1
|
Computational Fluid Dynamics Modeling of Hemodynamic Parameters in the Human Diseased Aorta: A Systematic Review. Ann Vasc Surg 2020; 63:336-381. [DOI: 10.1016/j.avsg.2019.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/09/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
2
|
Varshney M, Haani Farooqi M, Usmani AY. Quantifying hemodynamics within an aneurysm exposed to prolonged exercise levels. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105124. [PMID: 31627149 DOI: 10.1016/j.cmpb.2019.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Non-invasive treatment of unruptured Abdominal Aortic Aneurysm involves subjecting the patients to certain physiological levels of the heart. Flow topology (Repeak = 200-1200, frequency: f = 1.18-2.41 Hz) within an aneurysm geometry (2-D) under resting and exercise (mild and moderate) conditions are explored in the present study. Blood is assumed to be Newtonian in nature. Spatio-temporal evolution of the flow patterns and vorticity are established. Hemodynamic indicators (TAWSS and OSI), movement of vortex cores and Particle Residence Index (PRI) are quantified to select an optimum exercise level in attenuating the disease. METHODS The finite volume method is employed for numerical solutions using ANSYS-FluentⓇ software. The SIMPLE scheme has been used for the pressure-velocity coupling. Least Square cell-based method is used for the spatial discretization of the gradients. Second order upwind scheme is considered for discretization of the pressure term. Third order upwind (QUICK) scheme is used to discretize the momentum equation. First order Implicit Scheme was used for the discretization of the temporal terms. Discrete Phase Material (DPM) technique is employed throughout, to visualize the signature of particle deposits within the aneurysm. RESULTS Vortex impingement induces a pressure peak within the aneurysm (moderate) while the peaks are anchored at the proximal and distal ends under resting and mild conditions. Along the averaged flow separation zone, exercise increases the maximum TAWSS from 1.21 N/m2 (mild) to 9.3 N/m2 (moderate). The distal site is exposed to oscillatory loading (OSI = 0.5) under mild activity whereas the loading becomes distributed almost over the entire wall, when subjected to moderate conditions. This in turn, reduces the time involved in 50 percent clearance of particles (PRI = 0.5) from 10.56 s (resting) to 3.98 s (mild) and 0.87 s (moderate), respectively. CONCLUSIONS Resting conditions manifests the aneurysmal wall to recirculating fluid for most of cycle time. Moderate exercise exhibits the least particle clearance time, but it exposes the aneurysmal wall and the distal end to high pressure, which otherwise has low intensity under mild activity. This in turn establishes that mild exercise for prolonged duration can be an optimum level for non-invasive aneurysmal treatment.
Collapse
Affiliation(s)
- Mehul Varshney
- Department of Mechanical Engineering, ZHCET, AMU, Aligarh 202002 India
| | - M Haani Farooqi
- Fluid Mechanics and Energetics Department, École Centrale de Nantes, Nantes 44300 France
| | - Abdullah Y Usmani
- Department of Mechanical Engineering, ZHCET, AMU, Aligarh 202002 India.
| |
Collapse
|
3
|
Pocivavsek L, Milner R. Dynamic seal at the aortic neck-endograft interface studied using a novel method of cohesive zone modeling. J Vasc Surg 2019; 72:703-713.e3. [PMID: 31727454 DOI: 10.1016/j.jvs.2019.07.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Endovascular aortic stent graft technology radically altered aortic aneurysm repair from a maximally invasive procedure to a minimally invasive approach. Whereas the overall principle of the repair remained the same, the surgeon ceded control of the proximal seal when suturing was eliminated. In endovascular aneurysm repair (EVAR), no longer does the surgeon control the precise placement of mechanical fasteners (sutures) between graft and tissue; rather, the graft is kept in place by creation of a seal zone that often lacks any mechanical fastening. The kinematic coupling condition is replaced by contact mechanics between the outer graft surface and the aorta. METHODS We develop a novel computational methodology to fully model and characterize the aorta-endograft seal zone within a fully integrated aorta-EVAR model. The aorta, endograft, and intraluminal thrombus are modeled by standard finite element analysis in the limit of elastic response under pressure loading conditions. The seal zone in our simulations is fully dynamic and modeled using the cohesive zone method. Our methodology allows full separation of the aorta and endograft, simulating loss of seal and endoleak. RESULTS Using patient-specific geometry, we show that our approach is capable of predicting the location of rupture in an index patient who presented with a ruptured juxtarenal aneurysm. Applying our novel cohesive zone method analysis to the post-EVAR geometry, we studied the stability of the endograft under several seal zone strengths correlating to very weak, standard, and very strong seal. Loss of seal is shown to correlate to the propagation of an elastic front in the aortic neck. We propose that aortic neck dilation, which develops from graft deployment and pressurization, provides an energy release mechanism that drives seal zone failure: the elasto-adhesive seal model. CONCLUSIONS We develop the first ever fully integrated computational model of aorta-endograft seal. Our elasto-adhesive seal model provides the first biomechanical model to evaluate seal loss. We hope that our method will provide a rich tool set with which to study the vexing problems of type I endoleak and help guide the development of technologies to optimize seal.
Collapse
Affiliation(s)
- Luka Pocivavsek
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Chicago, Chicago, Ill.
| | - Ross Milner
- Section of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Chicago, Chicago, Ill
| |
Collapse
|
4
|
James BD, Allen JB. Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomater Sci Eng 2018; 4:3818-3842. [PMID: 33429612 DOI: 10.1021/acsbiomaterials.8b00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vascular mechanical microenvironment consists of a mixture of spatially and temporally changing mechanical forces. This exposes vascular endothelial cells to both hemodynamic forces (fluid flow, cyclic stretching, lateral pressure) and vessel forces (basement membrane mechanical and topographical properties). The vascular mechanical microenvironment is "complex" because these forces are dynamic and interrelated. Endothelial cells sense these forces through mechanosensory structures and transduce them into functional responses via mechanotransduction pathways, culminating in behavior directly affecting vascular health. Recent in vitro studies have shown that endothelial cells respond in nuanced and unique ways to combinations of hemodynamic and vessel forces as compared to any single mechanical force. Understanding the interactive effects of the complex mechanical microenvironment on vascular endothelial behavior offers the opportunity to design future biomaterials and biomedical devices from the bottom-up by engineering for the cellular response. This review describes and defines (1) the blood vessel structure, (2) the complex mechanical microenvironment of the vascular endothelium, (3) the process in which vascular endothelial cells sense mechanical forces, and (4) the effect of mechanical forces on vascular endothelial cells with specific attention to recent works investigating the influence of combinations of mechanical forces. We conclude this review by providing our perspective on how the field can move forward to elucidate the effects of the complex mechanical microenvironment on vascular endothelial cell behavior.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Josephine B Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Cell and Tissue Science and Engineering, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Canchi T, Saxena A, Ng EYK, Pwee ECH, Narayanan S. Application of Fluid–Structure Interaction Methods to Estimate the Mechanics of Rupture in Asian Abdominal Aortic Aneurysms. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0554-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Farotto D, Segers P, Meuris B, Vander Sloten J, Famaey N. The role of biomechanics in aortic aneurysm management: requirements, open problems and future prospects. J Mech Behav Biomed Mater 2018; 77:295-307. [DOI: 10.1016/j.jmbbm.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
|
7
|
Endoleak Assessment Using Computational Fluid Dynamics and Image Processing Methods in Stented Abdominal Aortic Aneurysm Models. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:9567294. [PMID: 27660648 PMCID: PMC5021907 DOI: 10.1155/2016/9567294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/02/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022]
Abstract
Endovascular aortic aneurysm repair (EVAR) is a predominant surgical procedure to reduce the risk of aneurysm rupture in abdominal aortic aneurysm (AAA) patients. Endoleak formation, which eventually requires additional surgical reoperation, is a major EVAR complication. Understanding the etiology and evolution of endoleak from the hemodynamic perspective is crucial to advancing the current posttreatments for AAA patients who underwent EVAR. Therefore, a comprehensive flow assessment was performed to investigate the relationship between endoleak and its surrounding pathological flow fields through computational fluid dynamics and image processing. Six patient-specific models were reconstructed, and the associated hemodynamics in these models was quantified three-dimensionally to calculate wall stress. To provide a high degree of clinical relevance, the mechanical stress distribution calculated from the models was compared with the endoleak positions identified from the computed tomography images of patients through a series of imaging processing methods. An endoleak possibly forms in a location with high local wall stress. An improved stent graft (SG) structure is conceived accordingly by increasing the mechanical strength of the SG at peak wall stress locations. The presented analytical paradigm, as well as numerical analysis using patient-specific models, may be extended to other common human cardiovascular surgeries.
Collapse
|
8
|
Conlisk N, Geers AJ, McBride OMB, Newby DE, Hoskins PR. Patient-specific modelling of abdominal aortic aneurysms: The influence of wall thickness on predicted clinical outcomes. Med Eng Phys 2016; 38:526-37. [PMID: 27056256 DOI: 10.1016/j.medengphy.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/04/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
Rupture of abdominal aortic aneurysms (AAAs) is linked to aneurysm morphology. This study investigates the influence of patient-specific (PS) AAA wall thickness on predicted clinical outcomes. Eight patients under surveillance for AAAs were selected from the MA(3)RS clinical trial based on the complete absence of intraluminal thrombus. Two finite element (FE) models per patient were constructed; the first incorporated variable wall thickness from CT (PS_wall), and the second employed a 1.9mm uniform wall (Uni_wall). Mean PS wall thickness across all patients was 1.77±0.42mm. Peak wall stress (PWS) for PS_wall and Uni_wall models was 0.6761±0.3406N/mm(2) and 0.4905±0.0850N/mm(2), respectively. In 4 out of 8 patients the Uni_wall underestimated stress by as much as 55%; in the remaining cases it overestimated stress by up to 40%. Rupture risk more than doubled in 3 out of 8 patients when PS_wall was considered. Wall thickness influenced the location and magnitude of PWS as well as its correlation with curvature. Furthermore, the volume of the AAA under elevated stress increased significantly in AAAs with higher rupture risk indices. This highlights the sensitivity of standard rupture risk markers to the specific wall thickness strategy employed.
Collapse
Affiliation(s)
- Noel Conlisk
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, EH16 4TJ, UK; Clinical Research Imaging Centre, The University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | - Arjan J Geers
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Olivia M B McBride
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - David E Newby
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, EH16 4TJ, UK; Clinical Research Imaging Centre, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Peter R Hoskins
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
9
|
Chen CY, Antón R, Hung MY, Menon P, Finol EA, Pekkan K. Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling. J Biomech Eng 2014; 136:031001. [PMID: 24316984 DOI: 10.1115/1.4026160] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 12/05/2013] [Indexed: 11/08/2022]
Abstract
The pathology of the human abdominal aortic aneurysm (AAA) and its relationship to the later complication of intraluminal thrombus (ILT) formation remains unclear. The hemodynamics in the diseased abdominal aorta are hypothesized to be a key contributor to the formation and growth of ILT. The objective of this investigation is to establish a reliable 3D flow visualization method with corresponding validation tests with high confidence in order to provide insight into the basic hemodynamic features for a better understanding of hemodynamics in AAA pathology and seek potential treatment for AAA diseases. A stereoscopic particle image velocity (PIV) experiment was conducted using transparent patient-specific experimental AAA models (with and without ILT) at three axial planes. Results show that before ILT formation, a 3D vortex was generated in the AAA phantom. This geometry-related vortex was not observed after the formation of ILT, indicating its possible role in the subsequent appearance of ILT in this patient. It may indicate that a longer residence time of recirculated blood flow in the aortic lumen due to this vortex caused sufficient shear-induced platelet activation to develop ILT and maintain uniform flow conditions. Additionally, two computational fluid dynamics (CFD) modeling codes (Fluent and an in-house cardiovascular CFD code) were compared with the two-dimensional, three-component velocity stereoscopic PIV data. Results showed that correlation coefficients of the out-of-plane velocity data between PIV and both CFD methods are greater than 0.85, demonstrating good quantitative agreement. The stereoscopic PIV study can be utilized as test case templates for ongoing efforts in cardiovascular CFD solver development. Likewise, it is envisaged that the patient-specific data may provide a benchmark for further studying hemodynamics of actual AAA, ILT, and their convolution effects under physiological conditions for clinical applications.
Collapse
|
10
|
Meyer CA, Bertrand E, Boiron O, Deplano V. Stereoscopically observed deformations of a compliant abdominal aortic aneurysm model. J Biomech Eng 2012; 133:111004. [PMID: 22168736 DOI: 10.1115/1.4005416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new experimental setup has been implemented to precisely measure the deformations of an entire model abdominal aortic aneurysm (AAA). This setup addresses a gap between the computational and experimental models of AAA that have aimed at improving the limited understanding of aneurysm development and rupture. The experimental validation of the deformations from computational approaches has been limited by a lack of consideration of the large and varied deformations that AAAs undergo in response to physiologic flow and pressure. To address the issue of experimentally validating these calculated deformations, a stereoscopic imaging system utilizing two cameras was constructed to measure model aneurysm displacement in response to pressurization. The three model shapes, consisting of a healthy aorta, an AAA with bifurcation, and an AAA without bifurcation, were also evaluated with computational solid mechanical modeling using finite elements to assess the impact of differences between material properties and for comparison against the experimental inflations. The device demonstrated adequate accuracy (surface points were located to within 0.07 mm) for capturing local variation while allowing the full length of the aneurysm sac to be observed at once. The experimental model AAA demonstrated realistic aneurysm behavior by having cyclic strains consistent with reported clinical observations between pressures 80 and 120 mm Hg. These strains are 1-2%, and the local spatial variations in experimental strain were less than predicted by the computational models. The three different models demonstrated that the asymmetric bifurcation creates displacement differences but not cyclic strain differences within the aneurysm sac. The technique and device captured regional variations of strain that are unobservable with diameter measures alone. It also allowed the calculation of local strain and removed rigid body motion effects on the strain calculation. The results of the computations show that an asymmetric aortic bifurcation created displacement differences but not cyclic strain differences within the aneurysm sac.
Collapse
Affiliation(s)
- Clark A Meyer
- Equipe de Biomécanique, Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE) UMR 6594, Centre National de la Recherche Scientifique (CNRS), 13384 Marseille, France
| | | | | | | |
Collapse
|
11
|
Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 2011; 33:263-80. [PMID: 21075669 PMCID: PMC3053072 DOI: 10.1016/j.medengphy.2010.10.014] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 02/06/2023]
Abstract
Progress in the field of prosthetic cardiovascular devices has significantly contributed to the rapid advancements in cardiac therapy during the last four decades. The concept of mechanical circulatory assistance was established with the first successful clinical use of heart-lung machines for cardiopulmonary bypass. Since then a variety of devices have been developed to replace or assist diseased components of the cardiovascular system. Ventricular assist devices (VADs) are basically mechanical pumps designed to augment or replace the function of one or more chambers of the failing heart. Computational Fluid Dynamics (CFD) is an attractive tool in the development process of VADs, allowing numerous different designs to be characterized for their functional performance virtually, for a wide range of operating conditions, without the physical device being fabricated. However, VADs operate in a flow regime which is traditionally difficult to simulate; the transitional region at the boundary of laminar and turbulent flow. Hence different methods have been used and the best approach is debatable. In addition to these fundamental fluid dynamic issues, blood consists of biological cells. Device-induced biological complications are a serious consequence of VAD use. The complications include blood damage (haemolysis, blood cell activation), thrombosis and emboli. Patients are required to take anticoagulation medication constantly which may cause bleeding. Despite many efforts blood damage models have still not been implemented satisfactorily into numerical analysis of VADs, which severely undermines the full potential of CFD. This paper reviews the current state of the art CFD for analysis of blood pumps, including a practical critical review of the studies to date, which should help device designers choose the most appropriate methods; a summary of blood damage models and the difficulties in implementing them into CFD; and current gaps in knowledge and areas for future work.
Collapse
Affiliation(s)
- Katharine H Fraser
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
12
|
Stadlbauer A, van der Riet W, Crelier G, Salomonowitz E. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST. Eur J Radiol 2009; 75:e15-21. [PMID: 19581063 DOI: 10.1016/j.ejrad.2009.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/13/2009] [Accepted: 06/08/2009] [Indexed: 12/21/2022]
Abstract
PURPOSE To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. MATERIALS AND METHODS Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. RESULTS Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. CONCLUSION We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, 3100 St. Poelten, Austria.
| | | | | | | |
Collapse
|
13
|
Hoskins PR, Hardman D. Three-dimensional imaging and computational modelling for estimation of wall stresses in arteries. Br J Radiol 2009; 82 Spec No 1:S3-17. [DOI: 10.1259/bjr/96847348] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|