1
|
Wang A, Tan Y, Wang S, Chen X. The prognostic value of separate lymphatic invasion and vascular invasion in oesophageal squamous cell carcinoma: a meta-analysis and systematic review. BMC Cancer 2022; 22:1329. [PMID: 36536299 PMCID: PMC9764535 DOI: 10.1186/s12885-022-10441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lymphovascular invasion (LVI) is a factor correlated with a poor prognosis in oesophageal squamous cell carcinoma (ESCC). Lymphatic invasion (LI) and vascular invasion (VI) should be reported separately because they may indicate a difference in prognosis. The prognostic role of LI and VI in ESCC patients remains controversial. A meta-analysis was conducted to resolve this question. METHODS We searched the PubMed, EMBASE, Web of Science, Scopus and Cochrane Library databases for studies on the association between LI and VI and the prognosis of patients with ESCC. The PICOs (Participant, Intervention, Comparison, Outcome) strategy were selected for the systematic review and meta-analysis. The effect size (ES) was the hazard ratio (HR) or relative ratio (RR) with 95% confidence intervals (CI) for overall survival (OS) and recurrence-free survival (RFS). RESULTS A total of 27 studies with 5740 patients were included. We calculated the pooled results from univariate and multivariate analysis using the Cox proportional hazards method. The heterogeneity was acceptable in OS and RFS. According to the pooled results of multivariate analysis, both LI and VI were correlated with a worse OS. VI was a negative indicator for RFS, while the p value of VI was greater than 0.05. The prognostic role was weakened in subgroup analysis with studies using haematoxylin-eosin staining method. CONCLUSIONS Both LI and VI were indicators of a worse OS outcome. LI was a more significant indicator in predicting a worse RFS. More larger sample studies with immunohistochemical staining and good designs are required to detect the prognostic value of separate LI and VI in ESCC.
Collapse
Affiliation(s)
- An Wang
- grid.8547.e0000 0001 0125 2443Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Tan
- grid.8547.e0000 0001 0125 2443Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Wang
- grid.8547.e0000 0001 0125 2443Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- grid.8547.e0000 0001 0125 2443Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li L, Beeraka NM, Xie L, Dong L, Liu J, Wang L. Co-expression of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in the prognosis of esophageal squamous cell carcinoma. Discov Oncol 2022; 13:64. [PMID: 35829833 PMCID: PMC9279518 DOI: 10.1007/s12672-022-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer is a malignant type of cancer with a high mortality rate. The aim of this study is to determine co-expression patterns of High-mobility group box 1 protein (HMGB1) and receptor for advanced glycation end products (RAGE) in ESCC (esophageal squamous cell carcinoma) conditions and their prognostic role in cancer progression. The expression of HMGB1 and RAGE in ESCC tissues has been analyzed using qRT-PCR and Western blotting. Co-localized expression patterns of HMGB1 and RAGE in ESCC tissues were determined using immunohistochemistry and analyzed for clinical-pathological parameters. Overall survival was performed based on co-expression of HMGB1 and RAGE proteins. A higher expression pattern of HMGB1, and RAGE was observed at mRNA and protein level in the ESCC group compared to the adjacent tissue group. Expression of HMGB1 was significantly correlated with lymph node, metastasis, lymphatic invasion, and venous invasion (p < 0.05). RAGE expression exhibited a significant correlation with venous invasion. Overall survival was significantly shorter (P < 0.05) in the patients with co-expression of HMGB1 and RAGE compared to the patients without co-expression. A significant difference in the overall survival was evident between the patients with co-expression of HMGB1 and RAGE and the patients without coexpression. HMGB1 and RAGE expression patterns were associated with aggressive metastatic characteristics of ESCC. The co-expression of HMGB1 and RAGE was correlated with shorter survival times. Results concluded the co-expression patterns of HMGB1 and RAGE exhibited a prognostic relevance in ESCC conditions.
Collapse
Affiliation(s)
- Lingzhao Li
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991 Russian Federation
| | - Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Li Dong
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 Henan People’s Republic of China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan People’s Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195# Tongbai Road, Zhengzhou, 450052 Henan People’s Republic of China
| |
Collapse
|
3
|
Weidle UH, Nopora A. MicroRNAs and Corresponding Targets in Esophageal Cancer as Shown In Vitro and In Vivo in Preclinical Models. Cancer Genomics Proteomics 2022; 19:113-129. [PMID: 35181582 DOI: 10.21873/cgp.20308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
Squamous cell carcinoma of the esophagus is associated with a dismal prognosis. Therefore, identification of new targets and implementation of new treatment modalities are issues of paramount importance. Based on a survey of the literature, we identified microRNAs conferring antitumoral activity in preclinical in vivo experiments. In the category of miRs targeting secreted factors and transmembrane receptors, four miRs were up-regulated and 10 were down-regulated compared with five out of nine in the category transcription factors, and six miRs were down-regulated in the category enzymes, including metabolic enzymes. The down-regulated miRs have targets which can be inhibited by small molecules or antibody-related entities, or re-expressed by reconstitution therapy. Up-regulated miRs have targets which can be reconstituted with small molecules or inhibited with antagomirs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
Akkus G, Izol V, Ok F, Evran M, Inceman M, Erdogan S, Kaplan HM, Sert M, Tetiker T. Possible role of the receptor of advanced glycation end products (RAGE) in the clinical course of prostate neoplasia in patients with and without type 2 diabetes mellitus. Int J Clin Pract 2021; 75:e13723. [PMID: 32957168 DOI: 10.1111/ijcp.13723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 01/22/2023] Open
Abstract
AIM The expression of the cognate receptor of advanced glycation end products (RAGE) in malignant tissues of patients with type 2 diabetes has been suggested as a co-factor determining the clinical course and prognosis. We aimed to investigate the relationship between RAGE expression and clinicopathological features of prostate neoplasia. METHODS Tissue samples of 197 patients, 64 (24 patients with type 2 diabetes and 40 controls) with benign prostate hyperplasia (BPH) and 133 (71 patients with type 2 diabetes and 62 controls) with localised or metastatic prostate cancer (LPCa/MetPCa) were included in the study. The expression of RAGE in prostate specimens was studied immunohistochemically. RAGE scores were determined according to the extent of immunoreactivity and staining intensity. RESULTS RAGE expression in BPH group (patients with type 2 diabetes and controls) was negative. Patients with both LPCa and MetPCa had significantly higher scores than those with BPH (P < .001). The mean RAGE scores of patients with type 2 diabetes LPCa and MetPCa were 4.71 ± 3.14 and 4.97 ± 3.69. The mean scores of control LPCa and MetPCa were 1.52 ± 1.87 and 1.69 ± 1.58, respectively. The scores of patients with type 2 diabetes LPCa and MetPCa were significantly higher than those of control LPCa and MetPCa (P = .01 and P < .001, respectively). CONCLUSION We found higher RAGE expression levels in malignant prostate neoplasia than in BPH. As expected, patients with diabetes had higher scores than control patients. Disease progression and survival parameters were worse in patients with high RAGE levels. RAGE expression may be a useful biomarker for the diagnosis and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Gamze Akkus
- Department of Endocrinology, Cukurova University, Adana, Turkey
| | - Volkan Izol
- Department of Urology, Cukurova University, Adana, Turkey
| | - Fesih Ok
- Department of Urology, Cukurova University, Adana, Turkey
| | - Mehtap Evran
- Department of Endocrinology, Cukurova University, Adana, Turkey
| | - Merve Inceman
- Department of Pathology, Cukurova University, Adana, Turkey
| | - Seyda Erdogan
- Department of Pathology, Cukurova University, Adana, Turkey
| | | | - Murat Sert
- Department of Endocrinology, Cukurova University, Adana, Turkey
| | - Tamer Tetiker
- Department of Endocrinology, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Azizian-Farsani F, Abedpoor N, Hasan Sheikhha M, Gure AO, Nasr-Esfahani MH, Ghaedi K. Receptor for Advanced Glycation End Products Acts as a Fuel to Colorectal Cancer Development. Front Oncol 2020; 10:552283. [PMID: 33117687 PMCID: PMC7551201 DOI: 10.3389/fonc.2020.552283] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein taken in diverse chronic inflammatory conditions. RAGE behaves as a pattern recognition receptor, which binds and is engaged in the cellular response to a variety of damage-associated molecular pattern molecules, as well as HMGB1, S100 proteins, and AGEs (advanced glycation end-products). The RAGE activation turns out to a formation of numerous intracellular signaling mechanisms, resulting in the progression and prolongation of colorectal carcinoma (CRC). The RAGE expression correlates well with the survival of colon cancer cells. RAGE is involved in the tumorigenesis, which increases and develops well in the stressed tumor microenvironment. In this review, we summarized downstream signaling cascade activated by the multiligand activation of RAGE, as well as RAGE ligands and their sources, clinical studies, and tumor markers related to RAGE particularly in the inflammatory tumor microenvironment in CRC. Furthermore, the role of RAGE signaling pathway in CRC patients with diabetic mellitus is investigated. RAGE has been reported to drive assorted signaling pathways, including activator protein 1, nuclear factor-κB, signal transducer and activator of transcription 3, SMAD family member 4 (Smad4), mitogen-activated protein kinases, mammalian target of rapamycin, phosphoinositide 3-kinases, reticular activating system, Wnt/β-catenin pathway, and Glycogen synthase kinase 3β, and even microRNAs.
Collapse
Affiliation(s)
| | - Navid Abedpoor
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran
| | | | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Academic Center for Education, Culture and Reasearch (ACECR), Isfahan, Iran.,Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
6
|
Willis JR, Gabaldón T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020; 8:microorganisms8020308. [PMID: 32102216 PMCID: PMC7074908 DOI: 10.3390/microorganisms8020308] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract: The human oral cavity is home to an abundant and diverse microbial community (i.e., the oral microbiome), whose composition and roles in health and disease have been the focus of intense research in recent years. Thanks to developments in sequencing-based approaches, such as 16S ribosomal RNA metabarcoding, whole metagenome shotgun sequencing, or meta-transcriptomics, we now can efficiently explore the diversity and roles of oral microbes, even if unculturable. Recent sequencing-based studies have charted oral ecosystems and how they change due to lifestyle or disease conditions. As studies progress, there is increasing evidence of an important role of the oral microbiome in diverse health conditions, which are not limited to diseases of the oral cavity. This, in turn, opens new avenues for microbiome-based diagnostics and therapeutics that benefit from the easy accessibility of the oral cavity for microbiome monitoring and manipulation. Yet, many challenges remain ahead. In this review, we survey the main sequencing-based methodologies that are currently used to explore the oral microbiome and highlight major findings enabled by these approaches. Finally, we discuss future prospects in the field.
Collapse
Affiliation(s)
- Jesse R. Willis
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
7
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
de Carvalho GC, Hirata FYA, Domingues R, Figueiredo CA, Zaniboni MC, Pereira NV, Sotto MN, Aoki V, da Silva Duarte AJ, Sato MN. Up-regulation of HMGB1 and TLR4 in skin lesions of lichen planus. Arch Dermatol Res 2018; 310:523-528. [PMID: 29728859 DOI: 10.1007/s00403-018-1837-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 01/27/2023]
Abstract
Lichen planus (LP) is a chronic, mucocutaneous inflammatory disease of an unknown aetiology. The disease has been associated with certain viruses, and the factors such as DAMPs (damage-associated molecular patterns) and PAMPs (pathogen-associated molecular patterns) may also contribute to the inflammatory response in LP. HMGB1 (high mobility group box 1 protein) is one of the major DAMPs that induces inflammation and could trigger LP disease. The present study was aimed to examine TLR4, RAGE and HMGB1 production in epidermis or dermis by immunohistochemistry and the respective expression of these targets in the skin lesions of patients with LP. Moreover, we measured HMGB1 serum levels by ELISA. The results showed similar profile of expression by HMGB1 and TLR4, which are decreased at epidermis and up-regulated at dermis of skin lesions of LP patients that was sustained by intense cellular infiltration. RAGE expression was also increased in dermis of LP. Although there is increased RAGE protein levels, a decreased RAGE transcript levels was detected. Similar HMGB1 serum levels were detected in the LP and control groups. This study demonstrates that HMGB1 and TLR4 could contribute to the inflammatory LP process in skin.
Collapse
Affiliation(s)
- Gabriel Costa de Carvalho
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil
| | - Fabiana Yasumoto Araujo Hirata
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil
| | - Rosana Domingues
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil
| | | | - Mariana Colombini Zaniboni
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil
| | - Naiura Vieira Pereira
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil
| | | | - Valéria Aoki
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil.,Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, Medical School of the University of São Paulo, LIM-56, Av. Dr. Enéas de Carvalho Aguiar, 470, 3rd floor, São Paulo, 05403-000, Brazil.
| |
Collapse
|
9
|
Najafi M, Alizadeh SA, Azad M, Naserpour Farivar T, Rajaei F, Hotam Sorouri K, Rahmani B, Gheibi N. Effect of calprotectin subunit S100A9 on the expression and methylation of OCLN in human melanoma cell line A-375. Turk J Biol 2017; 41:849-856. [PMID: 30814850 DOI: 10.3906/biy-1704-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Increased levels of calprotectin subunits S100A8 and S100A9 have been detected in human cancers. Melanoma is the most aggressive type of skin cancer, and its treatment is challenging because of its brain metastasis. OCLN encodes occluding, which plays a major role in the formation and regulation of tight junctions. The aim of this study was to evaluate the methylation status of the OCLN promoter and its expression in A-375 melanoma cells treated with or without various concentrations of S100A9 for 24, 48, and 72 h. Total RNA was extracted, and synthesized cDNA was assessed by performing real-time PCR. MSP-PCR was performed after treatment with bisultfie. Recombinant S100A9 inhibited the proliferation of the A-375 cell line and the expression of the OCLN gene was downregulated in a time- and concentration-dependent manner. Results of MSP-PCR showed that the OCLN gene promoter in a human melanoma cell line (A-375) was semimethylated.
Collapse
Affiliation(s)
- Mostafa Najafi
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Safar Ali Alizadeh
- Department of Medical Microbiology, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Mehdi Azad
- Department of Medical Biotechnology, Paramedical School, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Taghi Naserpour Farivar
- Department of Medical Microbiology, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Farzad Rajaei
- Department of Anatomy, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Kourosh Hotam Sorouri
- Department of Medical Biotechnology, Paramedical School, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Babak Rahmani
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| |
Collapse
|
10
|
Shen Z, Deng H, Fang Y, Zhu X, Ye GT, Yan L, Liu H, Li G. Identification of the interplay between SOX9 and S100P in the metastasis and invasion of colon carcinoma. Oncotarget 2016; 6:20672-84. [PMID: 26009899 PMCID: PMC4653034 DOI: 10.18632/oncotarget.3967] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Elevated expression of S100P has been detected in several tumor types and suggested to be responsible for tumor metastasis and invasion, but the upstream regulatory mechanisms promoting S100P overexpression are largely unknown. Here, we report that SOX9 was predicted and verified as a transcription factor of S100P. SOX9 and S100P were both overexpressed in colon cancer. SOX9 bound to and activated the S100P promoter. Knockdown of SOX9 expression down-regulated S100P expression, resulting in reduced invasiveness and metastasis of colon cancer cells by inhibiting the activation of receptor for advanced glycation end products (RAGE)/ERK signaling and epithelial-mesenchymal transition (EMT). Further, decreased expression of SOX9 dramatically inhibited the tumor growth and peritoneal metastasis in nude mice. More importantly, S100P was found to be critical for SOX9-mediated metastasis and invasion in colon cancer. Knockdown of S100P in SOX9-overexpressing colon cancer cells dramatically suppressed metastasis and invasion both in vitro and in mice. We also detected SOX9 and S100P expression in a tissue microarray with 90 colon cancer cases to provide their clinical relevance. There was a strong correlation between SOX9 and S100P expression in colon carcinomas. In conclusion, our results suggest that SOX9 promotes tumor metastasis and invasion through regulation of S100P expression.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Fang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianjun Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Geng-Tai Ye
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Yan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Shen ZY, Fang Y, Zhen L, Zhu XJ, Chen H, Liu H, Jiang B, Li GX, Deng HJ. Analysis of the predictive efficiency of S100P on adverse prognosis and the pathogenesis of S100P-mediated invasion and metastasis of colon adenocarcinoma. Cancer Genet 2016; 209:143-53. [PMID: 26975699 DOI: 10.1016/j.cancergen.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
Elevated expression of S100P has been detected in several tumor types. To analyze the potential use of S100P for the prediction of colorectal cancer (CRC) metastasis and prognosis, S100P expression was detected in 125 patients with colon adenocarcinoma by immunohistochemistry, followed by correlation and survival analysis. High S100P expression was correlated with metastasis, as demonstrated by clinically relevant data, and predicted poor survival more effectively than preoperative serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels in colon adenocarcinoma. Stable S100P knockdown CRC cell lines were established to elucidate the relationship between S100P expression and tumor progression in vitro and in vivo. S100P knockdown resulted in reductions in the invasiveness and metastasis of CRC cells. Xenograft growth in nude mice also demonstrated that down-regulated S100P dramatically inhibited peritoneal metastasis of CRC cells. S100P promoted the invasion and metastasis of CRC by activating RAGE/ERK signaling and promoting the epithelial-mesenchymal transition (EMT). RAGE was found to be crucial for S100P-mediated EMT in colon cancer. Knockdown of RAGE in S100P-overexpressing colon cancer cells dramatically suppressed EMT process. Our results indicate that overexpression of S100P is related with an invasive and metastatic phenotype of CRC which is EMT-involved and RAGE dependent.
Collapse
Affiliation(s)
- Zhi-Yong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Fang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Zhen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian-Jun Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Jiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Xin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hai-Jun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Wagner NB, Weide B, Reith M, Tarnanidis K, Kehrel C, Lichtenberger R, Pflugfelder A, Herpel E, Eubel J, Ikenberg K, Busch C, Holland-Letz T, Naeher H, Garbe C, Umansky V, Enk A, Utikal J, Gebhardt C. Diminished levels of the soluble form of RAGE are related to poor survival in malignant melanoma. Int J Cancer 2015; 137:2607-17. [PMID: 26018980 DOI: 10.1002/ijc.29619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 01/11/2023]
Abstract
RAGE is a central driver of tumorigenesis by sustaining an inflammatory tumor microenvironment. This study links the soluble forms of RAGE (sRAGE and esRAGE) with clinical outcome of melanoma patients. Moreover, tissue expression of RAGE was analyzed using immunohistochemistry on two independent tissue microarrays (TMA) containing 35 or 257 primary melanomas, and 41 or 22 benign nevi, respectively. Serum concentrations of sRAGE and esRAGE were measured in 229 Stage III-IV patients using ELISA and plasma concentrations of sRAGE were analyzed in an independent second cohort with 173 samples of Stage I-IV patients. In this cohort, three well-described SNPs in the RAGE gene were analyzed. RAGE protein expression was highly upregulated in primary melanomas compared to benign nevi in the two TMA (p < 0.001 and p = 0.005) as well as in sun-exposed melanomas (p = 0.046). sRAGE and esRAGE were identified as prognostic markers for survival as diminished sRAGE (p = 0.034) and esRAGE (p = 0.012) serum levels correlated with poor overall survival (OS). Multivariate Cox regression analysis showed that diminished serum sRAGE was independently associated with poor survival (p = 0.009). Moreover, diminished sRAGE was strongly associated with impaired OS in the second cohort (p < 0.001). Multivariate Cox regression analysis including the investigated SNPs revealed an independent correlation of the two interacting promoter SNPs with impaired OS. In conclusion, the soluble forms of RAGE and variants in its genetic locus are prognostic markers for survival in melanoma patients with high risk for progression.
Collapse
Affiliation(s)
- Nikolaus B Wagner
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Maike Reith
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Kathrin Tarnanidis
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Coretta Kehrel
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Ramtin Lichtenberger
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Annette Pflugfelder
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Esther Herpel
- NCT Tissue Bank, National Center of Tumor Diseases (NCT), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jana Eubel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kristian Ikenberg
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Busch
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut Naeher
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Garbe
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
Dhumale SS, Waghela BN, Pathak C. Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of RAGE and its ligand HMGB1 in human breast adenocarcinoma cells. IUBMB Life 2015; 67:361-73. [PMID: 25983116 DOI: 10.1002/iub.1379] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/01/2015] [Indexed: 12/24/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand member of the immunoglobulin superfamily, which plays an important role in maintaining cellular homeostasis. It is normally expressed on immune cells, including macrophages, monocytes, dendritic cells and T cells to maintain homeostasis, but highly upregulated at sites of vascular pathology. Accumulating evidence suggest that the elevated expression of RAGE and its ligand HMGB-1 was found in various types of cancer. The accumulation of RAGE and its ligand high-mobility group box proteins-1 (HMGB1) activates complex signaling network for cell survival and evades apoptosis. Therefore, targeting the RAGE-mediated signaling could be the promising strategies for the therapeutic potential of cancer. This study was aimed to examine the biological potential of quercetin on the regulation of RAGE- and HMGB1-mediated activation of NF-κB and induction of apoptotic cell death in MCF-7 cells. Our findings demonstrate that quercetin inhibits the expression of RAGE and HMGB1 in MCF-7 cells. In addition, quercetin protects necrotic insult and augments apoptosis in MCF-7 cells. Taken together, these results suggest that quercetin plays an important role in modulating RAGE and HMGB1 signaling and induces apoptotic cell death in MCF-7 cells.
Collapse
Affiliation(s)
- Suhashini S Dhumale
- Department of Cell Biology, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar, India
| | - Bhargav N Waghela
- Department of Cell Biology, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar, India
| | - Chandramani Pathak
- Department of Cell Biology, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar, India
| |
Collapse
|
14
|
Kang R, Hou W, Zhang Q, Chen R, Lee YJ, Bartlett DL, Lotze MT, Tang D, Zeh HJ. RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death Dis 2014; 5:e1480. [PMID: 25341034 PMCID: PMC4237264 DOI: 10.1038/cddis.2014.445] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023]
Abstract
A hypoxic tumor microenvironment is characteristic of many cancer types, including one of the most lethal, pancreatic cancer. We recently demonstrated that the receptor for advanced glycation end products (RAGE) has an important role in promoting the development of pancreatic cancer and attenuating the response to chemotherapy. We now demonstrate that binding of RAGE to oncogenic KRAS facilitates hypoxia-inducible factor 1 (HIF1)α activation and promotes pancreatic tumor growth under hypoxic conditions. Hypoxia induces NF-κB-dependent and HIF1α-independent RAGE expression in pancreatic tumor cells. Moreover, the interaction between RAGE and mutant KRAS increases under hypoxia, which in turn sustains KRAS signaling pathways (RAF-MEK-ERK and PI3K-AKT), facilitating stabilization and transcriptional activity of HIF1α. Knock down of RAGE in vitro inhibits KRAS signaling, promotes HIF1α degradation, and increases hypoxia-induced pancreatic tumor cell death. RAGE-deficient mice have impaired oncogenic KRAS-driven pancreatic tumor growth with significant downregulation of the HIF1α signaling pathway. Our results provide a novel mechanistic link between NF-κB, KRAS, and HIF1α, three potent molecular pathways in the cellular response to hypoxia during pancreatic tumor development and suggest alternatives for preventive and therapeutic strategies.
Collapse
Affiliation(s)
- R Kang
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - W Hou
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Q Zhang
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - R Chen
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Y J Lee
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - D L Bartlett
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - M T Lotze
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - D Tang
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - H J Zeh
- Division of Gastrointestinal Surgical Oncology, Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
15
|
Chiappalupi S, Riuzzi F, Fulle S, Donato R, Sorci G. Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis 2014; 35:2382-92. [PMID: 25123133 DOI: 10.1093/carcin/bgu176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcoma is a muscle-derived malignant tumor mainly affecting children. The most frequent variant, embryonal rhabdomyosarcoma (ERMS) is characterized by overexpression of the transcription factor, PAX7 which prevents ERMS cells from exiting the cell cycle and terminally differentiating. However, a role for PAX7 in the invasive properties of ERMS cells has not been investigated in detail thus far. Here we show that ectopic expression of receptor for advanced glycation end-products (RAGE) in human ERMS cells results in the activation of a RAGE/myogenin axis which downregulates PAX7 by transcriptional and post-translational mechanisms, as in normal myoblasts, and reduces metastasis formation. High PAX7 sustains migration and invasiveness in ERMS cells by upregulating EPHA3 and EFNA1 and downregulating NCAM1 thus decreasing the neural cell adhesion molecule (NCAM)/polysialylated-NCAM ratio. Microarray gene expression analysis shows that compared with the RAGE(-ve) TE671/WT cells and similarly to primary human myoblasts, TE671/RAGE cells show upregulation of genes involved in muscle differentiation and cell adhesion, and downregulation of cell migration related and major histocompatibility complex class I genes. Our data reveal a link between PAX7 and metastasis occurrence in ERMSs, and support a role for the RAGE/myogenin axis in metastasis suppression. Thus, low RAGE expression in ERMS primary tumors may be predictive of metastatic behavior.
Collapse
MESH Headings
- Animals
- CD56 Antigen/genetics
- Cell Line, Tumor/drug effects
- Cell Movement/genetics
- Ephrin-A1/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leupeptins/pharmacology
- Mice
- Mice, Mutant Strains
- Mice, Nude
- Myoblasts/pathology
- Myogenin/metabolism
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor for Advanced Glycation End Products
- Receptor, EphA3
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Rhabdomyosarcoma, Embryonal/drug therapy
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Stefania Fulle
- Interuniversity Institute of Myology (IIM), Italy and Department of Neuroscience and Imaging, CeSI, University G. d'Annunzio Chieti-Pescara, 66013 Chieti, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| |
Collapse
|
16
|
Ito R, Ishii Y, Wakiyama S, Shiba H, Fujioka S, Misawa T, Ishida Y, Hano H, Yanaga K. Prognostic significance of receptor for advanced glycation end products expression in hepatocellular carcinoma after hepatectomy. J Surg Res 2014; 192:503-8. [PMID: 25043528 DOI: 10.1016/j.jss.2014.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/01/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) is recognized to be responsible for cancer progression in several human cancers. In this study, we investigated the clinical impact of RAGE expression in patients with hepatocellular carcinoma (HCC) after hepatectomy. MATERIALS AND METHODS Sixty-five consecutive patients who underwent initial hepatectomy for HCC were investigated. The relationships between immunohistochemical expression of RAGE and clinicopathologic features, clinical outcome (overall survival [OS], and disease-free survival [DFS]) were evaluated. RESULTS The cytoplasmic expression of RAGE in HCC cells was observed in 46 patients (70.8%) and correlated with histologic grade (poorly differentiated versus moderately differentiated HCC, P = 0.021). Five-year OS in RAGE-positive and RAGE-negative groups were 72% and 94%, respectively, whereas 5-y DFS were 29% and 55%, respectively. There were significant differences between OS and DFS (P = 0.018 and 0.031, respectively). Multivariate analysis indicated that RAGE was an independent predictor for both OS and DFS (P = 0.048 and 0.032, respectively). CONCLUSIONS Our data suggest for the first time a positive correlation between RAGE expression and poor therapeutic outcome. Furthermore, RAGE downregulation may provide a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Ryusuke Ito
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Yuji Ishii
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shigeki Wakiyama
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shuichi Fujioka
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Ishida
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Hano
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Xu XC, Gao H, Zhang WB, Abuduhadeer X, Wang YH. Clinical significance of immunogenic cell death biomarker rage and early growth response 1 in human primary gastric adenocarcinoma. Int J Immunopathol Pharmacol 2013; 26:485-93. [PMID: 23755764 DOI: 10.1177/039463201302600222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE), a pattern recognition receptor that binds multiple ligands derived from a damaged cell environment, contributes to multiple pathologies including cancer. Early growth response 1 (EGR1) is a tumor suppressor gene or a tumor promoter involved in tumorigenesis and progression of some cancers. However, there is some lack of knowledge about the expression and clinical significance of RAGE and EGR1 in human primary gastric adenocarcinoma (GAC). The present study was aimed to investigate the expression and clinical significance of RAGE and EGR1 in human GAC. One hundred and twenty cases of GAC tissues, adjacent non-cancer tissues (ANCT) and metastatic lymph node (MLN) tissues were collected. The expression of RAGE and EGR1 was assessed using immunohistochemistry (IHC) through tissue microarray procedure. The clinicopathologic characteristics of all patients were analyzed. As a result, the expression of RAGE in GAC and MLN tissues showed the positive staining mainly in the cytoplasm, with lower reactivity rate compared with the ANCT (P less than 0.001), while EGR1 expression had no significant difference between GAC, MLN tissues and ANCT (P=0.565). Moreover, the positive expression of RAGE was closely associated with the N stage of GAC patients, but did not correlate with their age, gender, tumor size, tumor sites, T stage, and metastatic lymph node (each P>0.05). In addition, Spearman Rank correlation analysis showed the positive correlation of RAGE expression with EGR1 in GAC tissues (r=0.658). Taken together, the expression of RAGE is decreased in GAC and MLN tissues, and is associated with the N stage of GAC patients, suggesting that RAGE may represent a potential therapeutic target for the treatment of GAC.
Collapse
Affiliation(s)
- X-C Xu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | | | | | | | | |
Collapse
|
18
|
Xu XC, Abuduhadeer X, Zhang WB, Li T, Gao H, Wang YH. Knockdown of RAGE inhibits growth and invasion of gastric cancer cells. Eur J Histochem 2013; 57:e36. [PMID: 24441189 PMCID: PMC3896038 DOI: 10.4081/ejh.2013.e36] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is an oncogenic trans-membranous receptor, which is overexpressed in multiple human cancers. However, the role of RAGE in gastric cancer is still elusive. In this study, we investigated the expression and molecular mechanisms of RAGE in gastric cancer cells. Forty cases of gastric cancer and corresponding adjacent non-cancerous tissues (ANCT) were collected, and the expression of RAGE was assessed using immunohistochemistry (IHC) in biopsy samples. Furthermore, RAGE signaling was blocked by constructed recombinant small hairpin RNA lentiviral vector (Lv-shRAGE) used to transfect into human gastric cancer SGC-7901 cells. The expression of AKT, proliferating cell nuclear antigen (PCNA) and matrix metallopeptidase-2 (MMP-2) was detected by Real-time PCR and Western blot assays. Cell proliferative activities and invasive capability were respectively determined by MTT and Transwell assays. Cell apoptosis and cycle distribution were analyzed by flow cytometry. As a consequence, RAGE was found highly expressed in cancer tissues compared with the ANCT (70.0% vs 45.0%, P=0.039), and correlated with lymph node metastases (P=0.026). Knockdown of RAGE reduced cell proliferation and invasion of gastric cancer with decreased expression of AKT, PCNA and MMP-2, and induced cell apoptosis and cycle arrest. Altogether, upregulation of RAGE expression is associated with lymph node metastases of gastric cancer, and blockade of RAGE signaling suppresses growth and invasion of gastric cancer cells through AKT pathway, suggesting that RAGE may represent a potential therapeutic target for this aggressive malignancy.
Collapse
Affiliation(s)
- X C Xu
- the First Affiliated Hospital of Xinjiang Medical University.
| | | | | | | | | | | |
Collapse
|
19
|
Jiao L, Kramer JR, Chen L, Rugge M, Parente P, Verstovsek G, Alsarraj A, El-Serag HB. Dietary consumption of meat, fat, animal products and advanced glycation end-products and the risk of Barrett's oesophagus. Aliment Pharmacol Ther 2013; 38:817-24. [PMID: 23957669 PMCID: PMC3811083 DOI: 10.1111/apt.12459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/17/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Advanced glycation end-products (AGEs) are found in high quantity in high-fat foods and meat cooked at high temperature. AGEs have been shown to contribute to chronic inflammation and oxidative stress in humans. AIM To investigate the associations between consumption of meat, fat and AGEs, and the risk of Barrett's oesophagus (BO). METHODS We conducted a case-control study using data from the patients who were scheduled for elective esophagogastroduodenoscopy (EGD) and from a random sample of patients who were identified at primary care clinics. Daily consumption of meat, fat and Nε-(carboxymethyl) lysine (CML), a major type of AGEs, was derived from the food frequency questionnaire (FFQ). Multivariate logistic regression models were used to estimate the odds ratio (OR) and its 95% confidence interval (CI) for BO. RESULTS A total of 151 cases with BO and 777 controls without BO completed the FFQ. The multivariate OR (95% CI) for BO was 1.91 (1.07-3.38) for total meat, 1.80 (1.02-3.16) for saturated fat and 1.63 (0.96-2.76) for CML-AGE, when the highest tertile of intake was compared with the lowest. The association for total meat was attenuated to 1.61 (0.82-3.16), and that for saturated fat to 1.54 (0.81-2.94) after adjusting for CML-AGE. CONCLUSIONS Higher consumption of total meat, saturated fat or possibly CML-AGE was associated with an increased risk of Barrett's oesophagus. CML-AGE may partly explain the association between total meat and saturated fat consumption and the risk of Barrett's oesophagus.
Collapse
Affiliation(s)
- Li Jiao
- Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer R. Kramer
- Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Liang Chen
- Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Massimo Rugge
- Surgical Pathology & Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Paola Parente
- Casa Sollievo della Sofferenza, Department of Pathology, San Giovanni Rotondo, Italy
| | | | - Abeer Alsarraj
- Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Hashem B. El-Serag
- Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
RAGE in tissue homeostasis, repair and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:101-9. [DOI: 10.1016/j.bbamcr.2012.10.021] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/21/2012] [Indexed: 12/13/2022]
|
21
|
Winston J, Wolf R. Psoriasin (S100A7) promotes migration of a squamous carcinoma cell line. J Dermatol Sci 2012; 67:205-7. [PMID: 22795619 DOI: 10.1016/j.jdermsci.2012.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/16/2022]
|
22
|
Tafani M, Di Vito M, Frati A, Pellegrini L, De Santis E, Sette G, Eramo A, Sale P, Mari E, Santoro A, Raco A, Salvati M, De Maria R, Russo MA. Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J Neuroinflammation 2011; 8:32. [PMID: 21489226 PMCID: PMC3098164 DOI: 10.1186/1742-2094-8-32] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/13/2011] [Indexed: 01/14/2023] Open
Abstract
Background Adaptation to hypoxia and consequent pro-inflammatory gene expression of prostate and breast carcinomas have been implicated in the progression toward cancer malignant phenotype. Only partial data are available for the human tumor glioblastoma multiforme (GBM). The aim of our study was to analyze the hypoxic and pro-inflammatory microenvironment in GBMs and to demonstrate that in a stem/progenitor cell line derived from human glioblastoma (GBM-SCs), hypoxia activates a coordinated inflammatory response, evidencing an invasive and migratory phenotype. Methods From each of 10 human solid glioblastomas, clinically and histopathologically characterized, we obtained three surgical samples taken from the center and the periphery of the tumor, and from adjacent host normal tissue. Molecular and morphological analyses were carried out using quantitative real-time PCR and western blot (WB). GBM stem and differentiated cells were incubated under hypoxic conditions and analyzed for pro-inflammatory gene expression and for invasive/migratory behavior. Results A panel of selected representative pro-inflammatory genes (RAGE and P2X7R, COX2, NOS2 and, PTX3) were analyzed, comparing tumor, peritumor and host normal tissues. Tumors containing leukocyte infiltrates (as assessed using CD45 immunohistochemistry) were excluded. Selected genes were overexpressed in the central regions of the tumors (i.e. in the more hypoxic areas), less expressed in peripheral regions, and poorly expressed or absent in adjacent normal host tissues. Western blot analysis confirmed that the corresponding pro-inflammatory proteins were also differently expressed. Hypoxic stem cell lines showed a clear time-dependent activation of the entire panel of pro-inflammatory genes as compared to differentiated tumor cells. Biological assays showed that invasive and migratory behavior was strengthened by hypoxia only in GBM stem cells. Conclusions In human solid glioblastoma we have observed a coordinated overexpression of a panel of pro-inflammatory genes as compared to host normal tissue. We have also evidenced a similar pattern of overexpressed genes in GBM-SCs after hypoxic treatment, showing also a gain of invasive and migratory function that was lost when these stem cells differentiated. We suggest that, as has been previously described for prostatic and mammary carcinoma, in human glioblastoma acquisition of a proinflammatory phenotype may be relevant for malignant progression.
Collapse
Affiliation(s)
- Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ohmori H, Luo Y, Kuniyasu H. Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert Opin Ther Targets 2011; 15:183-93. [DOI: 10.1517/14728222.2011.546785] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Tafani M, Russo A, Di Vito M, Sale P, Pellegrini L, Schito L, Gentileschi S, Bracaglia R, Marandino F, Garaci E, Russo MA. Up-regulation of pro-inflammatory genes as adaptation to hypoxia in MCF-7 cells and in human mammary invasive carcinoma microenvironment. Cancer Sci 2010; 101:1014-23. [PMID: 20151982 PMCID: PMC11159242 DOI: 10.1111/j.1349-7006.2010.01493.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The role of tumor cells in synthesizing pro-inflammatory molecules is still controversial. Here we report that hypoxic treatment of the MCF-7 human mammary adenocarcinoma cell line induced activation of hypoxia-inducible factor 1alpha (HIF-1alpha) and nuclear factor-kappa B (NF-kappaB). Importantly, hypoxia regulated expression of alarmin receptors such as the receptor for advanced glycation end products (RAGE) and the purinoreceptor (P2X7R), and up-regulated inflammatory response (IR) genes such as the inducible enzymes nitric oxide synthase (NOS2), cycloxygenase (COX2), and the acute-phase protein pentraxin-3 (PTX3). Hypoxia also stimulated chemokine (C-X-C motif) receptor 4 (CXCR4) mRNA synthesis. In fact, the CXCR4 ligand stromal-derived factor-1alpha (SDF-1alpha) increased invasion and migration of hypoxic MCF-7 cells. Inhibition of HIF-1alpha by chetomin and NF-kappaB by parthenolide reduced mRNA and protein expression of the studied molecules and prevented invasion of hypoxic MCF-7 cells. Moreover, solid invasive mammary tumor microenvironment was analyzed after laser-capture microdissection (LCMD) comparing tumor versus host normal tissue. Nuclear translocation of HIF-1alpha and NF-kappaB and up-regulation of IR, CXCR4, estrogen receptor alpha (ERalpha), and epithelial growth factor receptor (EGFR) was observed in tumor but not in host normal tissue in the absence of a local inflammatory leukocyte infiltrate. We conclude that under hypoxic conditions MCF-7 cells acquire a pro-inflammatory phenotype, and that solid human mammary carcinoma evidenced a similar activation of HIF-1alpha, NF-kappaB, and IR genes in malignant tumor cells as compared to the normal host tissues. We suggest a role for IR activation in the malignant progression of transformed cells.
Collapse
Affiliation(s)
- Marco Tafani
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis 2010; 31:334-41. [PMID: 20028726 DOI: 10.1093/carcin/bgp322] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE), firstly described in 1992, is a single-transmembrane and multiligand member of the immunoglobulin protein family. RAGE engagement produces activation of multiple intracellular signaling mechanisms involved in several inflammation-associated clinical entities, such as diabetes, cancer, renal and heart failures, as well as neurodegenerative diseases. Although RAGE expression has been extensively reported in many cancer types, it is now emerging as a relevant element that can continuously fuel an inflammatory milieu at the tumor microenvironment, thus changing our perception of its contribution to cancer biology. In this review, we will discuss the role of multiligand/RAGE axis, particularly at the multicellular cross talk established in the inflammatory tumor microenvironment. A better understanding of its contribution may provide new targets for tumor management and risk assessment.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Ave San Miguel 3605, Talca, Chile.
| | | | | |
Collapse
|
26
|
The association between periodontal disease and cancer: A review of the literature. J Dent 2010; 38:83-95. [DOI: 10.1016/j.jdent.2009.10.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/14/2009] [Accepted: 10/27/2009] [Indexed: 12/24/2022] Open
|
27
|
Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 2009; 11:615-28. [PMID: 19568407 DOI: 10.1593/neo.09284] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 02/06/2023] Open
Abstract
Inflammatory mediators play important roles in the development and progression of cancer. Cellular stress, damage, inflammation, and necrotic cell death cause release of endogenous damage-associated molecular pattern (DAMP) molecules or alarmins, which alert the host of danger by triggering immune responses and activating repair mechanisms through their interaction with pattern recognition receptors. Recent studies show that abnormal persistence of these molecules in chronic inflammation and in tumor microenvironments underlies carcinogenesis and tumor progression, indicating that DAMP molecules and their receptors could provide novel targets for therapy. This review focuses on the role of DAMP molecules high-mobility group box 1 and S100 proteins in inflammation, tumor growth, and early metastatic events.
Collapse
|
28
|
Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009; 7:17. [PMID: 19292913 PMCID: PMC2666642 DOI: 10.1186/1479-5876-7-17] [Citation(s) in RCA: 446] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/17/2009] [Indexed: 02/07/2023] Open
Abstract
The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of the immunoglobulin super-family, encoded in the Class III region of the major histocompatability complex. RAGE is highly expressed only in the lung at readily measurable levels but increases quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells, thereby regulating their metabolism and enhancing their central barrier functionality. Activation and upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the setting of stress. Understanding the molecular structure and function of it and its ligands in the setting of inflammation is critically important in understanding the role of this receptor in tumor biology.
Collapse
Affiliation(s)
- Louis J Sparvero
- Departments of Surgery and Bioengineering, University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|