1
|
Wang J, Gan L, Liu F, Yang Q, Deng Q, Jiang D, Zhang C, Zhang L, Wang X. USP10 promotes pancreatic ductal adenocarcinoma progression by attenuating FOXC1 protein degradation to activate the WNT signaling pathway. Int J Biol Sci 2024; 20:5343-5362. [PMID: 39430239 PMCID: PMC11488585 DOI: 10.7150/ijbs.92278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Abstract
Increasing evidence has suggested that ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme, plays an essential role in targeted protein degradation and participates in cancer progression. However, the relationship between USP10 and pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Here, we developed a USP-targeting siRNA library, combining a loss-of-function experimental screen in patient-derived PDAC cells. This approach identified USP10 as a master regulator of PDAC cell migration. High USP10 expression levels were observed in PDAC patient tissues, which were associated with poor prognosis. Furthermore, knockdown of USP10 expression inhibited PDAC cell proliferation and migration in vivo and in vitro. Mechanistically, USP10 increased FOXC1 protein stability via deubiquitination. The phosphorylation of FOXC1 at S272A was dependent on USP10-mediated deubiquitination of FOXC1. Additionally, USP10 promoted FOXC1 protein localization in the nucleus. Interestingly, FOXC1 could increase USP10 mRNA expression levels by transcriptional activation. Our data suggest that a positive feedback loop exists between USP10 and FOXC1 that can activate WNT signaling, thus facilitating PDAC malignant progression. Therefore, USP10 represents an exciting therapeutic target that could support new strategies for treating PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - LeiDa Zhang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - XiaoJun Wang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Sun Y, Lin C, Ding Q, Dai Y. Overexpression of FOXC1 Promotes Tumor Metastasis by Activating the Wnt/β-Catenin Signaling Pathway in Gastric Cancer. Dig Dis Sci 2022; 67:3742-3752. [PMID: 34427817 DOI: 10.1007/s10620-021-07226-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Forkhead box protein C1 (FOXC1) is a transcription factor overexpressed in multiple cancers and is associated with poor prognosis. However, the function of FOXC1 in gastric cancer remains largely unknown. AIM This study aims to explore the role of FOXC1 in promoting gastric cancer metastasis. METHODS FOXC1 expression in gastric cancer patients was measured using real-time PCR and western blot. The association of FOXC1 with patient survival was assessed using public dataset. Gastric cancer cells with FOXC1 overexpression or knockdown were established. Cell metastatic ability was assessed by the expression of epithelial-mesenchymal transition (EMT)-related genes (E-cadherin, N-cadherin, vimentin) and matrix metalloproteinase-9 (MMP-9) as well as by migration and invasion assays. Chromatin immunoprecipitation was used to evaluate the interaction between FOXC1 and β-catenin. The in vivo effect of FOXC1 and β-catenin was assessed in metastatic animal models. RESULTS FOXC1 is overexpressed in gastric cancer and is associated with disease progression and poor patient survival. FOXC1 overexpression leads to the down-regulation of epithelial marker (E-cadherin) and the up-regulation of mesenchymal makers (N-cadherin, vimentin) and MMP-9, consistent with enhanced EMT. Moreover, cell migration and invasion are also activated, indicating increased metastatic ability. Notably, FOXC1 binds to the promoter region of β-catenin and transactivates β-catenin expression, which is responsible for the activation of EMT and metastasis in cells overexpressing FOXC1, while β-catenin knockdown can suppress the metastasis-induced by FOXC1. CONCLUSIONS FOXC1 promotes gastric cancer metastasis by activating Wnt/β-catenin signaling pathway, which may serve as a promising therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Yang'an Sun
- Abdominal Surgery Department, Affiliated Tumor Hospital of Nanchang University, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Chao Lin
- Abdominal Surgery Department, Affiliated Tumor Hospital of Nanchang University, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Qunhua Ding
- Abdominal Surgery Department, Affiliated Tumor Hospital of Nanchang University, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Ying Dai
- The Third Hepatology Department, Nanchang No. 9 Hospital, Nanchang Liverish Hospital, 167 Hongdu Middle Ave, Qingshanhu District, Nanchang, 330002, Jiangxi, China.
| |
Collapse
|
4
|
Fang L, Liu Q, Cui H, Zheng Y, Wu C. Bioinformatics Analysis Highlight Differentially Expressed CCNB1 and PLK1 Genes as Potential Anti-Breast Cancer Drug Targets and Prognostic Markers. Genes (Basel) 2022; 13:654. [PMID: 35456460 PMCID: PMC9027215 DOI: 10.3390/genes13040654] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Early diagnosis, treatment, and prognosis of breast cancer are global challenges. Identification of valid predictive diagnosis and prognosis biomarkers and drug targets are crucial for breast cancer prevention. This study characterizes differentially expressed genes (DEGs) based on the TCGA database by using DESeq2, edgeR, and limma. A total of 2032 DEGs, including 1026 up-regulated genes and 1006 down-regulated genes were screened. Followed with WGCNA, PPI analysis, GEPIA 2, and HPA database verification, thirteen hub genes including CDK1, BUB1, BUB1B, CDC20, CCNB2, CCNB1, KIF2C, NDC80, CDCA8, CENPF, BIRC5, AURKB, PLK1, MAD2L1, and CENPE were obtained, and they may serve as potential therapeutic targets of breast cancer. Especially, overexpression of CCNB1 and PLK1 are strongly associated with the low survival rate of breast cancer patients, demonstrating their potentiality as prognostic markers. Moreover, CCNB1 and PLK1 are highly expressed in all breast cancer stages, suggesting that they could be further studied as potential drug targets. Taken together, our study highlights CCNB1 and PLK1 as potential anti-breast cancer drug targets and prognostic markers.
Collapse
Affiliation(s)
- Leiming Fang
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (L.F.); (Q.L.); (H.C.)
| | - Qi Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (L.F.); (Q.L.); (H.C.)
| | - Hongtu Cui
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (L.F.); (Q.L.); (H.C.)
| | - Yunji Zheng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; (L.F.); (Q.L.); (H.C.)
| |
Collapse
|
5
|
Abstract
CONTEXT.— Few studies have investigated the features of FOXC1 protein expression in invasive breast cancer subtypes as defined by immunohistochemistry (IHC)-based surrogate molecular classification. OBJECTIVE.— To investigate the diagnostic utility of the IHC-based FOXC1 test in breast cancer subtyping and to evaluate the correlation between FOXC1 expression and clinicopathologic parameters in triple-negative breast cancer (TNBC). DESIGN.— FOXC1 expression was evaluated with IHC in a large cohort of 2443 patients with breast cancer. Receiver operating characteristic (ROC) curves were used to assess the diagnostic ability of FOXC1 expression to predict the triple-negative phenotype and to identify the best cutoff value. FOXC1 expression was correlated with the clinicopathologic parameters of TNBC. RESULTS.— The expression rate of FOXC1 in TNBC was significantly higher than in other subtypes. The area under the ROC curve confirmed the high diagnostic value of FOXC1 for the prediction of the triple-negative phenotype. The cutoff value of 1% showed a maximized sum of sensitivity and specificity. In TNBC, FOXC1 expression was significantly associated with aggressive tumor phenotypes. Furthermore, FOXC1 expression was primarily observed in invasive breast carcinoma of no special type and metaplastic carcinoma but rarely in invasive carcinoma with apocrine differentiation. Correspondingly, FOXC1 expression was significantly associated with the expression of basal markers but was negatively correlated with apocrine-related markers in TNBC. CONCLUSIONS.— In conclusion, FOXC1 is a highly specific marker for the triple-negative phenotype. Moreover, immunohistochemical detection of FOXC1 expression can be used as an additional diagnostic tool for the triple-negative phenotype and subclassification in TNBC.
Collapse
Affiliation(s)
- Ming Li
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Li and Lv contributed equally to this work
| | - Hong Lv
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Li and Lv contributed equally to this work
| | - Siyuan Zhong
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shuling Zhou
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Hongfen Lu
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Wentao Yang
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ray T, Ryusaki T, Ray PS. Therapeutically Targeting Cancers That Overexpress FOXC1: A Transcriptional Driver of Cell Plasticity, Partial EMT, and Cancer Metastasis. Front Oncol 2021; 11:721959. [PMID: 34540690 PMCID: PMC8446626 DOI: 10.3389/fonc.2021.721959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022] Open
Abstract
Metastasis accounts for more than 90% of cancer related mortality, thus the most pressing need in the field of oncology today is the ability to accurately predict future onset of metastatic disease, ideally at the time of initial diagnosis. As opposed to current practice, what would be desirable is that prognostic, biomarker-based detection of metastatic propensity and heightened risk of cancer recurrence be performed long before overt metastasis has set in. Without such timely information it will be impossible to formulate a rational therapeutic treatment plan to favorably alter the trajectory of disease progression. In order to help inform rational selection of targeted therapeutics, any recurrence/metastasis risk prediction strategy must occur with the paired identification of novel prognostic biomarkers and their underlying molecular regulatory mechanisms that help drive cancer recurrence/metastasis (i.e. recurrence biomarkers). Traditional clinical factors alone (such as TNM staging criteria) are no longer adequately prognostic for this purpose in the current molecular era. FOXC1 is a pivotal transcription factor that has been functionally implicated to drive cancer metastasis and has been demonstrated to be an independent predictor of heightened metastatic risk, at the time of initial diagnosis. In this review, we present our viewpoints on the master regulatory role that FOXC1 plays in mediating cancer stem cell traits that include cellular plasticity, partial EMT, treatment resistance, cancer invasion and cancer migration during cancer progression and metastasis. We also highlight potential therapeutic strategies to target cancers that are, or have evolved to become, “transcriptionally addicted” to FOXC1. The potential role of FOXC1 expression status in predicting the efficacy of these identified therapeutic approaches merits evaluation in clinical trials.
Collapse
Affiliation(s)
- Tania Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| | | | - Partha S Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| |
Collapse
|
7
|
Jiang J, Li J, Yao W, Wang W, Shi B, Yuan F, Dong J, Zhang H. FOXC1 Negatively Regulates DKK1 Expression to Promote Gastric Cancer Cell Proliferation Through Activation of Wnt Signaling Pathway. Front Cell Dev Biol 2021; 9:662624. [PMID: 33987183 PMCID: PMC8111291 DOI: 10.3389/fcell.2021.662624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC), characterized by uncontrolled growth, is a common malignant tumor of the digestive system. The Wnt signaling pathway plays an important role in the tumorigenesis and proliferation of GC. Many studies on this signaling pathway have focused on its intracellular regulatory mechanism, whereas little attention has been given to extracellular regulatory factors. Dickkopf-1 (Dkk1) is a secretory glycoprotein, and it can bind inhibit activation of the Wnt pathway. However, the regulation and mechanism of DKK1 in the proliferation of GC remain unclear. FOXC1 plays an important role in organ development and tumor growth, but its role in GC tumor growth remains unknown. In this study, we found that the FOXC1 is highly expressed in patients with GC and high expression of FOXC1 correlates to poor prognosis. In addition, we found that the Wnt signaling pathway in GC cells with high FOXC1 expression was strongly activated. FOXC1 negatively regulates DKK1 expression by binding to its promoter region, thereby promoting the activation of Wnt pathway. FOXC1 can also form a complex with unphosphorylated β-catenin protein in the cytoplasm and then dissociates from β-catenin in the nucleus, thereby promoting the entry of β-catenin into the nucleus and regulating expression of c-MYC, which promotes the proliferation of GC cells. Our study not only reveals the function and mechanism of FOXC1 in GC, but also provides a potential target for clinic GC treatment.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfang Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Shi
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyan Dong
- Department of Ocular Fundus Diseases, Shanxi Eye Hospital, Shanxi, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Rashid M, Shah SG, Verma T, Chaudhary N, Rauniyar S, Patel VB, Gera PB, Smoot D, Ashaktorab H, Dalal SN, Gupta S. Tumor-specific overexpression of histone gene, H3C14 in gastric cancer is mediated through EGFR-FOXC1 axis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194703. [PMID: 33727172 DOI: 10.1016/j.bbagrm.2021.194703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Incorporation of different H3 histone isoforms/variants have been reported to differentially regulate gene expression via alteration in chromatin organization during diverse cellular processes. However, the differential expression of highly conserved histone H3.2 genes, H3C14 and H3C13 in human cancer has not been delineated. In this study, we investigated the expression of H3.2 genes in primary human gastric, brain, breast, colon, liver, and head and neck cancer tissues and tumor cell lines. The data showed overexpression of H3.2 transcripts in tumor samples and cell lines with respect to normal counterparts. Furthermore, TCGA data of individual and TCGA PANCAN cohort also showed significant up-regulation of H3.2 genes. Further, overexpressed H3C14 gene coding for H3.2 protein was regulated by FOXC1 transcription factor and G4-cassette in gastric cancer cell lines. Elevated expression of FOXC1 protein and transcripts were also observed in human gastric cancer samples and cell lines. Further, FOXC1 protein was predominantly localized in the nuclei of neoplastic gastric cells compared to normal counterpart. In continuation, studies with EGF induction, FOXC1 knockdown, and ChIP-qPCR for the first time identified a novel axis, EGFR-FOXC1-H3C14 for regulation of H3C14 gene overexpression in gastric cancer. Therefore, the changes the epigenomic landscape due to incorporation of differential expression H3 variant contributes to change in gene expression pattern and thereby contributing to pathogenesis of cancer.
Collapse
Affiliation(s)
- Mudasir Rashid
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanket Girish Shah
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Tripti Verma
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Nazia Chaudhary
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sukanya Rauniyar
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Vidisha Bhavesh Patel
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Poonam B Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, United States
| | - Hassan Ashaktorab
- Department of Medicine and Cancer Center, College of Medicine, Howard University, Washington DC, WA 20060, United States
| | - Sorab N Dalal
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanjay Gupta
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India.
| |
Collapse
|
9
|
Yeganeh Z, Nabi M, Solymani S, Yazdian S, Razavinia A, Khalili A. The role of long-range non-coding RNAs NeST, NTT, BACE1-AS, CCAT2, FOXCUT and HULC as predictor biomarkers in breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Zhang X, Yi S, Xing G, Wu H, Zhu Y, Guo X, Zhang L. FOXCUT Promotes the Proliferation and Invasion by Activating FOXC1/PI3K/AKT Pathway in Colorectal Cancer. Cancer Manag Res 2020; 12:6269-6278. [PMID: 32801872 PMCID: PMC7399466 DOI: 10.2147/cmar.s259801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most commonly diagnosed world cancer. Long noncoding RNAs (lncRNAs) serve important regulatory roles in tumorigenesis. However, the contributions of lncRNAs to human CRC remain largely unknown. Material and Methods FOXC1 and FOXCUT lncRNA expression levels were detected in a panel of paired specimens obtained from 48 patients’ tissues and cell lines with CRC using RT-qPCR. RNA interference was used to investigate potential correlations between FOXC1 and FOXCUT expression in HT29. Cell proliferation was assessed by MTT assay and EdU incorporation assay. The migration and invasion of CRC cells were detected by transwell assay. Western blot was applied to assess the protein expression and PI3K/AKT signaling pathway. Results In this study, a novel long noncoding RNA (FOXCUT) was frequently overexpressed in CRC tissues and cell lines. In addition, the expressions of FOXCUT and FOXC1 were positively correlated. When the expression of FOXCUT was downregulated by small interfering RNA (siRNA), the expression of FOXC1 was also decreased. Moreover, knockdown of FOXCUT significantly inhibited proliferation and invasion of CRC cell lines and resulted in downregulated expression of the matrix metalloproteinase 1 (MMP-1). Mechanistically, FOXCUT promotes the expression of FOXC1 to activate PI3K/AKT signaling pathway for its regulation of cell growth and proliferation. Conclusion In summary, our findings indicate that FOXCUT plays an important oncogenic role and may serve as a novel biomarker and therapeutic target in CRC progression.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Shanyong Yi
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Guochen Xing
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Huili Wu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Ying Zhu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Xiaodan Guo
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Lei Zhang
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, People's Republic of China
| |
Collapse
|
11
|
Poorebrahim M, Sadeghi S, Ghanbarian M, Kalhor H, Mehrtash A, Teimoori-Toolabi L. Identification of candidate genes and miRNAs for sensitizing resistant colorectal cancer cells to oxaliplatin and irinotecan. Cancer Chemother Pharmacol 2019; 85:153-171. [PMID: 31781855 DOI: 10.1007/s00280-019-03975-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022]
Abstract
Drug resistance to irinotecan and oxaliplatin, two widely used chemotherapeutic, has become a common problem in cancerous patients. Despite numerous valuable studies, distinct molecular mechanisms involved in the acquisition of resistance to these anti-cancer drugs have remained a challenge. In this study, we studied the possible resistance mechanisms to irinotecan and oxaliplatin in three CRC cell lines (HCT116, HT29, and LoVo) via integration of microarray data with gene regulatory networks. After determination of hub genes, corresponding miRNAs were predicted using several databases and used in construction and subsequent analysis of miRNA-gene networks. Following to preparation of chemo-resistance CRC cells, a standard real-time PCR was conducted for validation of in silico findings. Topological and functional enrichment analyses of the resulted networks introduced several previously reported drug-resistance genes as well as novel biomarkers as hub genes which seem to be crucial in resistance of colon cancer cells to irinotecan and oxaliplatin. Furthermore, results of the functional annotation revealed the essential role of different signaling pathways like metabolic pathways in drug resistance of CRC cell lines to these drugs. A part of in silico findings was also validated in vitro using oxaliplatin-resistant cell lines. While FOXC1 and NFIC were upregulated in cell lines which were resistant to oxaliplatin, silencing FOXC1 decreased the resistance of SW480 cell line to oxaliplatin. In conclusion, our comparative in silico and in vitro study introduces several novel genes and miRNAs as the resistance-mediators which can be used for sensitizing resistant CRC cells to oxaliplatin and irinotecan.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Solmaz Sadeghi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Marzieh Ghanbarian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amirhosein Mehrtash
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Gong R, Lin W, Gao A, Liu Y, Li J, Sun M, Chen X, Han S, Men C, Sun Y, Liu J. Forkhead box C1 promotes metastasis and invasion of non-small cell lung cancer by binding directly to the lysyl oxidase promoter. Cancer Sci 2019; 110:3663-3676. [PMID: 31597217 PMCID: PMC6890438 DOI: 10.1111/cas.14213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that human forkhead box C1 (FOXC1) plays important roles in tumor development and metastasis. However, the underlying molecular mechanism of FOXC1 in non–small cell lung cancer (NSCLC) metastasis remains unclear. Here, we identified FOXC1 as an independent prognostic factor in NSCLC and showed clear biological implications in invasion and metastasis. FOXC1 overexpression enhanced the proliferation, migration and invasion of NSCLC cells, whereas FOXC1 silencing impaired the effects both in vitro and in vivo. Importantly, we found a positive correlation between FOXC1 expression and lysyl oxidase (LOX) expression in NSCLC cells and patient samples. Downregulation of LOX or LOX activity inhibition in NSCLC cells inhibited the FOXC1‐driven effects on cellular migration and invasion. Xenograft models showed that inhibition of LOX activity by β‐aminopropionitrile monofumarate decreased the number of lung metastases. Mechanistically, we demonstrated a novel FOXC1‐LOX mechanism that was involved in the invasion and metastasis of NSCLC. Dual‐luciferase assay and ChIP identified that FOXC1 bound directly in the LOX promoter region and activated its transcription. Collectively, the present study offered new insight into FOXC1 in the mediation of NSCLC metastasis through interaction with the LOX promoter and further revealed that targeted inhibition of LOX protein activity could prevent lung metastasis in murine xenograft models. These data implicated FOXC1 as a potential therapeutic strategy for the treatment of NSCLC metastasis.
Collapse
Affiliation(s)
- Rumei Gong
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanli Liu
- Provincial Key Laboratory of Radio-Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Juan Li
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaozheng Chen
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuyi Han
- Genetic and Molecular Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chengsong Men
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
13
|
Gilding LN, Somervaille TCP. The Diverse Consequences of FOXC1 Deregulation in Cancer. Cancers (Basel) 2019; 11:E184. [PMID: 30764547 PMCID: PMC6406774 DOI: 10.3390/cancers11020184] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box C1 (FOXC1) is a transcription factor with essential roles in mesenchymal lineage specification and organ development during normal embryogenesis. In keeping with these developmental properties, mutations that impair the activity of FOXC1 result in the heritable Axenfeld-Rieger Syndrome and other congenital disorders. Crucially, gain of FOXC1 function is emerging as a recurrent feature of malignancy; FOXC1 overexpression is now documented in more than 16 cancer types, often in association with an unfavorable prognosis. This review explores current evidence for FOXC1 deregulation in cancer and the putative mechanisms by which FOXC1 confers its oncogenic effects.
Collapse
Affiliation(s)
- L Niall Gilding
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| |
Collapse
|
14
|
Kume T, Shackour T. Meta-analysis of the likelihood of FOXC1 expression in early- and late-stage tumors. Oncotarget 2018; 9:36625-36630. [PMID: 30564302 PMCID: PMC6290959 DOI: 10.18632/oncotarget.26358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background Aberrations in the expression of the transcription factor forkhead box C1 (FOXC1) have been linked to a number of malignancies. Here, we characterized the relationship between FOXC1 and cancer progression by conducting a meta-analysis of studies that reported the frequency of FOXC1 expression in tumors of different stages (T1, T2, T3, T4). Materials and Method Relevant articles were retrieved from the Medline database by searching for the terms “FOXC1” and “cancer”; then, the retrieved articles were reviewed individually, and studies that were of multivariate cohort design, evaluated FOXC1 expression via immunohistochemical staining, and assessed the relationship between FOXC1 expression and cancer T-stage were included in our meta-analysis. Results Our search terms identified 128 studies, 5 of which met all inclusion criteria. A total of 850 tumor samples were evaluated in the 5 studies; 452 samples were from early-stage (T1-T2) tumors, and 398 were from late-stage (T3-T4) tumors. FOXC1 was expressed in 60.7% (516/850) of all samples, in 54.6% (247/452) of early-stage tumor samples, and in 67.5% (269/398) of late-stage tumor samples. When calculated relative to early-stage samples, the pooled risk for FOXC1 expression in late-stage samples was 1.238 (95% CI = 1.061–1.444, p = 0.007). Conclusions The results from our meta-analysis of 5 studies indicate that FOXC1 is 23.8% more likely to be expressed in late-stage tumors than in early-stage tumors.
Collapse
Affiliation(s)
- Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago 60611, IL, USA
| | - Tarek Shackour
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago 60611, IL, USA
| |
Collapse
|
15
|
Zhu Y, Xing Y, Chi F, Sun W, Zhang Z, Piao D. Long noncoding RNA SNHG6 promotes the progression of colorectal cancer through sponging miR-760 and activation of FOXC1. Onco Targets Ther 2018; 11:5743-5752. [PMID: 30254467 PMCID: PMC6140718 DOI: 10.2147/ott.s170246] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of most common cancers worldwide. Long non-coding RNA SNHG6 has been reported to act as essential regulators in several cancers. However, the functional role and molecular mechanism of SNHG6 in colorectal cancer remain unclear. Methods Quantitative real-time polymerase chain reaction (PCR) was performed to evaluate the SNHG6 expression in CRC tissues. Colony formation, transwell assays and in vivo mice models were carried out to assess the effect of SNHG6 on CRC biological functions. Results In the present study, we showed that the expression of SNHG6 was significantly upregulated in CRC tissues and cell lines. High expression of SNHG6 was associated with shorter overall survival in CRC patients. Functionally, SNHG6 knockdown significantly inhibited cell proliferation, invasion and migration both in vitro and in vivo. Mechanically, miR-760 was a direct target of SNHG6, and repression of miR-760 could rescue the inhibitory effect of SNHG6 knockdown on CRC progression. In addition, SNHG6 positively regulated FOXC1 expression through sponging miR-760 in CRC cells, thus indicating that SNHG6 exerted an oncogenic role in CRC by acting as a ceRNA of miR-760. Conclusion Our results indicate that long non-coding RNA SNHG6 promotes colorectal cancer progression by sequestering miR-760 and activating FOXC1, our findings suggest that SNHG6 may serve as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yuekun Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China,
| | - Yanwei Xing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China,
| | - Fengxu Chi
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China,
| | - Weidong Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China,
| | - Zhiyong Zhang
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA,
| | - Daxun Piao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China,
| |
Collapse
|
16
|
Liu Z, Xu S, Chu H, Lu Y, Yuan P, Zeng X. Silencing FOXC1 inhibits growth and migration of human oral squamous cell carcinoma cells. Exp Ther Med 2018; 16:3369-3376. [PMID: 30233683 PMCID: PMC6143893 DOI: 10.3892/etm.2018.6627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/13/2018] [Indexed: 01/19/2023] Open
Abstract
Forkhead box C1 (FOXC1) is a transcription factor that serves an important role in regulating tumorigenesis and cancer progression. However, the expression and functional role of FOXC1 in oral squamous cell carcinoma (OSCC) remains unclear. FOXC1 protein expression was determined using immunohistochemical staining of OSCC tissues and normal tissues. Cell Counting Kit-8, colony formation, migration and 5-ethynyl-2′-deoxyuridine assays were performed to investigate the role and underlying mechanism of action of FOXC1 in OSCC. A consistent increase in the immunoreactive intensity of FOXC1 in OSCC tissues as compared with that in adjacent normal tissues was demonstrated. Knockdown of FOXC1 impaired cell growth and colony formation by inhibiting cell proliferation and reducing cyclin B1 and cyclin D1 levels in OSCC cells. FOXC1-silenced OSCC cells exhibited decreased migration compared with that demonstrated by the control cells, accompanied by a downregulation of matrix metalloproteinase (MMP)-2 and MMP-9. Collectively, the results of the present study demonstrated that FOXC1 functions as an oncogene in OSCC and may be an important therapeutic target and predictive biomarker for OSCC.
Collapse
Affiliation(s)
- Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hongxing Chu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yu Lu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiongqun Zeng
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
17
|
Johnson J, Choi M, Dadmanesh F, Han B, Qu Y, Yu-Rice Y, Zhang X, Bagaria S, Taylor C, Giuliano AE, Amersi F, Cui X. FOXC1 identifies basal-like breast cancer in a hereditary breast cancer cohort. Oncotarget 2018; 7:75729-75738. [PMID: 27708239 PMCID: PMC5342773 DOI: 10.18632/oncotarget.12370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Breast cancers arising in the setting of the hereditary breast cancer genes BRCA1 and BRCA2 are most commonly classified as basal-like breast cancer (BLBC) or luminal breast cancer, respectively. BLBC is an aggressive subtype of breast cancer associated with liver and lung metastases and poorer prognosis than other subtypes and for which chemotherapy is the only systemic therapy. Multiple immunohistochemical markers are used to identify the basal-like subtype, including the absence of estrogen receptor alpha, progesterone receptor, and human epidermal growth factor receptor 2. Forkhead box C1 (FOXC1) has been identified as a specific marker expressed in BLBC in general breast cancer cohorts. We examined an institutional cohort of breast cancer patients with germline BRCA1 (n=46) and BRCA2 (n=35) mutations and found that FOXC1 expression on immunohistochemical staining is associated with BRCA1 vs BRCA2 mutations [30/46 vs. 6/35]. In BRCA1 mutant tumors, FOXC1 was expressed in 28/31 BLBC tumors and 2/13 non-BLBC tumors, In BRCA2 mutant tumors, FOXC1 was expressed in 5/5 BLBC tumors and 1/30 non-BLBC tumors. In cell culture models of BRCA1-mutant breast cancer, FOXC1 is associated with increased proliferation and may serve as a marker for sensitivity to PARP-inhibitor therapy with olaparib.
Collapse
Affiliation(s)
- Jeff Johnson
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael Choi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Farnaz Dadmanesh
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bingchen Han
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Yu-Rice
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiao Zhang
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sanjay Bagaria
- Department of Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Clive Taylor
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Farin Amersi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
18
|
Elian FA, Yan E, Walter MA. FOXC1, the new player in the cancer sandbox. Oncotarget 2018; 9:8165-8178. [PMID: 29487724 PMCID: PMC5814291 DOI: 10.18632/oncotarget.22742] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/28/2017] [Indexed: 01/01/2023] Open
Abstract
In recent years, rapidly accumulating evidence implicates forkhead box C1 (FOXC1) in cancer, especially in studies of basal-like breast cancer (BLBC). Other studies have followed suit, demonstrating that FOXC1 is not only a major player in this breast cancer subtype, but also in hepatocellular carcinoma (HCC), endometrial cancer, Hodgkin's lymphoma (HL), and non-Hodgkin's lymphoma (NHL). The FOXC1 gene encodes a transcription factor that is crucial to mesodermal, neural crest, and ocular development, and mutations found in FOXC1 have been found to cause dominantly inherited Axenfeld-Rieger Syndrome (ARS). Interestingly, while FOXC1 missense mutations that are associated with ARS usually reduce gene activity, increased FOXC1 function now appears to be often linked to more aggressive cancer phenotypes in BLBC, HCC, HL, and NHL. This review discusses not only the role of FOXC1 in cancer cell progression, proliferation, differentiation, and metastasis, but also the underlying mechanisms of how FOXC1 can contribute to aggressive cancer phenotypes.
Collapse
Affiliation(s)
- Fahed A. Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth Yan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A. Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Wang L, Chai L, Ji Q, Cheng R, Wang J, Han S. Forkhead box protein C1 promotes cell proliferation and invasion in human cervical cancer. Mol Med Rep 2018; 17:4392-4398. [PMID: 29328384 PMCID: PMC5802213 DOI: 10.3892/mmr.2018.8423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 08/17/2017] [Indexed: 11/28/2022] Open
Abstract
Increasing evidence has demonstrated that aberrant forkhead box protein C1 (FOXC1) expression contributes to tumorigenesis in multiple types of malignant tumor. However, the clinical significance and biological roles of FOXC1 in cervical cancer remain unknown. The expression levels of FOXC1 were examined in human cervical cancer tissues and cells using reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting. Furthermore, high FOXC1 expression was significantly associated with advanced clinical stages, a high degree of malignancy and a poor outcome. FOXC1 silencing inhibited cell growth and enhanced cell apoptosis. Knockdown of FOXC1 markedly suppressed cell migration and invasion in vitro, and resulted in downregulation of phosphorylated-RAC-α serine/threonine-protein kinase, proto-oncogene c-Myc and B-cell lymphoma 2. In conclusion, these data indicated that upregulation of FOXC1 contributed to the development of cervical cancer by increasing the growth and motility of the cervical cancer cells, thereby worsening the disease progression in these patients.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150037, P.R. China
| | - Lulu Chai
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150037, P.R. China
| | - Qingchun Ji
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150037, P.R. China
| | - Rongjie Cheng
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150037, P.R. China
| | - Jiao Wang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150037, P.R. China
| | - Shiyu Han
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150037, P.R. China
| |
Collapse
|
20
|
Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget 2017; 9:11503-11514. [PMID: 29545915 PMCID: PMC5837767 DOI: 10.18632/oncotarget.23817] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023] Open
Abstract
Purpose Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. Results We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. Materials and Methods We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. Conclusions The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro. We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.
Collapse
|
21
|
Yang Z, Jiang S, Cheng Y, Li T, Hu W, Ma Z, Chen F, Yang Y. FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Ther Adv Med Oncol 2017; 9:797-816. [PMID: 29449899 PMCID: PMC5808840 DOI: 10.1177/1758834017742576] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Forkhead box C1 (FOXC1) is an essential member of the forkhead box transcription factors and has been highlighted as an important transcriptional regulator of crucial proteins associated with a wide variety of carcinomas. FOXC1 regulates tumor-associated genes and is regulated by multiple pathways that control its mRNA expression and protein activity. Aberrant FOXC1 expression is involved in diverse tumorigenic processes, such as abnormal cell proliferation, cancer stem cell maintenance, cancer migration, and angiogenesis. Herein, we review the correlation between the expression of FOXC1 and tumor behaviors. We also summarize the mechanisms of the regulation of FOXC1 expression and activity in physiological and pathological conditions. In particular, we focus on the pathological processes of cancer targeted by FOXC1 and discuss whether FOXC1 is good or detrimental during tumor progression. Moreover, FOXC1 is highlighted as a clinical biomarker for diagnosis or prognosis in various human cancers. The information reviewed here should assist in experimental designs and emphasize the potential of FOXC1 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yicheng Cheng
- Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
22
|
Wang J, Li W, Zheng X, Pang X, Du G. Research progress on the forkhead box C1. Oncotarget 2017; 9:12471-12478. [PMID: 29552326 PMCID: PMC5844762 DOI: 10.18632/oncotarget.22527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/01/2017] [Indexed: 01/19/2023] Open
Abstract
FOXC1 is a vital member of FOX families which play important roles in biological processes including proliferation, differentiation, apoptosis, migration, invasion, metabolism, and longevity. Here we are focusing on roles of FOXC1 and their mechanisms in cancers. FOXC1 promoted progress of many cancers, such as breast cancer (especially basal-like breast cancer), hepatocellular carcinoma, gastric cancer and so on. FOXC1 was also found to be associated with drug resistance of cancers. FOXC1 promoted metastasis of cancers by increasing expression of MMP7, NEDD9 and Snail. Proliferation and invasion of cancers were increased by FOXC1 by mediating NF-κB, MST1R and KLF4 expression. FOXC1 was associated with development by regulating expression of FGF19 and MSX1. Recently, FOXC1 was found to be required for niche of stem cells or development of stem cells by mediating expression of Gli2, CXCL12, SCF, NFATC1, BMP and Myh7. Overall, FOXC1 exerts its functions by many mechanisms and may be used as a potential biomarker for diseases.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Chung S, Jin Y, Han B, Qu Y, Gao B, Giuliano AE, Cui X. Identification of EGF-NF-κB-FOXC1 signaling axis in basal-like breast cancer. Cell Commun Signal 2017. [PMID: 28629477 PMCID: PMC5477115 DOI: 10.1186/s12964-017-0180-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The pathogenesis of human basal-like breast cancer (BLBC) is not well understood and patients with BLBC have a poor prognosis. Expression of the epidermal growth factor receptor (EGFR) and nuclear factor-κB (NF-κB) is well-known to be upregulated in BLBC. The forkhead box C1 (FOXC1) transcription factor, an important prognostic biomarker specific for BLBC, has been shown to be induced by EGF and is critical for EGF effects in breast cancer cells. How FOXC1 is transcriptionally activated in BLBC is not clear. Methods Luciferase reporter assays were performed to show that NF-κB-p65 enhances FOXC1 promoter activity in BLBC cells (MDA-MB-468). Electrophoretic mobility shift assay, biotinylated oligonucleotide precipitation assay, and chromatin immunoprecipitation assay were used to show that NF-κB interacts and binds to the promoter region of FOXC1. Results In this study, we demonstrate that NF-κB is a pivotal mediator of the EGF/EGFR regulation of FOXC1 expression by binding to the FOXC1 promoter to activate FOXC1 transcription. Loss or inhibition of NF-κB diminished FOXC1 expression. Conclusion Collectively, our findings reveal a novel EGFR-NF-κB-FOXC1 signaling axis that is critical for BLBC cell function, supporting the notion that intervention in the FOXC1 pathway may provide potential modalities for BLBC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0180-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stacey Chung
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, California, Los Angeles, 90048, USA
| | - Yanli Jin
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, California, Los Angeles, 90048, USA
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, California, Los Angeles, 90048, USA
| | - Ying Qu
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, California, Los Angeles, 90048, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, California, Los Angeles, 90048, USA
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, California, Los Angeles, 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, California, Los Angeles, 90048, USA. .,Cedars-Sinai Medical Center, Davis Research Building 2065, 8700 Beverly Blvd, California, Los Angeles, 90048, USA.
| |
Collapse
|
24
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
25
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1107] [Impact Index Per Article: 138.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
26
|
Xu YL, Yao R, Li J, Zhou YD, Mao F, Pan B, Sun Q. FOXC1 overexpression is a marker of poor response to anthracycline-based adjuvant chemotherapy in sporadic triple-negative breast cancer. Cancer Chemother Pharmacol 2017; 79:1205-1213. [PMID: 28493031 PMCID: PMC5438824 DOI: 10.1007/s00280-017-3319-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Purpose Because of its aggressive characteristics and poor prognosis, triple-negative breast cancer (TNBC) has become a hot topic in cancer research. Chemotherapy is currently the only treatment for patients with TNBC. The transcription factor FOXC1 has been associated with TNBC prognosis, but little is known about its effect on chemosensitivity. The aim of this study was to investigate the effects of FOXC1 on chemosensitivity. Methods A case–control study was performed on 25 TNBC patients who experienced relapse and/or metastasis. Another 25 patients without relapse or metastasis were randomly selected as controls. Medical records were reviewed for relevant information, and immunohistochemistry was performed to measure FOXC1 levels. The Kaplan–Meier method and Cox analysis were used to analyze differences in disease-free survival (DFS) and overall survival (OS). The correlation of FOXC1 expression with chemosensitivity was analyzed. Data were analyzed using SPSS 21.0 software, and a P value <0.05 was considered to be statistically significant. Results In 15 of 22 case patients, FOXC1 was overexpressed, whereas only 8 control patients exhibited FOXC1 overexpression (P < 0.05). FOXC1 expression had no correlation with pathological indicators. An anthracycline-based regimen was administered to 21 study patients and 23 control patients. FOXC1 expression was significantly associated with a worse DFS (HR 2.62, 95% CI 1.05–6.50, P = 0.038) but presented no correlation with OS (HR 2.53, 95% CI 0.76–8.40, P = 0.131) among these 44 patients. Conclusions This study shows that FOXC1 is correlated with chemosensitivity to anthracycline and could be used as an indicator of chemosensitivity in sporadic TNBC. Electronic supplementary material The online version of this article (doi:10.1007/s00280-017-3319-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y L Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - R Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - J Li
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Y D Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - F Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - B Pan
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Q Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
27
|
Liu Y, Han L, Bai Y, Du W, Yang B. Down-regulation of MicroRNA-133 predicts poor overall survival and regulates the growth and invasive abilities in glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:206-210. [PMID: 28376685 DOI: 10.1080/21691401.2017.1304551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
miRNAs were reported as oncogene or tumour suppressors in various cancers and played important roles in tumour development and progression. Dysregulated miR-133 has been reported in several cancers, however, the expression and biological function of miR-133 in glioma remained unclear. In this study, we found that miR-133 expression level was significantly decreased in glioma tissues and cell lines by RT-qPCR. Then miR-133 mimics were used to evaluate the effects of miR-133 on cell proliferation and invasion in vitro. We found that overexpressed miR-133 could significantly suppress cell growth, and invasion in U87 cells. Additionally, we found that forkhead box C1 (FOXC1) was overexpressed in glioma tissue and it was directly regulated by miR-133. Overall, this study is the first proof to demonstrate that miR-133 function as tumour suppressor in glioma and inhibit cell proliferation and invasioned by directly targeting FOXC1, implying miR-133 as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yu Liu
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Lili Han
- b Cancer Hospital of Henan Province, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , China.,c The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , China
| | - Yahui Bai
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Wei Du
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Bo Yang
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
28
|
BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer. Sci Rep 2017; 7:45235. [PMID: 28327601 PMCID: PMC5361122 DOI: 10.1038/srep45235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a disease with high heterogeneity. Many issues on tumorigenesis and progression are still elusive. It is critical to identify genes that play important roles in the progression of tumors, especially for tumors with poor prognosis such as basal-like breast cancer and tumors in very young women. To facilitate the identification of potential regulatory or driver genes, we present the Breast Cancer Integrative Platform (BCIP, http://omics.bmi.ac.cn/bcancer/). BCIP maintains multi-omics data selected with strict quality control and processed with uniform normalization methods, including gene expression profiles from 9,005 tumor and 376 normal tissue samples, copy number variation information from 3,035 tumor samples, microRNA-target interactions, co-expressed genes, KEGG pathways, and mammary tissue-specific gene functional networks. This platform provides a user-friendly interface integrating comprehensive and flexible analysis tools on differential gene expression, copy number variation, and survival analysis. The prominent characteristic of BCIP is that users can perform analysis by customizing subgroups with single or combined clinical features, including subtypes, histological grades, pathologic stages, metastasis status, lymph node status, ER/PR/HER2 status, TP53 mutation status, menopause status, age, tumor size, therapy responses, and prognosis. BCIP will help to identify regulatory or driver genes and candidate biomarkers for further research in breast cancer.
Collapse
|
29
|
Knockdown of long non-coding RNA XIST increases blood-tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137. Oncogenesis 2017; 6:e303. [PMID: 28287613 PMCID: PMC5533948 DOI: 10.1038/oncsis.2017.7] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 01/30/2017] [Indexed: 01/17/2023] Open
Abstract
Antiangiogenic therapy plays a significant role in combined glioma treatment. However, poor permeability of the blood–tumor barrier (BTB) limits the transport of chemotherapeutic agents, including antiangiogenic drugs, into tumor tissues. Long non-coding RNAs (lncRNAs) have been implicated in various diseases, especially malignant tumors. The present study found that lncRNA X-inactive-specific transcript (XIST) was upregulated in endothelial cells that were obtained in a BTB model in vitro. XIST knockdown increased BTB permeability and inhibited glioma angiogenesis. The analysis of the mechanism of action revealed that the reduction of XIST inhibited the expression of the transcription factor forkhead box C1 (FOXC1) and zonula occludens 2 (ZO-2) by upregulating miR-137. FOXC1 decreased BTB permeability by increasing the promoter activity and expression of ZO-1 and occludin, and promoted glioma angiogenesis by increasing the promoter activity and expression of chemokine (C–X–C motif) receptor 7b (CXCR7). Overall, the present study demonstrates that XIST plays a pivotal role in BTB permeability and glioma angiogenesis, and the inhibition of XIST may be a potential target for the clinical management of glioma.
Collapse
|
30
|
Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE, Cui X. FOXC1: an emerging marker and therapeutic target for cancer. Oncogene 2017; 36:3957-3963. [PMID: 28288141 PMCID: PMC5652000 DOI: 10.1038/onc.2017.48] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is involved in normal embryonic development and regulates the development and function of many organs. Most recently, a large body of literature has shown that FOXC1 plays a critical role in tumor development and metastasis. Clinical studies have demonstrated that elevated FOXC1 expression is associated with poor prognosis in many cancer subtypes, such as basal-like breast cancer (BLBC). FOXC1 is highly and specifically expressed in BLBC as opposed to other breast cancer subtypes. Its functions in breast cancer have been extensively explored. This review will summarize current knowledge on the function and regulation of FOXC1 in tumor development and progression with a focus on BLBC as well as the implications of these new findings in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- B Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - N Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Y Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - S Chung
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - A E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - X Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Lin YJ, Shyu WC, Chang CW, Wang CC, Wu CP, Lee HT, Chen LJ, Hsieh CH. Tumor Hypoxia Regulates Forkhead Box C1 to Promote Lung Cancer Progression. Theranostics 2017; 7:1177-1191. [PMID: 28435457 PMCID: PMC5399585 DOI: 10.7150/thno.17895] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Forkhead box C1 (FOXC1) is a member of the forkhead family of transcription factors that are characterized by a DNA-binding forkhead domain. Increasing evidence indicates that FOXC1 is involved in tumor progression. However, the role of tumor hypoxia in FOXC1 regulation and its impact on lung cancer progression are unclear. Here, we report that FOXC1 was upregulated in hypoxic areas of lung cancer tissues from rodents or humans. Hypoxic stresses significantly induced FOXC1 expression. Moreover, hypoxia activated FOXC1 transcription via direct binding of hypoxia-inducible factor-1α (HIF-1α) to the hypoxia-responsive element (HRE) in the FOXC1 promoter. FOXC1 gain-of-function in lung cancer cells promoted cell proliferation, migration, invasion, angiogenesis, and epithelial-mesenchymal transition in vitro. However, a knockdown of FOXC1 in lung cancer cells inhibited these effects. Notably, knockdown of tumor hypoxia-induced FOXC1 expression via HIF-1-mediated FOXC1 shRNAs in lung cancer xenograft models suppressed tumor growth and angiogenesis. Finally, systemic delivery of FOXC1 siRNA encapsulated in lipid nanoparticles inhibited tumor growth and increased survival time in lung cancer-bearing mice. Taken together, these data indicate that FOXC1 is a novel hypoxia-induced transcription factor and plays a critical role in tumor microenvironment-promoted lung cancer progression. Systemic FOXC1 blockade therapy may be an effective therapeutic strategy for lung cancer.
Collapse
|
32
|
HORNG CHITING, YANG JAISING, CHIANG JOHUA, LU CHICHENG, LEE CHIUFANG, CHIANG NINA, CHEN FUAN. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells. Mol Med Rep 2015; 13:1003-9. [DOI: 10.3892/mmr.2015.4635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 10/19/2015] [Indexed: 11/05/2022] Open
|
33
|
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs and function as key regulators of gene expression at the post-transcriptional level. In this study, we found that miR-495 reduces cell growth, induces apoptosis and suppresses the migration of endometrial cancer by directly inhibiting FOXC1 expression. Further analysis revealed that FOXC1 promotes growth and migration and functions as an oncogene in vitro. FOXC1 overexpression reversed the cellular responses mediated by miR-495 in endometrial cancer cells. We also found that miR-495 suppresses the growth of endometrial cancer in vivo. Altogether, these results indicate that miR-495 acts as a tumour suppressor gene by targeting FOXC1 at the post-transcriptional level in endometrial cancer.
Collapse
|
34
|
Chung A, Choi M, Han BC, Bose S, Zhang X, Medina-Kauwe L, Sims J, Murali R, Taguiam M, Varda M, Schiff R, Giuliano A, Cui X. Basal Protein Expression Is Associated With Worse Outcome and Trastuzamab Resistance in HER2+ Invasive Breast Cancer. Clin Breast Cancer 2015; 15:448-457.e2. [PMID: 26248960 DOI: 10.1016/j.clbc.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/29/2015] [Accepted: 06/11/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND We investigated the effect of basal protein expression on trastuzamab response in patients with HER2-positive (HER2(+)) breast cancer who received trastuzamab (T) and in HER2(+) breast cancer cell lines. PATIENTS AND METHODS Expression of cytokeratin (CK) 5/6, CK14, and epidermal growth factor receptor (EGFR) was evaluated after immunohistochemical staining in paraffin-embedded tissue of 97 patients with stage I to III HER2(+) breast cancer treated with chemotherapy/T. Groups with and without basal protein expression were compared with respect to clinicopathologic parameters and survival. We treated 4 cell lines (2 basal-HER2 [HCC1569, HCC1954] and 2 nonbasal HER2 [BT474, SKBR3]) each with vehicle, T 20 μg/mL, paclitaxel 0.01 μM (P), and T with P (T + P). Cell viability was assessed and HER2 pathway suppression was compared between groups using immunoblot analysis. Mammosphere formation was used to assess breast cancer stem cell properties. RESULTS EGFR expression was significantly associated with cancer-specific survival (CSS) (P = .05). CK5/6 expression strongly correlated with overall and disease-free survival, and CSS (P = .03, P = .04, and P = .03, respectively). Statistical significance was maintained for EGFR and CK5/6 after adjustment for covariates. CK14 was not associated with survival. All cell lines expressed similar levels of HER2. T and P alone inhibited proliferation of nonbasal cell lines; T + P had an additive cytotoxic effect. Basal cells were resistant to T, P inhibited proliferation, but T + P had no additive cytotoxic effect on cell growth in basal cells. Immunoblot analysis showed a significant decrease in phosphorylated Akt levels after treatment with T or T + P in nonbasal cells but not in basal cells. Akt blockade suppressed growth of basal and nonbasal HER2(+) cells. Furthermore, basal HER2 cell lines had increased mammosphere formation, which suggests increased stem cell properties compared with nonbasal HER2 cell lines. CONCLUSION CK5/6 and EGFR expression are predictive of worse prognosis in HER2(+) breast cancer patients treated with T. Basal HER2 breast cancer cell lines are resistant to trastuzamab, which is mediated through the Akt pathway; AKT inhibition abrogates this resistance. Basal HER2 cell lines also have increased stem cell properties, which might play a role in the resistance pathway.
Collapse
Affiliation(s)
- Alice Chung
- Cedars-Sinai Medical Center, Los Angeles, CA.
| | | | | | - Shikha Bose
- Cedars-Sinai Medical Center, Los Angeles, CA
| | - Xiao Zhang
- Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|