2011] [Accepted: 04/26/2011] [Indexed: 11/07/2022]
Abstract
Electrospinning using synthetic and natural polymers is a promising technique for the fabrication of scaffolds for tissue engineering. Numerous synthetic polymers are available to maximize durability and mechanical properties (polyurethane) versus degradability and cell adhesion (polycaprolactone). In this study, we explored the feasibility of creating scaffolds made of bicomponent nanofibers from both polymers using a coaxial electrospinning system. We used a core of poly(urethane) and a sheath of a mixture of poly(ε-caprolactone) and gelatin, all dissolved in 1,1,1,3,3,3-hexafluror-2-propanol. These nanofibrous scaffolds were then evaluated to confirm their core-sheath nature and characterize their morphology and mechanical properties under static and dynamic conditions. Furthermore, the antigenicity of the scaffolds was studied to confirm that there is no significant foreign body response to the scaffold itself that would preclude its use in vivo. The results show the advantages of combining both natural and synethic polymers to create a coaxial scaffold capable of withstanding dynamic culture conditions and encourage cellular migration to the interior of the scaffold for tissue-engineering applications. Also, the results show that there is no significant immunoreactivity in vivo to the components of the scaffolds.
Collapse
Affiliation(s)
- Jessica M Gluck
- Department of Surgery, Cardiovascular Tissue Engineering Laboratory, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu F, Moon S, Zhang X, Shao L, Song YS, Demirci U. Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:561-83. [PMID: 20047939 PMCID: PMC3263795 DOI: 10.1098/rsta.2009.0248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation.
Collapse
Affiliation(s)
- Feng Xu
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Bioengineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sangjun Moon
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Bioengineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaohui Zhang
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Bioengineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Shao
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Bioengineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Young Seok Song
- Polymer System Division, Fiber System Engineering, Dankook University, Yongin-si, Gyeonggi-do, Korea
- Author for correspondence (; )
| | - Utkan Demirci
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Bioengineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences and Technology, Cambridge, MA, USA
- Author for correspondence (; )
| |
Collapse
|
11
|
Trommelmans L, Selling J, Dierickx K. Is tissue engineering a new paradigm in medicine? Consequences for the ethical evaluation of tissue engineering research. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2009; 12:459-467. [PMID: 19629749 DOI: 10.1007/s11019-009-9192-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 01/31/2009] [Indexed: 05/28/2023]
Abstract
Ex-vivo tissue engineering is a quickly developing medical technology aiming to regenerate tissue through the introduction of an ex-vivo created tissue construct instead of restoring the damaged tissue to some level of functionality. Tissue engineering is considered by some as a new medical paradigm. We analyse this claim and identify tissue engineering's fundamental characteristics, focusing on the aim of the intervention and on the complexity and continuity of the process. We inquire how these features have an impact not only on the scientific research itself but also on the ethical evaluation of this research. We suggest that viewing tissue engineering as a new medical paradigm allows us to develop a wider perspective for successful investigation instead of focusing on isolated steps of the tissue engineering process in an anecdotal way, which may lead to an inadequate ethical evaluation. We argue that the concept of tissue engineering as a paradigm may benefit the way we address the ethical challenges presented by tissue engineering.
Collapse
Affiliation(s)
- Leen Trommelmans
- Centre for Biomedical Ethics and Law, KU Leuven, Kapucijnenvoer 35/3, Box 7001, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
12
|
Shepherd DET, Azangwe G. Synthetic versus tissue-engineered implants for joint replacement. Appl Bionics Biomech 2008. [DOI: 10.1080/11762320701816966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 2008; 29:2907-14. [PMID: 18403012 DOI: 10.1016/j.biomaterials.2008.03.034] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/20/2008] [Indexed: 11/25/2022]
Abstract
Electrospinning using natural proteins or synthetic polymers is a promising technique for the fabrication of fibrous scaffolds for various tissue engineering applications. However, one limitation of scaffolds electrospun from natural proteins is the need to cross-link with glutaraldehyde for stability, which has been postulated to lead to many complications in vivo including graft failure. In this study, we determined the characteristics of hybrid scaffolds composed of natural proteins including collagen and elastin, as well as gelatin, and the synthetic polymer poly(epsilon-caprolactone) (PCL), so to avoid chemical cross-linking. Fiber size increased proportionally with increasing protein and polymer concentrations, whereas pore size decreased. Electrospun gelatin/PCL scaffolds showed a higher tensile strength when compared to collagen/elastin/PCL constructs. To determine the effects of pore size on cell attachment and migration, both hybrid scaffolds were seeded with adipose-derived stem cells. Scanning electron microscopy and nuclei staining of cell-seeded scaffolds demonstrated the complete cell attachment to the surfaces of both hybrid scaffolds, although cell migration into the scaffold was predominantly seen in the gelatin/PCL hybrid. The combination of natural proteins and synthetic polymers to create electrospun fibrous structures resulted in scaffolds with favorable mechanical and biological properties.
Collapse
Affiliation(s)
- Sepideh Heydarkhan-Hagvall
- Regenerative Bioengineering and Repair Laboratory, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Crisanti MC, Koutzaki SH, Mondrinos MJ, Lelkes PI, Finck CM. Novel methods for delivery of cell-based therapies. J Surg Res 2007; 146:3-10. [PMID: 17686493 PMCID: PMC2373425 DOI: 10.1016/j.jss.2007.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pulmonary hypoplasia (PH) is found in 15% to 20% of all neonatal autopsies, accounting for 2850 deaths yearly. Development of engineered tissue substitutes that could functionally restore damaged tissue remains a unique opportunity for biotechnology. Recently, we isolated and characterized murine fetal pulmonary cells (FPC) and engineered 3-D pulmonary tissue constructs in vitro. Our goal is to devise a reliable and reproducible method for delivering FPC into a live animal model of PH. MATERIALS AND METHODS Three methods of delivery were explored: intraoral, intratracheal, and intrapulmonary injection. Adult Swiss Webster mice were anesthetized and fluorescent labeled microspheres (20 microm diameter) were delivered by intraoral and intratracheal injection. Subsequently, labeled FPC (Cell Tracker, CMTPX; Molecular Probes, Eugene, OR) were delivered by the same methods. In addition, direct transpleural intrapulmonary injection of FPC was performed. Outcome analysis included survival, reproducibility, diffuse versus confined location of the injected substance, and adequacy of delivery. Routine histological examination, fluorescent microscopy, and immunostaining were performed. RESULTS Microspheres: We demonstrated reproducible, diffuse instillation via tracheotomy into the distal alveoli. Intraoral delivery appeared less reliable compared to direct intratracheal injection. FPC: Intratracheal injection was a reliable method of delivery. Labeled FPC showed transepithelial migration after 7 d of in vivo culture. Intrapulmonary injection led to local accumulation of cells in sites of injection. CONCLUSIONS We demonstrate that delivery of FPC is feasible with intratracheal injection giving the most reliable, diffuse delivery throughout the lung. This represents the first step toward translational research with site-specific delivery for a cell-based therapeutic approach toward PH and similar pulmonary diseases.
Collapse
Affiliation(s)
- M Cecilia Crisanti
- Department of Pediatric Surgery, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
15
|
Bischof JC, Mahr B, Choi JH, Behling M, Mewes D. Use of X-ray Tomography to Map Crystalline and Amorphous Phases in Frozen Biomaterials. Ann Biomed Eng 2006; 35:292-304. [PMID: 17136446 DOI: 10.1007/s10439-006-9176-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 08/10/2006] [Indexed: 11/25/2022]
Abstract
The outcome of both cryopreservation and cryosurgical freezing applications is influenced by the concentration and type of the cryoprotective agent (CPA) or the cryodestructive agent (i.e., the chemical adjuvants referred to here as CDA) added prior to freezing. It also depends on the amount and type of crystalline, amorphous and/or eutectic phases formed during freezing which can differentially affect viability. This work describes the use of X-ray computer tomography (CT) for non-invasive, indirect determination of the phase, solute concentration and temperature within biomaterials (CPA, CDA loaded solutions and tissues) by X-ray attenuation before and after freezing. Specifically, this work focuses on establishing the feasibility of CT (100-420 kV acceleration voltage) to accurately measure the concentration of glycerol or salt as model CPA and CDAs in unfrozen solutions and tissues at 20 degrees C, or the phase in frozen solutions and tissue systems at -78.5 and -196 degrees C. The solutions are composed of water with physiological concentrations of NaCl (0.88% wt/wt) and DMEM (Dulbecco's Modified Eagle's Medium) with added glycerol (0-8 M). The tissue system is chosen as 3 mm thick porcine liver slices as well as 2 cm diameter cores which were either imaged fresh (3-4 h cold ischemia) or after loading with DMEM based glycerol solutions (0-8 M) for times ranging from hours to 7 days at 4 degrees C. The X-ray attenuation is reported in Hounsfield units (HU), a clinical measurement which normalizes X-ray attenuation values by the difference between those of water and air. NaCl solutions from 0 to 23.3% wt/wt (i.e. water to eutectic concentration) were found to linearly correspond to HU in a range from 0 to 155. At -196 degrees C the variation was from -80 to 95 HU while at -78.5 degrees C all readings were roughly 10 HU lower. At 20 degrees C NaCl and DMEM solutions with 0-8 M glycerol loading show a linear variation from 0 to 145 HU. After freezing to -78.5 degrees C the variation of the NaCl and DMEM solutions is more than twice as large between -90 and +190 HU and was distinctly non-linear above 6 M. After freezing to -196 degrees C the variation of the NaCl and DMEM solutions increased even further to -80 to +225 HU and was distinctly non-linear above 4 M, which after modeling the phase change and crystallization process is shown to correlate with an amorphous phase. In all tissue systems the HU readings were similar to solutions but higher by roughly 30 HU, as well as showing some deviations at 0 M after storage, probably due to tissue swelling. The standard deviations in all measurements were roughly 5 HU or below in all samples. In addition, two practical examples for CT use were demonstrated including: (1) glycerol loading and freezing of tissue cores and, (2) a mock cryosurgical procedure. In the loading experiment CT was able to measure the permeation of the glycerol into the sample at 20 degrees C, as well as the evolution of distinct amorphous vs. crystalline phases after freezing to -196 degrees C. In the mock cryosurgery example, the iceball edge was clearly visualized, and attempts to determine the temperature within the iceball are discussed. An added benefit of this work is that the density of these frozen samples, an essential property in measurement and modeling of thermal processes, was obtained in comparison to ice.
Collapse
Affiliation(s)
- J C Bischof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
16
|
Balasubramanian SK, Bischof JC, Hubel A. Water transport and IIF parameters for a connective tissue equivalent. Cryobiology 2006; 52:62-73. [PMID: 16343475 DOI: 10.1016/j.cryobiol.2005.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 08/23/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Understanding the biophysical processes that govern freezing injury of a tissue equivalent (TE) is an important step in characterizing and improving the cryopreservation of these systems. TEs were formed by entrapping human dermal fibroblasts (HDFs) in collagen or in fibrin gels. Freezing studies were conducted using a Linkam cryostage fitted to an optical microscope allowing observation of the TEs cooled under controlled rates between 5 and 130 degrees C/min. Typically, freezing of cellular systems results in two biophysical processes that are both dependent on the cooling rate: dehydration and/or intracellular ice formation (IIF). Both these processes can potentially be destructive to cells. In this study, the biophysics of freezing cells in collagen and fibrin TEs have been quantified and compared to freezing cells in suspension. Experimental data were fitted in numerical models to extract parameters that governed water permeability, E(Lp) and L(pg), and intracellular ice nucleation, omega(o) and kappa(o). Results indicate that major differences exist between freezing HDFs in suspension and in a tissue equivalent. During freezing, 55% of the HDFs in suspension formed IIF as compared to 100% of HDFs forming IIF in collagen and fibrin TE at a cooling rate of 130 degrees C/min. Also, both the water permeability and the IIF parameters were determined to be higher for HDFs in TEs as compared to cell suspensions. Between the TEs, HDFs in fibrin TE exhibited higher values for the biophysical parameters as compared to HDFs in collagen TE. The observed biophysics seems to indicate that cell-cell and cell-matrix interactions play a major role in ice propagation in TEs.
Collapse
|
17
|
|
18
|
Neidert MR, Devireddy RV, Tranquillo RT, Bischof JC. Cryopreservation of Collagen-Based Tissue Equivalents. II. Improved Freezing in the Presence of Cryoprotective Agents. ACTA ACUST UNITED AC 2004; 10:23-32. [PMID: 15009927 DOI: 10.1089/107632704322791664] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In Part I of this study we determined an optimal cooling rate for cryopreservation of collagen-based tissue equivalents (TEs) that preserves both the postthaw cell viability and mechanical properties, but results in tissue contraction and an overall loss of opacity. The empirically determined optimal cooling rate (5 degrees C/min) was obtained in a freezing medium consisting solely of phosphate-buffered saline (PBS) at physiological concentration (1x). In the present study we report the effect of freezing on TEs in the presence of PBS and two cryoprotective agents (CPAs) (glycerol and dimethyl sulfoxide [Me(2)SO]), at two different concentrations (0.5 and 1.0 M), to two different end temperatures (-80 and -160 degrees C), at a cooling rate of 5 degrees C/min. The controlled rate freezing experiments, postthaw cell viability, and mechanical property measurements were performed as described in Part I of this study. In addition to studying the effect of CPAs on the postthaw properties of TEs, we also investigated (1). the effect of freezing TEs attached to the substrate (as opposed to detached and floating in medium) to determine differences when freezing TEs subject to static mechanical stress via a mechanical constraint to contraction; (2). the effect of freezing glutaraldehyde-fixed TEs to determine differences in freezing-mediated damage to the microstructure; and (3). the effect of freezing more mature TEs that were incubated for 4 weeks in growth factor-supplemented medium as opposed to 2 weeks in basal medium. All TEs frozen at 5 degrees C/min to -80 degrees C in the presence of 0.5 M glycerol or Me(2)SO in PBS were found to be optimally cryopreserved in terms of maintaining opacity and structure as well as cell viability and mechanical properties as compared with unfrozen TEs. The postthaw mechanical properties were adversely affected by freezing to the lower end temperature of -160 degrees C in the presence of CPAs, with the samples frozen in the 1.0 M concentration of CPAs exhibiting a total loss of structural integrity on thawing. Furthermore, TEs frozen attached to the substrate showed decreased opacity and significant contraction as compared with TEs frozen detached from the substrate, as did cross-linked samples frozen without CPA.
Collapse
Affiliation(s)
- Michael R Neidert
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | | | | | | |
Collapse
|
19
|
Devireddy RV, Neidert MR, Bischof JC, Tranquillo RT. Cryopreservation of Collagen-Based Tissue Equivalents. I. Effect of Freezing in the Absence of Cryoprotective Agents. ACTA ACUST UNITED AC 2003; 9:1089-100. [PMID: 14670097 DOI: 10.1089/10763270360728008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of freezing on the viability and mechanical properties of tissue-equivalents (TEs) was determined under a variety of cooling conditions, with the ultimate aim of optimizing the cryopreservation process. TEs (a class of bioartificial tissues) were prepared by incubating entrapped human foreskin fibroblasts in collagen gels for a period of 2 weeks. TEs were detached from the substrate and frozen in phosphate-buffered saline using a controlled rate freezer (CRF) at various cooling rates (0.5, 2, 5, 20, and 40 degrees C/min to -80 or -160 degrees C) or in a directional solidification stage (DSS) (5 degrees C/min to -80 degrees C) or slam frozen (>1000 degrees C/min). Viability of the fibroblasts in the TEs was assessed by ethidium homodimer and Hoechst assays immediately after thawing. Uniaxial tension experiments were also performed on an MTS (Eden Prairie, MN) Micro Bionix system to assess the postthaw mechanical properties of the frozen-thawed TEs. Cooling rates of either 2 or 5 degrees C/min using the CRF were optimal for preserving both immediate cell viability and mechanical properties of the TEs, postthaw. By 72 h postthaw, TEs frozen in the CRF at 5 degrees C/min to -80 degrees C showed a slight decrease in cell viability, with a significant increase in tangent modulus and ultimate tensile stress suggesting a cell-mediated recovery mechanism. Both the postthaw mechanical properties and cell viability are adversely affected by freezing to the lower end temperature of -160 degrees C. Mechanical properties are adversely affected by freezing in the DSS.
Collapse
Affiliation(s)
- Ram V Devireddy
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
20
|
Abstract
This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.
Collapse
Affiliation(s)
- M J Lysaght
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02818, USA.
| | | |
Collapse
|