1
|
Patel SP, Petroni GR, Roszik J, Olson WC, Wages NA, Chianese-Bullock KA, Smolkin M, Varhegyi N, Gaughan E, Smith KT, Haden K, Hall EH, Gnjatic S, Hwu P, Slingluff CL. Phase I/II trial of a long peptide vaccine (LPV7) plus toll-like receptor (TLR) agonists with or without incomplete Freund's adjuvant (IFA) for resected high-risk melanoma. J Immunother Cancer 2021; 9:e003220. [PMID: 34413169 PMCID: PMC8378357 DOI: 10.1136/jitc-2021-003220] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We performed a clinical trial to evaluate safety and immunogenicity of a novel long peptide vaccine administered in combinations of incomplete Freund's adjuvant (IFA) and agonists for TLR3 (polyICLC) and TLR7/8 (resiquimod). We hypothesized that T cell responses to minimal epitope peptides (MEPs) within the long peptides would be enhanced compared with prior vaccines with MEP themselves and that T cell responses would be enhanced with TLR agonists, compared with IFA alone. METHODS Participants with resected stage IIB-IV melanoma were vaccinated with seven long melanoma peptides (LPV7) from tyrosinase, gp100, MAGE-A1, MAGE-A10, and NY-ESO-1, each containing a known MEP for CD8+ T cells, plus a tetanus helper peptide (Tet) restricted by Class II MHC. Enrollment was guided by an adaptive design to one of seven adjuvant combinations. Vaccines were administered at weeks 1, 2, 3, 6, 9, 12 at rotating injection sites. T cell and IgG antibody (Ab) responses were measured with IFN-gamma ELIspot assay ex vivo and ELISA, respectively. RESULTS Fifty eligible participants were assigned to seven study groups, with highest enrollment on arm E (LPV7+Tet+IFA+polyICLC). There was one dose-limiting toxicity (DLT) in Group E (grade 3 injection site reaction, 6% DLT rate). All other treatment-related adverse events were grades 1-2. The CD8+ T cell immune response rate (IRR) to MEPs was 18%, less than in prior studies using MEP vaccines in IFA. The CD8+ T cell IRR trended higher for IFA-containing adjuvants (24%) than adjuvants containing only TLR agonists (6%). Overall T cell IRR to full-length LPV7 was 30%; CD4+ T cell IRR to Tet was 40%, and serum Ab IRR to LPV7 was 84%. These IRRs also trended higher for IFA-containing adjuvants (36% vs 18%, 48% vs 24%, and 97% vs 60%, respectively). CONCLUSIONS The LPV7 vaccine is safe with each of seven adjuvant strategies and induced T cell responses to CD8 MEPs ex vivo in a subset of patients but did not enhance IRRs compared with prior vaccines using short peptides. Immunogenicity was supported more by IFA than by TLR agonists alone and may be enhanced by polyICLC plus IFA. TRIAL REGISTRATION NUMBER NCT02126579.
Collapse
Affiliation(s)
- Sapna P Patel
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gina R Petroni
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jason Roszik
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Walter C Olson
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nolan A Wages
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Mark Smolkin
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nikole Varhegyi
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Elizabeth Gaughan
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kelly T Smith
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kathleen Haden
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emily H Hall
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Melssen MM, Pollack KE, Meneveau MO, Smolkin ME, Pinczewski J, Koeppel AF, Turner SD, Sol-Church K, Hickman A, Deacon DH, Petroni GR, Slingluff CL. Characterization and comparison of innate and adaptive immune responses at vaccine sites in melanoma vaccine clinical trials. Cancer Immunol Immunother 2021; 70:2151-2164. [PMID: 33454795 PMCID: PMC10992166 DOI: 10.1007/s00262-020-02844-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
The strength and durability of systemic anti-tumor immune responses induced by cancer vaccines depends on adjuvants to support an immunogenic vaccine site microenvironment (VSME). Adjuvants include water-in-oil emulsions with incomplete Freund's adjuvant (IFA) and combinations of toll-like receptor (TLR) agonists, including a preparation containing TLR4 and TLR9 agonists with QS-21 (AS15). IFA-containing vaccines can promote immune cell accumulation at the VSME, whereas effects of AS15 are largely unexplored. Therefore, we assessed innate and adaptive immune cell accumulation and gene expression at the VSME after vaccination with AS15 and compared to effects with IFA. We hypothesized that AS15 would promote less accumulation of innate and adaptive immune cells at the VSME than IFA vaccines. In two clinical trials, patients with resected high-risk melanoma received either a multipeptide vaccine with IFA or a recombinant MAGE-A3 protein vaccine with AS15. Vaccine site biopsies were obtained after one or multiple vaccines. T cells accumulated early after vaccines with AS15, but this was not durable or of the same magnitude as vaccination in IFA. Vaccines with AS15 increased durable expression of DC- and T cell-related genes, as well as PD-L1 and IDO1, suggesting complex activation and regulation of innate and adaptive immune function with AS15. These changes were generally greater with vaccines containing IFA, but IFA induced reduction in myeloid suppressor cells markers. Evidence of tertiary lymphoid structure (TLS) formation was observed with both adjuvants. Our findings highlight adjuvant-dependent changes in immune features at the VSME that may impact systemic immune responses.
Collapse
Affiliation(s)
- Marit M Melssen
- Department of Surgery, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Karlyn E Pollack
- Department of Surgery, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Max O Meneveau
- Department of Surgery, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Mark E Smolkin
- Department of Public Health Sciences, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Joel Pinczewski
- Department of Surgery, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Alexander F Koeppel
- Department of Public Health Sciences, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Stephen D Turner
- Department of Public Health Sciences, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Katia Sol-Church
- Department of Pathology, University of Virginia, Charlottesville, USA
| | - Alexandra Hickman
- Department of Surgery, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Donna H Deacon
- Department of Surgery, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Gina R Petroni
- Department of Public Health Sciences, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia, P.O. Box 801329, Charlottesville, VA, 22908, USA.
| |
Collapse
|
3
|
Slingluff CL, Petroni GR, Chianese-Bullock KA, Wages NA, Olson WC, Smith KT, Haden K, Dengel LT, Dickinson A, Reed C, Gaughan EM, Grosh WW, Kaur V, Varhegyi N, Smolkin M, Galeassi NV, Deacon D, Hall EH. Trial to evaluate the immunogenicity and safety of a melanoma helper peptide vaccine plus incomplete Freund's adjuvant, cyclophosphamide, and polyICLC (Mel63). J Immunother Cancer 2021; 9:jitc-2020-000934. [PMID: 33479025 PMCID: PMC7825263 DOI: 10.1136/jitc-2020-000934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Background Peptide vaccines designed to stimulate melanoma-reactive CD4+ T cells can induce T cell and antibody (Ab) responses, associated with enhanced overall survival. We hypothesized that adding toll-like receptor 3 agonist polyICLC to an incomplete Freund’s adjuvant (IFA) would be safe and would support strong, durable CD4+ T cell and Ab responses. We also hypothesized that oral low-dose metronomic cyclophosphamide (mCy) would be safe, would reduce circulating regulatory T cells (T-regs) and would further enhance immunogenicity. Participants and methods An adaptive design based on toxicity and durable CD4+ T cell immune response (dRsp) was used to assign participants with resected stage IIA-IV melanoma to one of four study regimens. The regimens included a vaccine comprising six melanoma peptides restricted by Class II MHC (6MHP) in an emulsion with IFA alone (Arm A), with IFA plus systemic mCy (Arm B), with IFA+ local polyICLC (Arm C), or with IFA+ polyICLC+ mCy (Arm D). Toxicities were recorded (CTCAE V.4.03). T cell responses were measured by interferon γ ELIspot assay ex vivo. Serum Ab responses to 6MHP were measured by ELISA. Circulating T-regs were assessed by flow cytometry. Results Forty-eight eligible participants were enrolled and treated. Early data on safety and dRsp favored enrollment on arm D. Total enrollment on Arms A-D were 3, 7, 6, and 32, respectively. Treatment-related dose-limiting toxicities (DLTs) were observed in 1/7 (14%) participants on arm B and 2/32 (6%) on arm D. None exceeded the 25% DLT threshold for early closure to enrollment for any arm. Strong durable T cell responses to 6MHP were detected ex vivo in 0%, 29%, 67%, and 47% of participants on arms A-D, respectively. IgG Ab responses were greatest for arms C and D. Circulating T-regs frequencies were not altered by mCy. Conclusions 6MHP vaccines administered with IFA, polyICLC, and mCy were well tolerated. The dRsp rate for arm D of 47% (90% CI 32 to 63) exceeded the 18% (90% CI 11 to 26) rate previously observed with 6MHP in IFA alone. Vaccination with IFA+ polyICLC (arm C) also showed promise for enhancing T cell and Ab responses.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA .,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Gina R Petroni
- University of Virginia Cancer Center, Charlottesville, Virginia, USA.,Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kimberly A Chianese-Bullock
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Nolan A Wages
- University of Virginia Cancer Center, Charlottesville, Virginia, USA.,Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Walter C Olson
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kelly T Smith
- Office of Research Cores Administration, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kathleen Haden
- University of Virginia Cancer Center, Charlottesville, Virginia, USA.,University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Lynn T Dengel
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Anna Dickinson
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Caroline Reed
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Elizabeth M Gaughan
- Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William W Grosh
- Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Varinder Kaur
- Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nikole Varhegyi
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark Smolkin
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nadejda V Galeassi
- Cardiovascular Imaging Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Donna Deacon
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emily H Hall
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,University of Virginia Cancer Center, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Indini A, Di Guardo L, Cimminiello C, Prisciandaro M, Randon G, De Braud F, Del Vecchio M. Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J Cancer Res Clin Oncol 2018; 145:511-521. [PMID: 30539281 DOI: 10.1007/s00432-018-2819-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Therapeutic chances for metastatic melanoma have consistently changed over the last years with the advent of antibodies targeting the programmed cell death protein-1 (PD-1). Onset of immune-related adverse events (irAEs) during treatment can be a source of concern, and the association with survival outcome is yet to be defined. PATIENTS AND METHODS Data of consecutive patients treated with anti-PD1 (nivolumab or pembrolizumab) for metastatic melanoma between July 2013 and January 2018 were retrospectively reviewed. Baseline factors, together with onset of irAEs and vitiligo during treatment, were evaluated to identify predictors of progression-free (PFS) and overall (OS) survival. PFS and OS were assessed using Kaplan-Meier and Cox models. RESULTS Overall, 173 patients were included in the present analysis, and 102 patients (59%) experienced irAEs. Disease control rate was 51%. Median (interquartile range) PFS and OS were 4.9 (2.6-13.3) and 8.6 (3.5-18.3) months, respectively. At multivariate analysis, irAEs occurrence was independently associated with improved PFS [HR 0.47 (95% CI 0.26, 0.86); p = 0.016], and correlated with better OS [HR 0.39 (95% CI 0.18, 0.81); p = 0.007]. Among various irAEs, the occurrence of vitiligo was associated with a trend toward a non-significant improved OS in comparison with other irAEs (p = 0.061). Median OS was undefined for patients experiencing vitiligo vs. 21.9 months for patients with other irAEs vs. 9.7 months for patients who had no irAEs (p = 0.003). CONCLUSIONS Our study underlines the association between irAEs and survival outcomes from anti-PD1 therapy. Careful management of treatment-related toxicity can lead to achieve maximum clinical benefit from this therapy.
Collapse
Affiliation(s)
- Alice Indini
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133, Milan, Italy.
| | - Lorenza Di Guardo
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133, Milan, Italy
| | - Carolina Cimminiello
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133, Milan, Italy
| | - Michele Prisciandaro
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133, Milan, Italy
| | - Giovanni Randon
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133, Milan, Italy
| | - Filippo De Braud
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Università degli studi di Milano, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michele Del Vecchio
- Melanoma Medical Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133, Milan, Italy
| |
Collapse
|
5
|
Phase I Study of Multiple Epitope Peptide Vaccination in Patients With Recurrent or Persistent Cervical Cancer. J Immunother 2018; 41:201-207. [DOI: 10.1097/cji.0000000000000214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Speeckaert R, van Geel N. Targeting CTLA-4, PD-L1 and IDO to modulate immune responses in vitiligo. Exp Dermatol 2016; 26:630-634. [PMID: 27192950 DOI: 10.1111/exd.13069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/07/2023]
Abstract
For decades, an extensive debate is continued on the pathophysiology of vitiligo. Numerous hypotheses have been put forward, and many supported by well-documented arguments. Regardless of the initiating steps, most experts agree that an immune-based melanocyte destruction is responsible for the final steps leading to epidermal depigmentation. It is remarkable that currently the only therapeutic approach to counter this phenomenon consists of non-specific local and systemic immunosuppressants. Immunotherapy for melanoma reveals that targeting factors involved in peripheral tolerance are sufficient to break the natural defense mechanisms to develop skin depigmentations. Therapeutically enhancing these immune checkpoints seems therefore a promising long-term therapy for vitiligo. In this viewpoint, we propose this strategy as a promising therapeutic option for vitiligo. Several approaches are proposed with a focus on cytotoxic T-lymphocyte-associated protein 4, programmed death ligand-1 and indoleamine 2,3-dioxygenase.
Collapse
Affiliation(s)
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Löffler MW, Chandran PA, Laske K, Schroeder C, Bonzheim I, Walzer M, Hilke FJ, Trautwein N, Kowalewski DJ, Schuster H, Günder M, Carcamo Yañez VA, Mohr C, Sturm M, Nguyen HP, Riess O, Bauer P, Nahnsen S, Nadalin S, Zieker D, Glatzle J, Thiel K, Schneiderhan-Marra N, Clasen S, Bösmüller H, Fend F, Kohlbacher O, Gouttefangeas C, Stevanović S, Königsrainer A, Rammensee HG. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol 2016; 65:849-855. [PMID: 27397612 PMCID: PMC5756536 DOI: 10.1016/j.jhep.2016.06.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. METHODS Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. RESULTS Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. CONCLUSIONS This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. LAY SUMMARY Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival.
Collapse
Affiliation(s)
- Markus W Löffler
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany.
| | - P Anoop Chandran
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Karoline Laske
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Current address: Immatics Biotechnologies GmbH, Paul Ehrlich Str. 15, 72076 Tübingen, Germany
| | - Christopher Schroeder
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Irina Bonzheim
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Mathias Walzer
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany
| | - Franz J Hilke
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Nico Trautwein
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Daniel J Kowalewski
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Current address: Immatics Biotechnologies GmbH, Paul Ehrlich Str. 15, 72076 Tübingen, Germany
| | - Heiko Schuster
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Marc Günder
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Viviana A Carcamo Yañez
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Christopher Mohr
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany
| | - Marc Sturm
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Huu-Phuc Nguyen
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Olaf Riess
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Peter Bauer
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Sven Nahnsen
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Silvio Nadalin
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Derek Zieker
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Jörg Glatzle
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Current address: Klinikum Konstanz, Luisenstr. 7, 78464 Konstanz, Germany
| | - Karolin Thiel
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Stephan Clasen
- University Hospital Tübingen, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Hans Bösmüller
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Falko Fend
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Oliver Kohlbacher
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, 72076 Tübingen, Germany; Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Cécile Gouttefangeas
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefan Stevanović
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Alfred Königsrainer
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Hans-Georg Rammensee
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| |
Collapse
|