1
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
2
|
Guo J, Li J, Chang J, Wang L, Xi Y. Value of Methylation Status of RPRM, SDC2, and TCF4 Genes in Plasma for Gastric Adenocarcinoma Screening. Int J Gen Med 2023; 16:673-681. [PMID: 36855658 PMCID: PMC9968426 DOI: 10.2147/ijgm.s395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Objective To explore the clinical value of the combined screening of the methylation statuses of the RPRM, SDC2, and TCF4 genes in plasma of gastric cancer patients. Methods Differential expressed genes (DEGs) were selected from the Gene Expression Omnibus database, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using DAVID, and a protein-protein interaction network was constructed. Hub genes were obtained using Cytoscape. Screening results combined with literature reports identified three genes (RPRM, SDC2, and TCF4). Further analysis was done using biopsies collected through gastroscopy at Shanxi Cancer Hospital from January 8, 2020 to February 22, 2021. The patients were divided into two groups: gastric adenocarcinoma group, and control group which are not gastric adenocarcinoma according to pathological or gastroscopic results. The methylation statuses of the three genes in peripheral blood plasma were detected by fluorescence polymerase chain reaction, and the relationships between the positive rates of the three combined genes with pathology and/or gastroscopy results were analyzed. The clinical value of the combined detection of the three genes was evaluated according to these indicators. The diagnostic specificity and sensitivity of this detective method were analyzed. Results A total of 197 DEGs were identified and 12 hub genes were obtained. The enriched functions and pathways of DEGs include regulation of cell proliferation, extracellular space, cytokine activity, and pathways in cancer. The combination of RPRM, SDC2, and TCF4 gene methylation had a specificity of 93.39% and sensitivity of 80.33%. The combined positive rate of RPRM, SDC2, and TCF4 gene methylation in patients with gastric adenocarcinoma was significantly higher compared with those without gastric adenocarcinoma (χ2=151.179, P<0.05). Conclusion Combined detection of RPRM, SDC2, and TCF4 gene methylation in peripheral blood plasma maybe helpful in screening for gastric adenocarcinoma, and maybe a complementary method to gastroscopy and serum tumor markers.
Collapse
Affiliation(s)
- Jianghong Guo
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Jing Li
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Jiang Chang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Li Wang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China,Correspondence: Yanfeng Xi, Email
| |
Collapse
|
3
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
4
|
Kang EM, Yin AA, He YL, Chen WJ, Etcheverry A, Aubry M, Barnholtz-Sloan J, Mosser J, Zhang W, Zhang X. A five-CpG signature of microRNA methylation in non-G-CIMP glioblastoma. CNS Neurosci Ther 2019; 25:937-950. [PMID: 31016891 PMCID: PMC6698977 DOI: 10.1111/cns.13133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
AIMS DNA methylation has been found to regulate microRNAs (miRNAs) expression, but the prognostic value of miRNA-related DNA methylation aberration remained largely elusive in cancers including glioblastomas (GBMs). This study aimed to investigate the clinical and biological feature of miRNA methylation in GBMs of non-glioma-CpG island methylator phenotype (non-G-CIMP). METHODS Prognostic miRNA methylation loci were analyzed, with TCGA and Rennes cohort as training sets, and independent datasets of GBMs and low-grade gliomas (LGGs) were obtained as validation sets. Different statistical and bioinformatic analysis and experimental validations were performed to clinically and biologically characterize the signature. RESULTS We identified and validated a risk score based on methylation status of five miRNA-associated CpGs which could predict survival of GBM patients in a series of training and validation sets. This signature was independent of age and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. The risk subgroup was associated with angiogenesis and accordingly differential responses to bevacizumab-contained therapy. MiRNA target analysis and in vitro experiments further confirmed the accuracy of this signature. CONCLUSION The five-CpG signature of miRNA methylation was biologically relevant and was of potential prognostic and predictive value for GBMs. It might be of help for improving individualized treatment.
Collapse
Affiliation(s)
- En-Ming Kang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - An-An Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China.,Department of Neurosurgery, The 88th Hospital of the People's Liberation Army, Taian, China
| | - Ya-Long He
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wei-Jun Chen
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes1, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Marc Aubry
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes1, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes1, Rennes, France
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes1, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes1, Rennes, France
| | - Wei Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
5
|
Hur EH, Goo BK, Moon J, Choi Y, Hwang JJ, Kim CS, Bae KS, Choi J, Cho SY, Yang SH, Seo J, Lee G, Lee JH. Induction of immunoglobulin transcription factor 2 and resistance to MEK inhibitor in melanoma cells. Oncotarget 2018; 8:41387-41400. [PMID: 28574827 PMCID: PMC5522248 DOI: 10.18632/oncotarget.17866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Primary or acquired resistance to MEK inhibitors has been a barrier to successful treatment with MEK inhibitors in many tumors. In this study, we analyzed genome-wide gene expression profiling data from 6 sensitive and 6 resistant cell lines to identify candidate genes whose expression changes are associated with responses to a MEK inhibitor, selumetinib (AZD6244). Of 62 identified differentially expressed genes, we selected Immunoglobulin Transcription Factor 2, also known as transcription factor 4 as a potential drug resistance marker for further analysis. This was because the ITF-2 expression increase in resistant cell lines was relatively high and a previous study has suggested that ITF-2 functions as an oncogene in human colon cancers. We also established an AZD6244 resistant cell line (M14/AZD-3) from an AZD6244 sensitive M14 cell line. The expression of the ITF-2 was elevated both in primary AZD6244 resistant cell line, LOX-IMVI and acquired resistant cell line, M14/AZD-3. Targeted silencing of ITF-2 by siRNA significantly enhanced susceptibility to AZD6244 in resistant cells. Wnt/β-catenin pathway was activated through direct interaction of p-ERK and GSK3β. Our results suggest that up-regulation of the ITF-2 gene expression is associated with cellular resistance to MEK inhibitors, and activation of Wnt signaling pathway through interaction of p-ERK and GSK3β seems to be a mechanism for increase of ITF-2.
Collapse
Affiliation(s)
- Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bon-Kwan Goo
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Juhyun Moon
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yunsuk Choi
- Division of Hematology and Hematological Malignancies, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jung Jin Hwang
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyun Seop Bae
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Sang-Hwa Yang
- Department of Biotechnology, College of Life Science and Biotechnology, National Creative Research Initiatives Center for Inflammatory Response Modulation, Yonsei University, Seoul, Korea.,MD Healthcare, Inc., Seoul, Repulic of Korea
| | - Jeongbeob Seo
- Department of Medicinal Chemistry, CHABIOMED Co., LTD., Seongnam-Si, Korea
| | - Gilnam Lee
- Department of Medicinal Chemistry, CHABIOMED Co., LTD., Seongnam-Si, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Zeng XQ, Wang J, Chen SY. Methylation modification in gastric cancer and approaches to targeted epigenetic therapy (Review). Int J Oncol 2017; 50:1921-1933. [DOI: 10.3892/ijo.2017.3981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
|
7
|
Savio AJ, Daftary D, Dicks E, Buchanan DD, Parfrey PS, Young JP, Weisenberger D, Green RC, Gallinger S, McLaughlin JR, Knight JA, Bapat B. Promoter methylation of ITF2, but not APC, is associated with microsatellite instability in two populations of colorectal cancer patients. BMC Cancer 2016; 16:113. [PMID: 26884349 PMCID: PMC4756469 DOI: 10.1186/s12885-016-2149-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aberrant Wnt signaling activation occurs commonly in colorectal carcinogenesis, leading to upregulation of many target genes. APC (adenomatous polyposis coli) is an important component of the β-catenin destruction complex, which regulates Wnt signaling, and is often mutated in colorectal cancer (CRC). In addition to mutational events, epigenetic changes arise frequently in CRC, specifically, promoter hypermethylation which silences tumor suppressor genes. APC and the Wnt signaling target gene ITF2 (immunoglobulin transcription factor 2) incur hypermethylation in various cancers, however, methylation-dependent regulation of these genes in CRC has not been studied in large, well-characterized patient cohorts. The microsatellite instability (MSI) subtype of CRC, featuring DNA mismatch repair deficiency and often promoter hypermethylation of MutL homolog 1 (MLH1), has a favorable outcome and is characterized by different chemotherapeutic responses than microsatellite stable (MSS) tumors. Other epigenetic events distinguishing these subtypes have not yet been fully elucidated. METHODS Here, we quantify promoter methylation of ITF2 and APC by MethyLight in two case-case studies nested in population-based CRC cohorts from the Ontario Familial Colorectal Cancer Registry (n = 330) and the Newfoundland Familial Colorectal Cancer Registry (n = 102) comparing MSI status groups. RESULTS ITF2 and APC methylation are significantly associated with tumor versus normal state (both P < 1.0 × 10(-6)). ITF2 is methylated in 45.8% of MSI cases and 26.9% of MSS cases and is significantly associated with MSI in Ontario (P = 0.002) and Newfoundland (P = 0.005) as well as the MSI-associated feature of MLH1 promoter hypermethylation (P = 6.72 × 10(-4)). APC methylation, although tumor-specific, does not show a significant association with tumor subtype, age, gender, or stage, indicating it is a general tumor-specific CRC biomarker. CONCLUSIONS This study demonstrates, for the first time, MSI-associated ITF2 methylation, and further reveals the subtype-specific epigenetic events modulating Wnt signaling in CRC.
Collapse
Affiliation(s)
- Andrea J Savio
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
| | - Darshana Daftary
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Familial Colorectal Cancer Registry, Toronto, ON, Canada.
| | - Elizabeth Dicks
- Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | - Daniel D Buchanan
- Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia.
| | - Patrick S Parfrey
- Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | - Joanne P Young
- Department of Haematology and Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
| | - Daniel Weisenberger
- USC Epigenome Center, University of Southern California, Los Angeles, CA, USA.
| | - Roger C Green
- Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | - Steven Gallinger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Familial Colorectal Cancer Registry, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - John R McLaughlin
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Familial Colorectal Cancer Registry, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Julia A Knight
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Bharati Bapat
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
Nakamura J, Tanaka T, Kitajima Y, Noshiro H, Miyazaki K. Methylation-mediated gene silencing as biomarkers of gastric cancer: A review. World J Gastroenterol 2014; 20:11991-12006. [PMID: 25232236 PMCID: PMC4161787 DOI: 10.3748/wjg.v20.i34.11991] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Despite a decline in the overall incidence of gastric cancer (GC), the disease remains the second most common cause of cancer-related death worldwide and is thus a significant global health problem. The best means of improving the survival of GC patients is to screen for and treat early lesions. However, GC is often diagnosed at an advanced stage and is associated with a poor prognosis. Current diagnostic and therapeutic strategies have not been successful in decreasing the global burden of the disease; therefore, the identification of reliable biomarkers for an early diagnosis, predictive markers of recurrence and survival and markers of drug sensitivity and/or resistance is urgently needed. The initiation and progression of GC depends not only on genetic alterations but also epigenetic changes, such as DNA methylation and histone modification. Aberrant DNA methylation is the most well-defined epigenetic change in human cancers and is associated with inappropriate gene silencing. Therefore, an increasing number of genes methylated at the promoter region have been targeted as possible biomarkers for different purposes, including early detection, classification, the assessment of the tumor prognosis, the development of therapeutic strategies and patient follow-up. This review article summarizes the current understanding and recent evidence regarding DNA methylation markers in GC with a focus on the clinical potential of these markers.
Collapse
|
9
|
Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta 2013; 424:53-65. [PMID: 23669186 DOI: 10.1016/j.cca.2013.05.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023]
Abstract
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.
Collapse
Key Words
- 5-hmC
- 5-hydroxymethylcytosine
- 5-mC
- 5-methylcytosine
- ADAM metallopeptidase domain 23
- ADAM metallopeptidase with thrombospondin type 1 motif, 9
- ADAM23
- ADAMTS9
- AML
- APC
- ARID1A
- AT motif-binding factor 1
- AT rich interactive domain 1A (SWI-like)
- ATBF1
- Acute myelocytic leukemia
- Adenomatosis polyposis coli
- B-cell translocation gene 4
- BCL2/adenovirus E1B 19kDa interacting protein 3
- BMP-2
- BNIP3
- BS
- BTG4
- Biomarkers
- Bisulfite sequencing
- Bone morphogenetic protein 2
- C-MET
- CACNA1G
- CACNA2D3
- CD44
- CD44 molecule (Indian blood group)
- CDH1
- CDK4
- CDK6
- CDKN1C
- CDKN2A
- CDX2
- CGI
- CHD5
- CHFR
- CKLF-like MARVEL transmembrane domain containing 3
- CMTM3
- CNS
- CRBP1
- Cadherin 1 or E-cadherin
- Calcium channel, voltage-dependent, T type, alpha 1G subunit
- Calcium channel, voltage-dependent, alpha 2/delta subunit 3
- Caudal type homeobox 2
- Central nervous system
- Checkpoint with forkhead and ring finger domains, E3 ubiquitin protein ligase
- Chromodomain helicase DNA binding protein 5
- Chromosome 2 open reading frame 40
- Clinical outcomes
- CpG islands
- Cyclin-dependent kinase 4
- Cyclin-dependent kinase 6
- Cyclin-dependent kinase inhibitor 1A
- Cyclin-dependent kinase inhibitor 1B
- Cyclin-dependent kinase inhibitor 1C
- Cyclin-dependent kinase inhibitor 2A
- Cyclin-dependent kinase inhibitor 2B
- DAB2 interacting protein
- DACT1
- DAPK
- DNA
- DNA methylatransferases
- DNA mismatch repair
- DNMT
- Dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)
- Death-associated protein kinase
- Deoxyribose Nucleic Acid
- Dickkopf 3 homolog (Xenopus laevis)
- Dkk-3
- EBV
- ECRG4
- EDNRB
- EGCG
- ERBB4
- Endothelin receptor type B
- Epigallocatechin gallate
- Epigenetics
- Epstein–Barr Virus
- FDA
- FLNc
- Filamin C
- Food and Drug Administration
- GC
- GDNF
- GI endoscopy
- GPX3
- GRIK2
- GSTP1
- Gastric cancer
- Gene methylation
- Glutamate receptor, ionotropic, kainate 2
- Glutathione S-transferase pi 1
- Glutathione peroxidase 3 (plasma)
- H. pylori
- HACE1
- HAI-2/SPINT2
- HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1
- HGFA
- HLTF
- HOXA1
- HOXA10
- HRAS-like suppressor
- HRASLS
- Helicase-like transcription factor
- Helicobacter pylori
- Homeobox A1
- Homeobox A10
- Homeobox D10
- HoxD10
- IGF-1
- IGF-1R
- IGFBP3
- IL-1β
- ITGA4
- Insulin-like growth factor 1 (somatomedin C)
- Insulin-like growth factor I receptor
- Insulin-like growth factor binding protein 3
- Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
- Interleukin 1, beta
- KL
- KRAS
- Klotho
- LL3
- LMP2A
- LOX
- LRP1B
- Low density lipoprotein receptor-related protein 1B
- Lysyl oxidase
- MAPK
- MBPs
- MDS
- MGMT
- MINT25
- MLF1
- MLL
- MMR
- MSI
- MSP
- Matrix metallopeptidase 24 (membrane-inserted)
- Met proto-oncogene (hepatocyte growth factor receptor)
- Methyl-CpG binding proteins
- Methylation-specific PCR
- Microsatellite instability
- Myeloid leukemia factor 1
- Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
- Myeloid/lymphoid or mixed-lineage leukemia 3
- NDRG family member 2
- NDRG2
- NPR1
- NR3C1
- Natriuretic peptide receptor A/guanylate cyclase A
- Notch 1
- Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
- O-6-methylguanine-DNA methyltransferase
- PCDH10
- PCDH17
- PI3K/Akt
- PIK3CA
- PR domain containing 5
- PRDM5
- PTCH1
- Patched 1
- Phosphatidylethanolamine binding protein 1
- Protein tyrosine phosphatase, non-receptor type 6
- Protocadherin 10
- Protocadherin 17
- Q-MSP
- Quantitative methylation-specific PCR
- RAR-related orphan receptor A
- RARRES1
- RARß
- RAS/RAF/MEK/ERK
- RASSF1A
- RASSF2
- RBP1
- RKIP
- RORA
- ROS
- RUNX3
- Ras association (RalGDS/AF-6) domain family member 1
- Ras association (RalGDS/AF-6) domain family member 2
- Rb
- Retinoic acid receptor responder (tazarotene induced) 1
- Retinoic acid receptor, beta
- Retinol binding protein 1, cellular
- Runt-related transcription factor 3
- S-adenosylmethionine
- SAM
- SFRP2
- SFRP5
- SHP1
- SOCS-1
- STAT3
- SYK
- Secreted frizzled-related protein 2
- Secreted frizzled-related protein 5
- Serine peptidase inhibitor, Kunitz type, 2
- Spleen tyrosine kinase
- Suppressor of cytokine signaling 1
- TCF4
- TET
- TFPI2
- TGF-β
- TIMP metallopeptidase inhibitor 3
- TIMP3
- TNM
- TP73
- TSP1
- Thrombospondin 1
- Tissue factor pathway inhibitor 2
- Transcription factor 4
- Tumor Node Metastasis
- Tumor protein p73
- V-erb-a erythroblastic leukemia viral oncogene homolog 4
- ZFP82 zinc finger protein
- ZIC1
- ZNF545
- Zinc finger protein of the cerebellum 1
- gastrointestinal endoscopy
- glial cell derived neurotrophic factor
- hDAB2IP
- hMLH1
- hepatocyte growth factor activator
- latent membrane protein
- mutL homolog 1
- myelodysplastic syndromes
- p15
- p16
- p21
- p27
- p53
- p73
- phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
- phosphoinositide 3-kinase (PI3K)/Akt
- reactive oxygen species
- retinoblastoma
- signal transducer and activator of transcription-3
- ten-eleven translocation
- transforming growth factor-β
- tumor protein p53
- tumor protein p73
- v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
Collapse
Affiliation(s)
- Yiping Qu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | | | | |
Collapse
|
10
|
Choi J, Cho MY, Jung SY, Jan KM, Kim HS. CpG Island Methylation According to the Histologic Patterns of Early Gastric Adenocarcinoma. KOREAN JOURNAL OF PATHOLOGY 2011. [DOI: 10.4132/koreanjpathol.2011.45.5.469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Junjeong Choi
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mee-Yon Cho
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - So-Young Jung
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Khalilullah Mia Jan
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Soo Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|