1
|
Identification of Melanoma Subsets Based on DNA Methylation Sites and Construction of a Prognosis Evaluation Model. JOURNAL OF ONCOLOGY 2022; 2022:6608650. [PMID: 36268281 PMCID: PMC9578801 DOI: 10.1155/2022/6608650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Background Melanoma is a lethal skin malignant tumor, and its formation or development is regulated by various genetic and epigenetic molecules. Although there are traditional methods provided for the doctors to evaluate the patients' prognosis or make the diagnosis, the novel method based on epigenetic markers is still needed to make the early diagnosis. Results We identified 256 melanoma-independent prognosis-related methylation sites (P < 0.0001) and divided patients into seven methylation subgroups. Methylation levels and survival time in the C2 subgroup were lower than that of other clusters (P < 0.05). We established the predicted model of prognosis risk for melanoma using the significantly changed methylation sites in C2. The model efficiently divided patients into high- and low-risk groups (area under the receiver operating characteristic curve, 0.833). Risk scores and patient survival time were negatively correlated (rs = −0.325, P < 0.0001). Genes corresponding to the independent prognosis-associated methylation sites were enriched in cancer- and immunology-related pathways. We identified 35 hub genes. DOK2, GBP4, PSMB9, and NLRC5 were significantly changed according to methylation subgroups, survival, tumor stages, and T categories and were positively correlated, which was validated in the testing group (P < 0.05). The levels of DOK2, GBP4, PSMB9, and NLRC5 had an opposite trend to their methylation sites in patients with poor prognosis. Conclusions We identified seven DNA methylation subtypes and constructed a highly effective prognosis risk assessment model. The transcript levels of key genes corresponding to the independent prognosis-related methylation sites were significantly changed in patients according to prognosis and positively correlated with each other, indicating they may collaboratively promote melanoma formation. These findings further our understanding of the mechanism of melanoma and provide new targets for diagnosis and treatment.
Collapse
|
2
|
Chen Y, Li R, Sun J, Li C, Xiao H, Chen S. Genome-Wide Population Structure and Selection Signatures of Yunling Goat Based on RAD-seq. Animals (Basel) 2022; 12:ani12182401. [PMID: 36139261 PMCID: PMC9495202 DOI: 10.3390/ani12182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Goats are important domestic animals that provide meat, milk, fur, and other products for humans. The demand for these products has increased in recent years. Disease resistance among goat breeds is different, but the genetic basis of the differences in resistance to diseases is still unclear and needs to be further studied. In this study, many genes and pathways related to immunity and diseases were identified to be under positive selection between Yunling and Nubian goats using RAD-seq technology. This study on the selection signatures of Yunling goats provides the scientific basis and technical support for the breeding of domestic goats for disease resistance, which has important social and economic significance. Abstract Animal diseases impose a huge burden on the countries where diseases are endemic. Conventional control strategies of vaccines and veterinary drugs are to control diseases from a pharmaceutical perspective. Another alternative approach is using pre-existing genetic disease resistance or tolerance. We know that the Yunling goat is an excellent local breed from Yunnan, southwestern China, which has characteristics of strong disease resistance and remarkable adaptability. However, genetic information about the selection signatures of Yunling goats is limited. We reasoned that the genes underlying the observed difference in disease resistance might be identified by investigating selection signatures between two different goat breeds. Herein, we selected the Nubian goat as the reference group to perform the population structure and selection signature analysis by using RAD-seq technology. The results showed that two goat breeds were divided into two clusters, but there also existed gene flow. We used Fst (F-statistics) and π (pi/θπ) methods to carry out selection signature analysis. Eight selected regions and 91 candidate genes were identified, in which some genes such as DOK2, TIMM17A, MAVS, and DOCK8 related to disease and immunity and some genes such as SPEFI, CDC25B, and MIR103 were associated with reproduction. Four GO (Gene Ontology) terms (GO:0010591, GO:001601, GO:0038023, and GO:0017166) were associated with cell migration, signal transduction, and immune responses. The KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathways were mainly associated with immune responses, inflammatory responses, and stress reactions. This study preliminarily revealed the genetic basis of strong disease resistance and adaptability of Yunling goats. It provides a theoretical basis for the subsequent genetic breeding of disease resistance of goats.
Collapse
Affiliation(s)
- Yuming Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Rong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- College of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Jianshu Sun
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- Correspondence: ; Tel.: +86-18687122260
| |
Collapse
|
3
|
Xu J, Dong X, Wang R, Chen B. DOK2 Has Prognostic and Immunologic Significance in Adults With Acute Myeloid Leukemia: A Novel Immune-Related Therapeutic Target. Front Med (Lausanne) 2022; 9:842383. [PMID: 35321466 PMCID: PMC8935080 DOI: 10.3389/fmed.2022.842383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe role of downstream tyrosine kinase 2 (DOK2), a major member of the DOK family, remains poorly defined in acute myeloid leukemia (AML). Herein, we investigated the expression levels, clinical outcomes, and biological functions of DOK2 in patients with AML.MethodsDatasets were obtained from the Cancer Genome Atlas (TCGA) database for transcriptomic and clinical information. Nomogram construction and assessment were conducted using Cox regression analysis, receiver operating characteristic (ROC) curves, and calibration plots. Public databases, including the Gene Expression Omnibus, Cancer Cell Line Encyclopedia, LinkedOmics, GeneMANIA, TISIDB, and Gene Set Cancer Analysis, were employed for relevant bioinformatic studies. Moreover, we utilized the CIBERSORT algorithm to evaluate the level of infiltration of immune cells into the bone marrow microenvironment.ResultsWe observed that DOK2 transcription levels were markedly upregulated in AML samples (P < 0.001), and its high expression was associated with inferior overall survival (OS) (HR = 2.17, P < 0.001) and disease-free survival (DFS) (HR = 2.50, P < 0.001). ROC curve analysis also showed the reliable diagnostic efficiency of DOK2 in AML. For treatment regimens, patients with high DOK2 expression could significantly prolong OS by receiving hematopoietic stem cell transplantation (HSCT) (P < 0.001), whereas those with low DOK2 expression were more likely to improve DFS by chemotherapy alone rather than HSCT. Nomograms constructed for predicting OS and DFS exhibited satisfactory discrimination and accuracy. Functional enrichment analysis identified that DOK2 was involved in important pathways associated with immune-related activities. Furthermore, CIBERSORT scores reflected negative correlations of DOK2 with activated mast cells and resting CD4+ memory T cells, which indicated its adverse immunomodulatory potential.ConclusionWe suggest that elevated DOK2 expression could be an unfavorable prognostic indicator of survival in patients with AML. Our findings provide new insights into the role of DOK2 in AML, with promising clinical implications.
Collapse
|
4
|
Sun P, Li R, Meng Y, Xi S, Wang Q, Yang X, Peng X, Cai J. Introduction to DOK2 and its potential role in cancer. Physiol Res 2021; 70:671-685. [PMID: 34505522 DOI: 10.33549/physiolres.934710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Cancer is a complex, multifactorial disease that modern medicine ultimately aims to overcome. Downstream of tyrosine kinase 2 (DOK2) is a well-known tumor suppressor gene, and a member of the downstream protein DOK family of tyrosine kinases. Through a search of original literature indexed in PubMed and other databases, the present review aims to extricate the mechanisms by which DOK2 acts on cancer, thereby identifying more reliable and effective therapeutic targets to promote enhanced methods of cancer prevention and treatment. The review focuses on the role of DOK2 in multiple tumor types in the lungs, intestines, liver, and breast. Additionally, we discuss the potential mechanisms of action of DOK2 and the downstream consequences via the Ras/MPAK/ERK or PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- P Sun
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China. or Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China. or Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li T, Li B, Sara A, Ay C, Leung WY, Zhang Y, Dong Y, Liang Q, Zhang X, Weidner P, Gutting T, Behrens HM, Röcken C, Sung JJ, Ebert MP, Yu J, Burgermeister E. Docking protein-1 promotes inflammatory macrophage signaling in gastric cancer. Oncoimmunology 2019; 8:e1649961. [PMID: 31646096 DOI: 10.1080/2162402x.2019.1649961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Docking protein-1 (DOK1) is a tumor suppressor frequently lost in malignant cells, however, it retains the ability to control activities of immune receptors in adjacent stroma cells of the tumor microenvironment. We therefore hypothesized that addressing DOK1 may be useful for cancer immunotherapy. DOK1 mRNA and DOK1 protein expression were downregulated in tumor cells of gastric cancer patients (n = 249). Conversely, its expression was up-regulated in cases positive for Epstein Barr Virus (EBV+) together with genes related to macrophage biology and targets of clinical immunotherapy such as programmed-cell-death-ligand-1 (PD-L1). Notably, high DOK1 positivity in stroma cells conferred poor prognosis in patients and correlated with high levels of inducible nitric oxide synthase in CD68+ tumor-associated macrophages. In macrophages derived from human monocytic leukemia cell lines, DOK1 (i) was inducible by agonists of the anti-diabetic transcription factor peroxisome proliferator-activated receptor-gamma (PPARγ), (ii) increased polarization towards an inflammatory phenotype, (iii) augmented nuclear factor-κB-dependent transcription of pro-inflammatory cytokines and (iv) reduced PD-L1 expression. These properties empowered DOK1+ macrophages to decrease the viability of human gastric cancer cells in contact-dependent co-cultures. DOK1 also reduced PD-L1 expression in human primary blood monocytes. Our data propose that the drugability of DOK1 may be exploited to reprogram myeloid cells and enforce the innate immune response against EBV+ human gastric cancer.
Collapse
Affiliation(s)
- Tong Li
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Beifang Li
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Asgharpour Sara
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christine Ay
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wing Yan Leung
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanquan Zhang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujuan Dong
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiaoyi Liang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Philip Weidner
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gutting
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts University, Kiel, Germany
| | - Joseph Jy Sung
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthias P Ebert
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jun Yu
- Institute of Digestive Disease and The Dept. of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Elke Burgermeister
- Dept. of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Zhao H, Chen G, Ye L, Yu H, Li S, Jiang WG. DOK7V1 influences the malignant phenotype of lung cancer cells through PI3K/AKT/mTOR and FAK/paxillin signaling pathways. Int J Oncol 2018; 54:381-389. [PMID: 30431081 DOI: 10.3892/ijo.2018.4624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Downstream of tyrosine kinase 7 transcript variant 1 (DOK7V1) is a docking protein mediating signal transduction between receptors and intracellular downstream molecules. Our previous study indicated that DOK7V1 was decreased in lung cancer and its lower expression was associated with a decreased survival rate. The 5‑year overall survival rate for patients with lung cancer was 20.2 and 18.6% for high and low DOK7 expression, respectively; the 5‑year disease‑free survival rate for patients with lung cancer was 14.3 and 16.9% for high and low DOK7 expression, respectively. DOK7V1 inhibited proliferation and migration, but enhanced adhesion, of lung cancer cells. In the present study, the effect of DOK7V1 and its domains [pleckstrin homology (PH) and phosphotyrosine‑binding (PTB) domain] on the malignant phenotype and associated signaling pathway in lung cancer cells was investigated. The results indicated that truncation of DOK7V1 domains (DOK7V1Δ‑PH and DOK7V1Δ‑PTB) inhibited the proliferation and migration of lung cancer cells which exhibited the same trend as DOK7V1, whereas DOK7V1Δ‑PH and DOK7V1Δ‑PTB exhibited different functions from those of DOK7V1 in cell matrix adhesion. Consistently, DOK7V1 overexpression in lung cancer cells suppressed the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathways, but activated the focal adhesion kinase (FAK)/paxillin signaling pathway. Taken together, these results indicate that DOK7V1 may inhibit proliferation and migration via negatively regulating the PI3K/AKT/mTOR signaling pathway, and increase adhesion by upregulating the FAK/paxillin signaling pathway in lung cancer cells.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Gang Chen
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Lin Ye
- Cardiff‑China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, P.R. China
| | - Shenglan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, P.R. China
| | - Wen G Jiang
- Cardiff‑China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
7
|
He P, Xu Z, Zhou J, Li X, Zhang W, Wu D, Zhang Z, Lian X, Yao X, Deng Z, Lin J, Qian J. Methylation‐associated
DOK1
and
DOK2
down‐regulation: Potential biomarkers for predicting adverse prognosis in acute myeloid leukemia. J Cell Physiol 2018; 233:6604-6614. [PMID: 29150948 DOI: 10.1002/jcp.26271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Pin‐Fang He
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Zi‐Jun Xu
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jing‐Dong Zhou
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xi‐Xi Li
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Wei Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - De‐Hong Wu
- Department of HematologyThe Third People's Hospital of KunShan CityKunshanJiangsuP.R. China
| | - Zhi‐Hui Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yue Lian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yu Yao
- School of medicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Zhao‐Qun Deng
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jiang Lin
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jun Qian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| |
Collapse
|
8
|
Huang J, Peng X, Zhang K, Li C, Su B, Zhang Y, Yu W. Co-expression and significance of Dok2 and Ras p21 protein activator 1 in breast cancer. Oncol Lett 2017; 14:5386-5392. [PMID: 29098030 PMCID: PMC5652255 DOI: 10.3892/ol.2017.6844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2016] [Accepted: 06/15/2017] [Indexed: 01/30/2023] Open
Abstract
Docking protein 2 (Dok2) and Ras p21 protein activator 1 (RASA1) are tumor suppressors which have been identified in numerous solid tumors; however, the association between their expression in breast cancer and patient prognosis remains unclear. A total of 285 consecutive patients diagnosed histopathologically with breast cancer who underwent surgery at Jingzhou Central Hospital were selected for the present study. Dok2 and RASA1 protein were explored using histopathology and western blotting techniques, and the association of patient prognosis with clinicopathological parameters was investigated using univariate and multivariate analyses. Weak expression of Dok2/RASA1 was associated with poorly differentiated breast adenocarcinomas; negatively expressed Dok2 and RASA1 were associated with increased tumor size, a higher proportion of axillary lymph node metastasis and later clinical staging. Additionally, Dok2 and RASA1 expression were associated with disease-free survival of patients with breast cancer. As indicated by Cox's regression analysis, Dok2 and RASA1 expression and the high proportion of axillary lymph node metastasis served as significant independent predictors for the recurrence of breast cancer. The results of the present study suggested that combined Dok2 and RASA1 negative expression may serve as an independent prognostic factor for patients following breast cancer surgery.
Collapse
Affiliation(s)
- Jiangrong Huang
- Department of Intergrative Medicine, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiaochun Peng
- Department of Pathophysiology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Department of Physiology, Meharry Medical College, Nashville, TN 37203, USA
| | - Kun Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Chunyan Li
- Department of Pathology, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Bo Su
- Department of Pathology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yanxiang Zhang
- Department of Pathology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Wangui Yu
- Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
9
|
Deshpande RP, Babu PP. pDok2, caspase 3 dependent glioma cell growth arrest by nitidine chloride. Pharmacol Rep 2017; 70:48-54. [PMID: 29329030 DOI: 10.1016/j.pharep.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2017] [Revised: 05/22/2017] [Accepted: 07/12/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nitidine chloride (NC) is known to exert anticancer and anti-metastatic effects on a variety of tumors. Recently, NC has also been shown to inhibit PIK3/AKT/mTOR axis in U87 human glioma cells. METHODS The study shows NC employing pDok2, caspase 3 dependent cell death in C6 rat glioma and U87 human malignant glioblastoma cells. The effect of NC on glioblastoma cell lines was accessed by MTT, clonogenic and wound healing assays. Cell cycle analysis was performed by FACS. Moreover, the effect of NC on downstream target proteins, such as caspase3, pDok2, PARP, and Gsk3 beta, were measured by western blotting. RESULTS Overexpressed pDok2 protein has recently been reported as a prognostic marker with poor outcomes for human glioblastoma multiformae. We found that NC inhibits pDok2 in U87 cells in a concentration-dependent way. We further showed that cleaved PARP and cleaved caspase 3 protein expressions were increased in C6 cells treated with NC in a dose-dependent way. NC effectively attenuated C6 cells growth and colony formation at 8μM (micromoles) concentration. Cell cycle arrest in G2/M phase was further confirmed by flow cytometry. NC also exhibited its inhibitory effect on Gsk3 beta, which has been proven to be altered in glioma biology. CONCLUSIONS Collectively, we predicted that NC could be employed as a potential anti-glioma mediator that needs attention to explore the mechanisms of its activity.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India.
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India.
| |
Collapse
|
10
|
Chen G, Yu H, Satherley L, Zabkiewicz C, Resaul J, Zhao H, Mu H, Zhi X, He J, Ye L, Jiang WG. The downstream of tyrosine kinase 7 is reduced in lung cancer and is associated with poor survival of patients with lung cancer. Oncol Rep 2017; 37:2695-2701. [PMID: 28393246 PMCID: PMC5428884 DOI: 10.3892/or.2017.5538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2016] [Accepted: 03/03/2017] [Indexed: 01/23/2023] Open
Abstract
The downstream of tyrosine kinase 7 (DOK7) is an adaptor protein mediating signalling transduction between receptors and intracellular downstream molecules. Reduced expression of DOK7 has been observed in breast cancer. The present study aimed to investigate the role played by DOK7 in lung cancer. The expression of DOK7 at both mRNA and protein levels was evaluated in human lung cancer. A reduced expression of DOK7 transcripts was seen in lung cancers compared with normal lung tissues. Kaplan-Meier analyses showed that the reduced expression of DOK7 was associated with poorer overall survival and progression-free survival of patients with lung cancer. A further western blot analysis revealed a predominant expression of DOK7 isoform 1 (DOK7V1) in normal lung tissues, which was reduced in lung cancer. Forced overexpression of DOK7V1 in lung cancer cell lines, A549 and H3122 resulted in a decrease of in vitro cell proliferation and migration, while adhesion to extracellular matrix was enhanced following the expression. In conclusion, DOK7 was reduced in lung cancer and reduced DOK7 expression was associated with poorer survival. DOK7 isoform 1 plays an inhibitory role on the proliferation and migration of lung cancer cells in which Akt pathway may be involved.
Collapse
Affiliation(s)
- Gang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Lucy Satherley
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Catherine Zabkiewicz
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Jeyna Resaul
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Huishan Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Hu Mu
- Xuanwu Hospital Capital Medical University, Beijing 100053, P.R. China
| | - Xiuyi Zhi
- Xuanwu Hospital Capital Medical University, Beijing 100053, P.R. China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Lin Ye
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Wen G Jiang
- Cancer Institute of Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
11
|
Deshpande RP, Chandra Sekhar YBVK, Panigrahi M, Babu PP. Region-Specific Dok2 Overexpression Associates with Poor Prognosis in Human Astrocytoma. Mol Neurobiol 2016; 55:402-408. [PMID: 27975172 DOI: 10.1007/s12035-016-0324-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 01/13/2023]
Abstract
Astrocytoma is the most frequent malignancies of the brain. Despite present clinical advancements, median survival time in malignant forms remains poor. Downstream of kinase protein 2 (Dok2) is adaptor protein known to modulate the effect of tyrosine kinase. Previously, Dok2 is shown to be marker of poor prognosis in colorectal and gastric cancer, and reduced levels of Dok2 were reported in lung adenocarcinoma and gastric cancer. The aim of the present study was to evaluate prognostic significance of pDok2 expression in surgically resected astrocytoma tissue samples. In the present study, 47 numbers of tissue samples were collected from patients who underwent surgery for astrocytoma. Temporal lobe epilepsy tissues were used as control. Real-time PCR was used to study transcript expression while protein expression was studied by western blotting and immunohistochemistry. The pDok2 expression was categorized as pDok2 positive and pDok2 negative on the basis of intensity of protein expression. This observation was confirmed by two independent pathologists. Control and few GII tissues were used as reference on account for low expression of pDok2 protein. Basic information of patients as anatomic origin of tumor and follow-up details were retrieved from hospital registry. Kaplan-Meier test was used to analyze the association of pDok2 expression and survival outcome in clinical cases. Real-time PCR signifies pDok2 is overexpressed in high-grade (GIII + GIV) tissue samples compared with low-grade (GII) and control brain tissue samples (p < 0.005). Western blotting and immunohistochemistry analysis signifies overexpression of pDok2 protein expression in tumor tissue samples as compared with control brain tissues. Clinico-pathological analysis reveals 83% of high-grade astrocytoma (GIII + GIV) and 30% of low-grade (GII) tissue samples which were detected with pDok2 expression. Tumor location was found to be predominant at the frontal and temporal lobes. Survival studies underline prognostic importance of pDok2 protein. Median survival of 20 months was reported with patients with positive pDok2 expression (95% CI 0.083 to 0.49). Taken together, pDok2 protein overexpression is associated with poor prognosis in astrocytoma clinical cases and appears to be an attractive target for therapeutic intervention. Noticeable anatomic origin at the frontal and temporal lobe suggests site-specific role of developmental factors in tumor occurrence.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| | - Y B V K Chandra Sekhar
- Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana State, 500003, India
| | - Manas Panigrahi
- Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana State, 500003, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
12
|
Wen X, Zhou M, Guo Y, Zhu Y, Li H, Zhang L, Yu L, Wang X, Peng X. Expression and significance of DOK2 in colorectal cancer. Oncol Lett 2014; 9:241-244. [PMID: 25435967 PMCID: PMC4246696 DOI: 10.3892/ol.2014.2672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
A reduction in the levels of docking protein 2 (DOK2) expression has previously been reported in lung adenocarcinoma and gastric cancer, indicating that this protein acts as a tumor suppressor in solid tumors. The aim of the current study was to determine the significance of DOK2 in colorectal cancer. The study consisted of 102 patients who underwent curative surgery for colorectal cancer. Histopathological and immunohistochemical analysis of DOK2 protein expression levels was performed in issue samples, and univariate and multivariate analyses were used to investigate the correlation between prognosis and the clinicopathological parameters. DOK2 expression was confirmed in the normal colorectal mucosa tissues, which is consistent with the literature, whereas 34 out of 102 (33.3%) tumor specimens were negative. The results revealed that recurrence was more likely to develop in DOK2(−) patients compared with DOK2(+) patients. The DOK2(−) patients also exhibited a poorer five-year overall survival rate (59.1%) compared with the DOK2(+) group (76.4%; P=0.0328). These results indicate that DOK2 may potentially be used as a marker of poor prognosis in patients with colorectal cancer following curative resection.
Collapse
Affiliation(s)
- Xianmei Wen
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Muxiu Zhou
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Yong Guo
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Yanwu Zhu
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Hong Li
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Lu Zhang
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Long Yu
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Xiaocheng Wang
- Department of Pathology, 161st Central Hospital of the People's Liberation Army, Wuhan, P.R. China
| | - Xiaochun Peng
- Department of Pathophysiology, Medical School of Yangtze University, Jingzhou, Hubei, P.R. China
| |
Collapse
|
13
|
Ghanem T, Bracken J, Kasem A, Jiang WG, Mokbel K. mRNA expression of DOK1-6 in human breast cancer. World J Clin Oncol 2014; 5:156-163. [PMID: 24829863 PMCID: PMC4014788 DOI: 10.5306/wjco.v5.i2.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/09/2013] [Revised: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of downstream of tyrosine kinase (DOK)1-6 genes in normal and breast cancer tissue and correlated this with several clinico-pathological and prognostic factors.
METHODS: DOK1-6 mRNA extraction and reverse transcription were performed on fresh frozen breast cancer tissue samples (n = 112) and normal background breast tissue (n = 31). Tissues were collected between 1991 and 1996 at two centres and all patients underwent mastectomy and ipsilateral axillary node dissection. All tissues were randomly numbered and the details were only made known after all analyses were completed. Transcript levels of expression were determined using real-time polymerase chain reaction and analyzed against TNM stage, tumour grade and clinical outcome over a 10-year follow-up period.
RESULTS: DOK-2 and DOK-6 expression decreased with increasing TNM stage. DOK-6 expression decreased with increasing Nottingham Prognostic Index (NPI) [NPI-1 vs NPI-3 (mean copy number 15.4 vs 0.22, 95%CI: 2.7-27.6, P = 0.018) and NPI-2 vs NPI-3 (mean copy number 7.6 vs 0.22, 95%CI: 0.1-14.6, P = 0.048)]. After a median follow up period of 10 years, higher levels of DOK-2 expression were found among patients who remained disease-free compared to those who developed local or distant recurrence (mean copy number 3.94 vs 0.0000096, 95%CI: 1.0-6.85, P = 0.0091), and distant recurrence (mean copy number 3.94 vs 0.0025, 95%CI: 1.0-6.84, P = 0.0092). Patients who remained disease-free had higher levels of DOK-6 expression compared to those who died from breast cancer.
CONCLUSION: Decreasing expression levels of DOK-2 and DOK-6 with increased breast tumour progression supports the notion that DOK-2 and DOK-6 behave as tumour suppressors in human breast cancer.
Collapse
|
14
|
Bracken J, Ghanem T, Kasem A, Jiang WG, Mokbel K. Evidence for Tumour Suppressor Function of DOK7 in Human Breast Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jct.2014.51009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|