1
|
McCarthy AM, Ehsan S, Hughes KS, Lehman CD, Conant EF, Kontos D, Armstrong K, Chen J. Feasibility of risk assessment for breast cancer molecular subtypes. Breast Cancer Res Treat 2024; 208:103-110. [PMID: 38916820 PMCID: PMC11452472 DOI: 10.1007/s10549-024-07404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Few breast cancer risk assessment models account for the risk profiles of different tumor subtypes. This study evaluated whether a subtype-specific approach improves discrimination. METHODS Among 3389 women who had a screening mammogram and were later diagnosed with invasive breast cancer we performed multinomial logistic regression with tumor subtype as the outcome and known breast cancer risk factors as predictors. Tumor subtypes were defined by expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) based on immunohistochemistry. Discrimination was assessed with the area under the receiver operating curve (AUC). Absolute risk of each subtype was estimated by proportioning Gail absolute risk estimates by the predicted probabilities for each subtype. We then compared risk factor distributions for women in the highest deciles of risk for each subtype. RESULTS There were 3,073 ER/PR+ HER2 - , 340 ER/PR +HER2 + , 126 ER/PR-ER2+, and 300 triple-negative breast cancers (TNBC). Discrimination differed by subtype; ER/PR-HER2+ (AUC: 0.64, 95% CI 0.59, 0.69) and TNBC (AUC: 0.64, 95% CI 0.61, 0.68) had better discrimination than ER/PR+HER2+ (AUC: 0.61, 95% CI 0.58, 0.64). Compared to other subtypes, patients at high absolute risk of TNBC were younger, mostly Black, had no family history of breast cancer, and higher BMI. Those at high absolute risk of HER2+ cancers were younger and had lower BMI. CONCLUSION Our study provides proof of concept that stratifying risk prediction for breast cancer subtypes may enable identification of patients with unique profiles conferring increased risk for tumor subtypes.
Collapse
Affiliation(s)
- Anne Marie McCarthy
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Blockley Hall, Room 833, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - Sarah Ehsan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Blockley Hall, Room 833, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Kevin S Hughes
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Constance D Lehman
- Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily F Conant
- Department of Radiology, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Despina Kontos
- Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jinbo Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Blockley Hall, Room 833, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Han J, Xu X, Jin F, Xu X, Fang T, Du Y. Tumor oxygenation nanoliposomes promote deep photodynamic therapy for triple-negative breast cancer. Biomater Sci 2024; 12:4967-4979. [PMID: 39158634 DOI: 10.1039/d4bm00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer and has many characteristics including high metastatic rates, poor overall survival, and low response to traditional chemotherapy. Photodynamic therapy (PDT), emerging as a precise treatment modality, has shown promise in improving the antitumor response. However, it still faces challenges such as limited light penetration depth, rapid oxygen consumption, and inadequate targeting ability. In this study, we developed Rose Bengal (RB, photosensitizer) and oxygen co-loaded CREKA-modified UCNP-based nanoliposomes (CLIP-RB-PFOB@UCNP) for tumor targeting and near-infrared (NIR)-triggered deep and long-lasting PDT. Our results demonstrated that CLIP-RB-PFOB@UCNP effectively targeted and accumulated in tumor tissue through the interaction between CREKA and fibronectin, which is overexpressed in tumor cells. Under NIR irradiation, CLIP-RB-PFOB@UCNP exhibited significant destruction of orthotopic tumors, reduced the level of HIF-1α, and efficiently suppressed lung metastasis in a metastatic TNBC model. In conclusion, this study offers new avenues for improving the therapeutic outcomes of PDT for clinical TNBC treatment.
Collapse
Affiliation(s)
- Jianhua Han
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
| | - Xinyi Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
| | - Feiyang Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, P. R. China.
| | - Tao Fang
- Department of Anesthesiology, The Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, Zhejiang 321000, P. R. China.
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, P. R. China
| |
Collapse
|
3
|
Manna M, Brabant M, Greene R, Chamberlain MD, Kumar A, Alimohamed N, Brezden-Masley C. Canadian Expert Recommendations on Safety Overview and Toxicity Management Strategies for Sacituzumab Govitecan Based on Use in Metastatic Triple-Negative Breast Cancer. Curr Oncol 2024; 31:5694-5708. [PMID: 39330050 PMCID: PMC11431578 DOI: 10.3390/curroncol31090422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Sacituzumab Govitecan (SG) is an antibody-drug conjugate (ADC) comprised of an anti-Trop-2 IgG1 molecule conjugated to SN-38, the active metabolite of irinotecan, via a pH-sensitive hydrolysable linker. As a result of recent Canadian funding for SG in advanced hormone receptor (HR)-positive breast cancer and triple-negative breast cancer (TNBC), experience with using SG and managing adverse events (AEs) has grown. This review presents a summary of evidence and adverse event recommendations derived from Canadian experience, with SG use in metastatic TNBC for extrapolation and guidance in all indicated settings. SG is dosed at 10 mg/kg on day 1 and day 8 of a 21-day cycle. Compared to treatment of physicians' choice (TPC) the phase III ASCENT and TROPiCS-02 studies demonstrated favorable survival data in unresectable locally advanced or metastatic TNBC and HR-positive HER2 negative metastatic breast cancer, respectively. The most common AEs were neutropenia, diarrhea, nausea, fatigue, alopecia, and anemia. This review outlines AE management recommendations for SG based on clinical trial protocols and Canadian guidelines, incorporating treatment delay, dose reductions, and the use of prophylactic and supportive medications.
Collapse
Affiliation(s)
- Mita Manna
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - Michelle Brabant
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rowen Greene
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michael Dean Chamberlain
- Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Saskatoon Cancer Centre, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - Aalok Kumar
- BC Cancer Surrey, University of British Columbia, Surrey, BC V3V 1Z2, Canada
| | - Nimira Alimohamed
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N2, Canada
| | | |
Collapse
|
4
|
Ferretti S, Sassoli de Bianchi P, Canuti D, Campari C, Cortesi L, Arcangeli V, Barbieri E, D'Aloia C, Danesi R, De Iaco P, De Lillo M, Lombardo L, Moretti G, Musolino A, Palli D, Palmonari C, Ravegnani M, Tafà A, Tononi A, Turchetti D, Zamagni C, Zampiga V, Bucchi L, The Hboc Study Group. Evaluation of an Italian Population-Based Programme for Risk Assessment and Genetic Counselling and Testing for BRCA1/2-Related Hereditary Breast and Ovarian Cancer after 10 Years of Operation: An Observational Study Protocol. Methods Protoc 2024; 7:63. [PMID: 39195440 DOI: 10.3390/mps7040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Hereditary breast/ovarian cancer (HBOC) syndrome is caused by the inheritance of monoallelic germline BRCA1/2 gene mutations. If BRCA1/2 mutation carriers are identified before the disease develops, effective actions against HBOC can be taken, including intensive screening, risk-reducing mastectomy and salpingo-oophorectomy, and risk-reducing medications. The Italian National Prevention Plan mandates the creation of regional BRCA genetic testing programmes. So far, however, only informal data have been reported on their implementation. We have designed a study aimed at evaluating the results of a population-based programme for risk assessment and genetic counselling and testing for BRCA1/2-related HBOC that is underway in the Emilia-Romagna region (northern Italy). The programme-which is entirely free-includes basic screening with an estimate of the likelihood of carrying a BRCA1/2 mutation using a familial risk assessment tool, a closer examination of women with suspected risk increase, an assessment of the need for further genetic counselling and, if needed, genetic testing and risk-reducing interventions. In this paper, the design of the programme and the protocol of the study are presented. The study has an observational, historical cohort design. Eligible are the women found to be at an increased risk of HBOC (profile 3 women). The main objectives are (i) to determine the precision of the programme in measuring the level of risk of HBOC for profile 3 women; (ii) to determine the characteristics of profile 3 women and their association with the risk management strategy chosen; (iii) to compare the age at onset, histologic type, tumour stage, molecular subtype, and prognosis of breast/ovarian cancers observed in the cohort of profile 3 women with the features of sporadic cancers observed in the general female population; (iv) to determine the level and the determinants of adherence to recommendations; and (v) to determine the appropriateness and timing of risk-reducing surgery and medications. Investigating the quality and results of the programme is necessary because the best practices in risk assessment and genetic counselling and testing for BRCA1/2-related cancer and the challenges they encounter should be identified and shared. The study has the potential to provide sound empirical evidence for the factors affecting the effectiveness of this type of service.
Collapse
Affiliation(s)
- Stefano Ferretti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
- Local Health Authority, 44121 Ferrara, Italy
| | | | - Debora Canuti
- Department of Health, Emilia-Romagna Region, 40127 Bologna, Italy
| | - Cinzia Campari
- Azienda USL, IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Laura Cortesi
- Struttura di Genetica Oncologica, Dipartimento di Oncologia ed Ematologia, AOU Policlinico di Modena, 41125 Modena, Italy
| | - Valentina Arcangeli
- Emilia-Romagna Cancer Registry, Romagna Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, 47014 Forlì, Italy
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, 47014 Meldola, Italy
| | - Elena Barbieri
- Struttura di Oncologia, Dipartimento di Oncologia ed Ematologia, AOU Policlinico di Modena, 41125 Modena, Italy
| | - Cecilia D'Aloia
- Section of Radiology and Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Rita Danesi
- Emilia-Romagna Cancer Registry, Romagna Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, 47014 Forlì, Italy
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, 47014 Meldola, Italy
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | | | | | - Antonino Musolino
- Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
- Medical Oncology, Breast Unit and Cancer Genetics Service, University Hospital of Parma, 43126 Parma, Italy
| | - Dante Palli
- UOC Chirurgia Generale a Indirizzo Senologico and Breast Unit, 29121 Piacenza, Italy
| | - Caterina Palmonari
- Cancer Screening Centre and Spoke Centre, AUSL Ferrara, 44121 Ferrara, Italy
| | - Mila Ravegnani
- Emilia-Romagna Cancer Registry, Romagna Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, 47014 Forlì, Italy
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, 47014 Meldola, Italy
| | - Alfredo Tafà
- UOC Senologia, Ospedale Bellaria, AUSL Bologna, 40139 Bologna, Italy
| | - Alessandra Tononi
- Unità Operativa di Prevenzione Oncologica, Ospedale Infermi, 47923 Rimini, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Zamagni
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Valentina Zampiga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, 47014 Meldola, Italy
| | - Lauro Bucchi
- Emilia-Romagna Cancer Registry, Romagna Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, 47014 Forlì, Italy
| | | |
Collapse
|
5
|
Yu X, Xiang J, Zhang Q, Chen S, Tang W, Li X, Sui Y, Liu W, Kong Q, Guo Y. Triple-negative breast cancer: predictive model of early recurrence based on MRI features. Clin Radiol 2023; 78:e798-e807. [PMID: 37596179 DOI: 10.1016/j.crad.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
AIM To develop an integrated model based on preoperative magnetic resonance imaging (MRI) features for predicting early recurrence in patients with triple-negative breast cancer (TNBC). MATERIALS AND METHODS Women with TNBC who underwent breast MRI and surgery between 2009 and 2019 were evaluated retrospectively. Two breast radiologists reviewed MRI images independently based on the Breast Imaging Reporting and Data System Lexicon (BI-RADS), and classified the breast oedema scores on T2-weighted imaging (WI) as no oedema, peritumoural oedema, prepectoral oedema, or subcutaneous oedema. The relationship between disease-free survival (DFS) and MRI features was analysed by Cox regression, and a nomogram model was generated based on the results. RESULTS 150 patients with TNBC were included and divided into a training cohort (n=78) and validation cohort (n=72). MRI features including subcutaneous oedema and rim enhancement showed a tendency to worsen DFS in univariate analysis. Multivariate analysis showed that subcutaneous oedema (p=0.049, HR [95% confidence interval {CI} = 8.24 [1.01-67.52]) and rim enhancement (p=0.016, HR [95% CI] = 4.38 [1.32-14.54]) were independent predictors for DFS. In the nomogram, the areas under the curves (AUCs) of the training cohort was 0.808, and that of the validation cohort was 0.875. CONCLUSION The presence of subcutaneous oedema or rim enhancement on preoperative breast MRI was shown to be a good predictor of poor survival outcomes in patients with TNBC.
Collapse
Affiliation(s)
- X Yu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - J Xiang
- Guangdong Women and Children Hospital, No. 13 West Guangyuan Road, Guangzhou, Guangdong, 510010, China
| | - Q Zhang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - S Chen
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - W Tang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - X Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Y Sui
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - W Liu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Q Kong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Y Guo
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
6
|
Alsharabasy AM, Aljaabary A, Bohara R, Farràs P, Glynn SA, Pandit A. Nitric Oxide-Scavenging, Anti-Migration Effects, and Glycosylation Changes after Hemin Treatment of Human Triple-Negative Breast Cancer Cells: A Mechanistic Study. ACS Pharmacol Transl Sci 2023; 6:1416-1432. [PMID: 37854626 PMCID: PMC10580390 DOI: 10.1021/acsptsci.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/20/2023]
Abstract
The enhanced expression of nitric oxide (•NO) synthase predicts triple-negative breast cancer outcome and its resistance to different therapeutics. Our earlier work demonstrated the efficiency of hemin to scavenge the intra- and extracellular •NO, proposing its potency as a therapeutic agent for inhibiting cancer cell migration. In continuation, the present work evaluates the effects of •NO on the migration of MDA-MB-231 cells and how hemin modulates the accompanied cellular behavior, focusing on the corresponding expression of cellular glycoproteins, migration-associated markers, and mitochondrial functions. We demonstrated for the first time that while •NO induced cell migration, hemin contradicted that by •NO-scavenging. This was in combination with modulation of the •NO-enhanced glycosylation patterns of cellular proteins with inhibition of the expression of specific proteins involved in the epithelial-mesenchymal transition. These effects were in conjunction with changes in the mitochondrial functions related to both •NO, hemin, and its nitrosylated product. Together, these results suggest that hemin can be employed as a potential anti-migrating agent targeting •NO-scavenging and regulating the expression of migration-associated proteins.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Amal Aljaabary
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Raghvendra Bohara
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway H91 TK33, Ireland
| | - Sharon A. Glynn
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Discipline
of Pathology, Lambe Institute for Translational Research, School of
Medicine, University of Galway, Galway H91 YR71, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
7
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
8
|
Schopp JG, Polat DS, Arjmandi F, Hayes JC, Ahn RW, Sullivan K, Sahoo S, Porembka JH. Imaging Challenges in Diagnosing Triple-Negative Breast Cancer. Radiographics 2023; 43:e230027. [PMID: 37708071 DOI: 10.1148/rg.230027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Triple-negative breast cancer (TNBC) refers to a heterogeneous group of carcinomas that have more aggressive biologic features, faster growth, and a propensity for early distant metastasis and recurrence compared with other breast cancer subtypes. Due to the aggressiveness and rapid growth of TNBCs, there are specific imaging challenges associated with their timely and accurate diagnosis. TNBCs commonly manifest initially as circumscribed masses and therefore lack the typical features of a primary breast malignancy, such as irregular shape, spiculated margins, and desmoplastic reaction. Given the potential for misinterpretation, review of the multimodality imaging appearances of TNBCs is important for guiding the radiologist in distinguishing TNBCs from benign conditions. Rather than manifesting as a screening-detected cancer, TNBC typically appears clinically as a palpable area of concern that most commonly corresponds to a discrete mass at mammography, US, and MRI. The combination of circumscribed margins and hypoechoic to anechoic echogenicity may lead to TNBC being misinterpreted as a benign fibroadenoma or cyst. Therefore, careful mammographic and sonographic evaluation with US image optimization can help avoid misinterpretation. Radiologists should recognize the characteristics of TNBCs that can mimic benign entities, as well as the subtle features of TNBCs that should raise concern for malignancy and aid in timely and accurate diagnosis. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Jennifer G Schopp
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| | - Dogan S Polat
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| | - Firouzeh Arjmandi
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| | - Jody C Hayes
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| | - Richard W Ahn
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| | - Kirbi Sullivan
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| | - Sunati Sahoo
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| | - Jessica H Porembka
- From the Departments of Radiology (J.G.S., D.S.P., F.A., J.C.H, R.W.A., K.S., J.H.P.) and Pathology (S.S.), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC 8896, Dallas, TX 75390-8896
| |
Collapse
|
9
|
Yoen H, Kim SY, Lee DW, Lee HB, Cho N. Prediction of Tumor Progression During Neoadjuvant Chemotherapy and Survival Outcome in Patients With Triple-Negative Breast Cancer. Korean J Radiol 2023; 24:626-639. [PMID: 37404105 DOI: 10.3348/kjr.2022.0974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE To investigate the association of clinical, pathologic, and magnetic resonance imaging (MRI) variables with progressive disease (PD) during neoadjuvant chemotherapy (NAC) and distant metastasis-free survival (DMFS) in patients with triple-negative breast cancer (TNBC). MATERIALS AND METHODS This single-center retrospective study included 252 women with TNBC who underwent NAC between 2010 and 2019. Clinical, pathologic, and treatment data were collected. Two radiologists analyzed the pre-NAC MRI. After random allocation to the development and validation sets in a 2:1 ratio, we developed models to predict PD and DMFS using logistic regression and Cox proportional hazard regression, respectively, and validated them. RESULTS Among the 252 patients (age, 48.3 ± 10.7 years; 168 in the development set; 84 in the validation set), PD was occurred in 17 patients and 9 patients in the development and validation sets, respectively. In the clinical-pathologic-MRI model, the metaplastic histology (odds ratio [OR], 8.0; P = 0.032), Ki-67 index (OR, 1.02; P = 0.044), and subcutaneous edema (OR, 30.6; P = 0.004) were independently associated with PD in the development set. The clinical-pathologic-MRI model showed a higher area under the receiver-operating characteristic curve (AUC) than the clinical-pathologic model (AUC: 0.69 vs. 0.54; P = 0.017) for predicting PD in the validation set. Distant metastases occurred in 49 patients and 18 patients in the development and validation sets, respectively. Residual disease in both the breast and lymph nodes (hazard ratio [HR], 6.0; P = 0.005) and the presence of lymphovascular invasion (HR, 3.3; P < 0.001) were independently associated with DMFS. The model consisting of these pathologic variables showed a Harrell's C-index of 0.86 in the validation set. CONCLUSION The clinical-pathologic-MRI model, which considered subcutaneous edema observed using MRI, performed better than the clinical-pathologic model for predicting PD. However, MRI did not independently contribute to the prediction of DMFS.
Collapse
Affiliation(s)
- Heera Yoen
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Dae-Won Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
10
|
Xu B, Ma F, Wang T, Wang S, Tong Z, Li W, Wu X, Wang X, Sun T, Pan Y, Yao H, Wang X, Luo T, Yang J, Zeng X, Zhao W, Cong XJ, Chen J. A Phase IIb, single arm, multicenter trial of sacituzumab govitecan in Chinese patients with metastatic triple-negative breast cancer who received at least two prior treatments. Int J Cancer 2023; 152:2134-2144. [PMID: 36621000 DOI: 10.1002/ijc.34424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023]
Abstract
Refractory or relapsing metastatic triple-negative breast cancer (mTNBC) has a poor prognosis. Sacituzumab govitecan (SG) is a novel antibody-drug conjugate, targeting human trophoblast cell-surface antigen 2 (Trop-2). This is the first report of SG's efficacy and safety in Chinese patients with mTNBC. EVER-132-001 (NCT04454437) was a multicenter, single-arm, Phase IIb study in Chinese patients with mTNBC who failed ≥2 prior chemotherapy regimens. Eligible patients received 10 mg/kg SG on Days 1 and 8 of each 21-day treatment cycle, until disease progression/unacceptable toxicity. The primary endpoint was objective response rate (ORR) assessed by the Independent Review Committee. Secondary endpoints included: duration of response (DOR), clinical benefit rate (CBR), progression-free survival (PFS), overall survival (OS) and safety. Eighty female Chinese patients (median age 47.6 years; range 24-69.9 years) received ≥1 SG dose with a median of 8 treatment cycles by the cutoff date (August 6, 2021). Median number of prior systemic cancer treatments was 4.0 (range 2.0-8.0). ORR and CBR were reported 38.8% (95% confidence interval [CI]: 28.06-50.30) and 43.8% (95% CI, 32.68-55.30) of patients, respectively. The median PFS was 5.55 months (95% CI, 4.14-N/A). SG-related Grade ≥3 treatment-emergent adverse events (TEAEs) were reported in 71.3%, the most common were neutrophil count decreased (62.5%), white blood cell count decreased (48.8%) and anemia (21.3%); 6.3% discontinued SG because of TEAEs. SG demonstrated substantial clinical activity in heavily pretreated Chinese patients with mTNBC. The observed safety profile was generally manageable.
Collapse
Affiliation(s)
- Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Breast Cancer, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yet-Sen University Cancer Center, Guangzhou, China
| | - Zhongsheng Tong
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Li
- Department of Medical Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xinhong Wu
- Department of Breast Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Tao Sun
- Department of Medical Oncology, Liaoning Cancer Hospital &Institute, Shenyang, China
| | - Yueyin Pan
- Department of Medical Oncology, Anhui Provincial Hospital, Hefei, China
| | - Herui Yao
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ting Luo
- Department of Head, Neck and Mammary Gland Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Yang
- Department of Medical Oncology, First Affiliated Hospital of Xian Jiaotong University, Xi'an, China
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Weihong Zhao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | | | | |
Collapse
|
11
|
Newman L, Mitchell E. Disparities in triple negative breast cancer. J Natl Med Assoc 2023; 115:S8-S12. [PMID: 37202004 DOI: 10.1016/j.jnma.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/01/2023] [Indexed: 05/20/2023]
Affiliation(s)
- Lisa Newman
- Weill Cornell Medicine/New York Presbyterian Hospital Network
| | | |
Collapse
|
12
|
Shoukat I, Mueller CR. Searching for DNA methylation in patients triple-negative breast cancer: a liquid biopsy approach. Expert Rev Mol Diagn 2023; 23:41-51. [PMID: 36715539 DOI: 10.1080/14737159.2023.2173579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Liquid biopsies are proving to have diagnostic and prognostic value in many different cancers, and in breast cancer they have the potential to improve outcomes by providing valuable information throughout a patient's cancer journey. However, patients with triple negative breast cancer (TNBC) have received little benefit from such liquid biopsies due to underlying limitations in the discovery and utility of robust biomarkers. Here, we examine the development of DNA methylation-based liquid biopsy assays for breast cancer and how they pertain to TNBC. AREAS COVERED We conducted a systematic review of liquid biopsy assays for breast cancer and analyzed their relevance in TNBC. We show that the utility of DNA mutation-based assays is poor for TNBC due to the low mutational frequencies across the genome in this subtype. We offer a detailed review of mDETECT - a liquid biopsy specifically designed for assessing tumor burden in TNBC patients. EXPERT OPINION DNA methylation are foundational and robust events that occur in cancer evolution and may differentiate almost all forms of cancer, including TNBC. Longitudinal patient monitoring using DNA methylation-based liquid biopsies offers great potential for improving the detection and management of TNBC.
Collapse
Affiliation(s)
- Irsa Shoukat
- Queen's Cancer Research Institute, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Christopher R Mueller
- Queen's Cancer Research Institute, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
13
|
Lee J, Kim SH, Kim Y, Park J, Park GE, Kang BJ. Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer. Cancers (Basel) 2022; 14:cancers14184461. [PMID: 36139620 PMCID: PMC9497155 DOI: 10.3390/cancers14184461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to predict early breast cancer recurrence in women under 40 years of age using radiomics signature and clinicopathological information. We retrospectively investigated 155 patients under 40 years of age with invasive breast cancer who underwent MRI and surgery. Through stratified random sampling, 111 patients were assigned as the training set, and 44 were assigned as the validation set. Recurrence-associated factors were investigated based on recurrence within 5 years during the total follow-up period. A Rad-score was generated through texture analysis (3D slicer, ver. 4.8.0) of breast MRI using the least absolute shrinkage and selection operator Cox regression model. The Rad-score showed a significant association with disease-free survival (DFS) in the training set (p = 0.003) and validation set (p = 0.020) in the Kaplan–Meier analysis. The nomogram was generated through Cox proportional hazards models, and its predictive ability was validated. The nomogram included the Rad-score and estrogen receptor negativity as predictive factors and showed fair DFS predictive ability in both the training and validation sets (C-index 0.63, 95% CI 0.45–0.79). In conclusion, the Rad-score can predict the disease recurrence of invasive breast cancer in women under 40 years of age, and the Rad-score-based nomogram showed reasonably high DFS predictive ability, especially within 2 years of surgery.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung Hun Kim
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6250
| | - Yelin Kim
- Department of Statistics and Data Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 06591, Korea
| | - Jaewoo Park
- Department of Statistics and Data Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 06591, Korea
- Department of Applied Statistics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 06591, Korea
| | - Ga Eun Park
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Bong Joo Kang
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
14
|
Fukushima H, Kato T, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Kondo E, Choyke PL, Kobayashi H. Intercellular adhesion molecule-1 (ICAM-1)-targeted near-infrared photoimmunotherapy of triple-negative breast cancer. Cancer Sci 2022; 113:3180-3192. [PMID: 35723065 PMCID: PMC9459244 DOI: 10.1111/cas.15466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and conventional chemotherapy and molecular-targeted therapies show limited efficacy. Near-infrared photoimmunotherapy (NIR-PIT) is a new anti-cancer treatment that selectively damages the cell membrane of cancer cells based on NIR light-induced photochemical reactions of the antibody-photoabsorber (IRDye700Dx) conjugate and the cell membrane. TNBC is known to express several adhesion molecules on the cell surface providing a potential new target for therapy. Here, we investigated the therapeutic efficacy of Intercellular adhesion molecule-1 (ICAM-1)-targeted NIR-PIT using xenograft mouse models subcutaneously inoculated with two human ICAM-1-expressing TNBC cell lines MDAMB468-luc and MDAMB231 cells. In vitro ICAM-1-targeted NIR-PIT damaged both cell types in a light dose-dependent manner. In vivo ICAM-1-targeted NIR-PIT in both models showed early histological signs of cancer cell damage such as cytoplasmic vacuolation. Even among the cancer cells that appeared to be morphologically intact within 2 hours post treatment, abnormal distribution of the actin cytoskeleton and a significant decrease in Ki-67 positivity were observed, indicating widespread cellular injury reflected in cytoplasmic degeneration. Such damage to cancer cells by NIR-PIT significantly inhibited subsequent tumor growth and improved survival. This study suggests that ICAM-1-targeted NIR-PIT may have potential clinical application in the treatment of TNBC.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku Niigata city 951-8510, Japan.,Division of Tumor Pathology, Near InfraRed PhotoImmunoTherapy Research Institute, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, 573-1010, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
15
|
Carey LA, Loirat D, Punie K, Bardia A, Diéras V, Dalenc F, Diamond JR, Fontaine C, Wang G, Rugo HS, Hurvitz SA, Kalinsky K, O'Shaughnessy J, Loibl S, Gianni L, Piccart M, Zhu Y, Delaney R, Phan S, Cortés J. Sacituzumab govitecan as second-line treatment for metastatic triple-negative breast cancer-phase 3 ASCENT study subanalysis. NPJ Breast Cancer 2022; 8:72. [PMID: 35680967 PMCID: PMC9184615 DOI: 10.1038/s41523-022-00439-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) who relapse early after (neo)adjuvant chemotherapy have more aggressive disease. In the ASCENT trial, sacituzumab govitecan (SG), an antibody-drug conjugate composed of an anti-Trop-2 antibody coupled to SN-38 via a hydrolyzable linker, improved outcomes over single-agent chemotherapy of physician's choice (TPC) in metastatic TNBC (mTNBC). Of 468 patients without known baseline brain metastases, 33/235 vs 32/233 patients (both 14%) in the SG vs TPC arms, respectively, received one line of therapy in the metastatic setting and experienced disease recurrence ≤12 months after (neo)adjuvant chemotherapy. SG prolonged progression-free survival (median 5.7 vs 1.5 months [HR, 0.41; 95% CI, 0.22-0.76]) and overall survival (median 10.9 vs 4.9 months [HR, 0.51; 95% CI, 0.28-0.91]) vs TPC, with a manageable safety profile in this subgroup consistent with the overall population. In this second-line setting, as with later-line therapy, SG improved survival over conventional chemotherapy for patients with mTNBC.
Collapse
Affiliation(s)
- Lisa A Carey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| | - Delphine Loirat
- Medical Oncology Department and D3i, Institut Curie, Paris, France
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Aditya Bardia
- Department of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Véronique Diéras
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | | | - Jennifer R Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christel Fontaine
- Medical Oncology Department, Oncologisch Centrum, UZ Brussel, Brussels, Belgium
| | | | - Hope S Rugo
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Sara A Hurvitz
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX, USA
| | - Sibylle Loibl
- Department of Medicine and Research, Hämatologisch-Onkologische Gemeinschaftspraxis am Bethanien-Krankenhaus, Frankfurt, Germany
| | - Luca Gianni
- Medical Oncology, Gianni Bonadonna Foundation, Milan, Italy
| | - Martine Piccart
- Medical Oncology Department, Institut Jules Bordet and l'Université Libre de Bruxelles, Brussels, Belgium
| | - Yanni Zhu
- Department of Biostatistics, Gilead Sciences, Inc, Foster City, CA, USA
| | - Rosemary Delaney
- Department of Clinical Research, Gilead Sciences, Inc, Morris Plains, NJ, USA
| | - See Phan
- Department of Clinical Development, Gilead Sciences Inc, Foster City, CA, USA
| | - Javier Cortés
- International Breast Cancer Center, Quirón Group, Barcelona, Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Vall d´Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
16
|
Immunohistochemical assessment of PD-L1 expression using three different monoclonal antibodies in triple negative breast cancer patients. Arch Gynecol Obstet 2022; 306:1689-1695. [PMID: 35377046 PMCID: PMC9519646 DOI: 10.1007/s00404-022-06529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/12/2022]
Abstract
Background PD-L1 receptor expression in breast cancer tissue can be assessed with different anti-human PD-L1 monoclonal antibodies. The performance of three specific monoclonal antibodies in a head-to-head comparison is unknown. In addition, a potential correlation of PD-L1 expression and clinico-pathological parameters has not been investigated. Methods This was a retrospective study on tissue samples of patients with histologically confirmed triple negative breast cancer (TNBC). PD-L1 receptors were immune histochemically stained with three anti-human PD-L1 monoclonal antibodies: 22C3 and 28-8 for staining of tumor cell membranes (TC) and cytoplasm (Cyt), SP142 for immune cell staining (IC). Three different tissue samples of each patient were evaluated separately by two observers in a blinded fashion. The percentage of PD-L1 positive tumor cells in relation to the total number of tumor cells was determined. For antibodies 22C3 and 28-8 PD-L1 staining of 0 to < 1% of tumor cells was rated "negative", 1–50% was rated "positive" and > 50% was rated "strong positive". Cyt staining was defined as “negative” when no signal was observed and as “positive”, when any positive signal was observed. For IC staining with SP142 all samples with PD-L1 expression ≥ 1% were rated as “positive”. Finally, the relationship between PD-L1 expression and clinico-pathological parameters was analyzed. Results Tissue samples from 59 of 60 enrolled patients could be analyzed. Mean age was 55 years. Both the monoclonal antibodies 22C3 and 28-8 had similar properties, and were positive for both TC in 13 patients (22%) and for Cyt staining in 24 patients (40.7%). IC staining with antibody SP142 was positive in 24 patients (40.7%), who were also positive for Cyt staining. The differences between TC and Cyt staining and TC and IC staining were significant (p = 0.001). Cases with positive TC staining showed higher Ki67 expression compared to those with negative staining, 40 vs 30%, respectively (p = 0.05). None of the other clinico-pathological parameters showed any correlation with PDL1 expression. Conclusions Antibodies 22C3 and 28-8 can be used interchangeably for PD-L1 determination in tumor cells of TNBC patients. Results for Cyt staining with 22C3 or 28-8 and IC staining with SP142 were identical. In our study PD-L1 expression correlates with Ki67 expression but not with OS or DFS.
Collapse
|
17
|
Camorani S, d’Argenio A, Agnello L, Nilo R, Zannetti A, Ibarra LE, Fedele M, Cerchia L. Optimization of Short RNA Aptamers for TNBC Cell Targeting. Int J Mol Sci 2022; 23:3511. [PMID: 35408872 PMCID: PMC8998535 DOI: 10.3390/ijms23073511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated 2'Fluoro-pyrimidines RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells. Here, we optimized three of them by shortening and proved the truncated aptamers as optimal candidates to enable active targeting to TNBC. By using prediction of secondary structure to guide truncation, we identified structural regions that account for the binding motifs of the full-length aptamers. Their chemical synthesis led to short aptamers with superb nuclease resistance, which specifically bind to TNBC target cells and rapidly internalize into acidic compartments. They interfere with the growth of TNBC cells as mammospheres, thus confirming their potential as anti-tumor agents. We propose sTN145, sTN58 and sTN29 aptamers as valuable tools for selective TNBC targeting and promising candidates for effective treatments, including therapeutic agents and targeted delivery nanovectors.
Collapse
Affiliation(s)
- Simona Camorani
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Annachiara d’Argenio
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Lisa Agnello
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Roberto Nilo
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Antonella Zannetti
- National Research Council (CNR), Institute of Biostructures and Bioimaging (IBB), 80145 Naples, Italy;
| | - Luis Exequiel Ibarra
- Institute of Environmental Biotechnology and Health (INBIAS), National University of Rio Cuarto (UNRC), National Council for Scientific and Technological Research (CONICET), Río Cuarto X5800BIA, Argentina;
| | - Monica Fedele
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Laura Cerchia
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| |
Collapse
|
18
|
Li Y, Chen Y, Zhao R, Ji Y, Li J, Zhang Y, Lu H. Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer. Eur Radiol 2022; 32:1676-1687. [PMID: 34767068 DOI: 10.1007/s00330-021-08291-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To develop a nomogram based on pretreatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in patients with triple-negative breast cancer (TNBC). METHODS A total of 108 female patients with TNBC treated with neoadjuvant chemotherapy followed by surgery between January 2017 and October 2020 were enrolled. The patients were randomly divided into the primary cohort (n = 87) and validation cohort (n = 21) at a ratio of 4:1. The pretreatment DCE-MRI and clinicopathological features were reviewed and recorded. Univariate analysis and multivariate logistic regression analyses were used to determine the independent predictors of pCR in the primary cohort. A nomogram was developed based on the predictors, and the predictive performance of the nomogram was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). The validation cohort was used to test the predictive model. RESULTS Tumor volume measured on DCE-MRI, time to peak (TTP), and androgen receptor (AR) status were identified as independent predictors of pCR. The AUCs of the nomogram were 0.84 (95% CI: 0.75-0.93) and 0.79 (95% CI: 0.59-0.99) in the primary cohort and validation cohort, respectively. CONCLUSIONS Pretreatment DCE-MRI could predict pCR after NAC in patients with TNBC. The nomogram can be used to predict the probability of pCR and may help individualize treatment. KEY POINTS • Pretreatment DCE-MRI findings can predict pathologic complete response (pCR) after neoadjuvant chemotherapy in patients with triple-negative breast cancer. • A nomogram based on the independent predictors of tumor volume measured on DCE-MRI, time to peak, and androgen receptor status could help personalized cancer treatment in TNBC patients.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yongzi Chen
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People's Republic of China
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Rui Zhao
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yu Ji
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Junnan Li
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ying Zhang
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hong Lu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
19
|
Nikas I, Giaginis C, Petrouska K, Alexandrou P, Michail A, Sarantis P, Tsourouflis G, Danas E, Pergaris A, Politis PK, Nakopoulou L, Theocharis S. EPHA2, EPHA4, and EPHA7 Expression in Triple-Negative Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020366. [PMID: 35204461 PMCID: PMC8871500 DOI: 10.3390/diagnostics12020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Ongoing research continues to elucidate the complex role of ephrin receptors (EPHs) and their ligands (ephrins) in breast cancer pathogenesis, with their varying expression patterns implied to have an important impact on patients’ outcome. The current study aims to investigate the clinical significance of EPHA2, EPHA4, and EPHA7 expression in triple-negative breast cancer (TNBC) cases. EPHA2, EPHA4, and EPHA7 protein expression was assessed immunohistochemically on formalin-fixed and paraffin-embedded (FFPE) TNBC tissue sections from 52 TNBC patients and correlated with key clinicopathologic parameters and patients’ survival data (overall survival (OS); disease-free survival (DFS)). EPHA2, EPHA4, and EPHA7 expression was further examined in TNBC cell lines. EPHA2 overexpression was observed in 26 (50%) of the TNBC cases, who exhibited a shorter OS and DFS than their low-expression counterparts, with EPHA2 representing an independent prognostic factor for OS and DFS (p = 0.0041 and p = 0.0232, respectively). EPHA4 overexpression was associated with lymph node metastasis in TNBC patients (p = 0.0546). Alterations in EPHA2, EPHA4, and EPHA7 expression levels were also noted in the examined TNBC cell lines. Our study stresses that EPHA2 expression constitutes a potential prognostic factor for TNBC patients. Given the limited treatment options and poorer outcome that accompany the TNBC subtype, EPHA2 could also pose as a target for novel, more personalized, and effective therapeutic approaches for those patients.
Collapse
Affiliation(s)
- Ilias Nikas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, Myrina, 811 00 Lemnos, Greece;
| | - Kalliopi Petrouska
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Paraskevi Alexandrou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece; (A.M.); (P.K.P.)
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Laikon Hospital, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Eugene Danas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str., 115 27 Athens, Greece; (A.M.); (P.K.P.)
| | - Lydia Nakopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (I.N.); (K.P.); (P.A.); (P.S.); (E.D.); (A.P.); (L.N.)
- Correspondence: ; Tel.: + 30-210-7462178; Fax: + 30-210-7456259
| |
Collapse
|
20
|
Lee S, Yul Kim H, Joo Jung Y, Shin Jung C, Im D, Yeon Kim J, Min Lee S, Hwan Oh S. Comparison of mutational profiles between triple-negative and hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancers in T2N0-1M0 stage: Implications of TP53 and PIK3CA mutations in Korean early-stage breast cancers. Curr Probl Cancer 2022; 46:100843. [DOI: 10.1016/j.currproblcancer.2022.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/03/2022]
|
21
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
22
|
Fasano GA, Bayard S, Chen Y, Varella L, Cigler T, Bensenhaver J, Simmons R, Swistel A, Marti J, Moore A, Andreopoulou E, Ng J, Brandmaier A, Formenti S, Ali H, Davis M, Newman L. Benefit of adjuvant chemotherapy in node-negative T1a versus T1b and T1c triple-negative breast cancer. Breast Cancer Res Treat 2022; 192:163-173. [PMID: 35022867 DOI: 10.1007/s10549-021-06481-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE National comprehensive cancer network guidelines recommend delivery of adjuvant chemotherapy in node-negative triple-negative breast cancer (TNBC) if the tumor is > 1 cm and consideration of adjuvant chemotherapy for T1b but not T1a disease. These recommendations are based upon sparse data on the role of adjuvant chemotherapy in T1a and T1b node-negative TNBC. Our objective was to clarify the benefits of chemotherapy for patients with T1N0 TNBC, stratified by tumor size. METHODS We performed a retrospective analysis of survival outcomes of TNBC patients at two academic institutions in the United States from 1999 to 2018. Primary tumor size, histology, and nodal status were based upon surgical pathology. The Kaplan-Meier plot and 5-year unadjusted survival probability were evaluated. RESULTS Among 282 T1N0 TNBC cases, the status of adjuvant chemotherapy was known for 258. Mean follow-up was 5.3 years. Adjuvant chemotherapy was delivered to 30.5% of T1a, 64.7% T1b, and 83.9% T1c (p < 0.0001). On multivariable analysis, factors associated with delivery of adjuvant chemotherapy were tumor size and grade 3 disease. Improved overall survival was associated with use of chemotherapy in patients with T1c disease (93.2% vs. 75.2% p = 0.008) but not T1a (100% vs. 100% p = 0.3778) or T1b (100% vs. 95.8% p = 0.2362) disease. CONCLUSION Our data support current guidelines indicating benefit from adjuvant chemotherapy in node-negative TNBC associated with T1c tumors but excellent outcomes were observed in the cases of T1a and T1b disease, regardless of whether adjuvant chemotherapy was delivered.
Collapse
Affiliation(s)
- Genevieve A Fasano
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Solange Bayard
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Leticia Varella
- Department of Medical Oncology, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Tessa Cigler
- Department of Medical Oncology, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | | | - Rache Simmons
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Alexander Swistel
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Jennifer Marti
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Anne Moore
- Department of Medical Oncology, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Eleni Andreopoulou
- Department of Medical Oncology, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - John Ng
- Department of Radiation Oncology, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Andrew Brandmaier
- Department of Radiation Oncology, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Silvia Formenti
- Department of Radiation Oncology, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Haythem Ali
- Department of Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Melissa Davis
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA
| | - Lisa Newman
- Department of Surgery, New York Presbyterian - Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
O'Shaughnessy J, Brufsky A, Rugo HS, Tolaney SM, Punie K, Sardesai S, Hamilton E, Loirat D, Traina T, Leon-Ferre R, Hurvitz SA, Kalinsky K, Bardia A, Henry S, Mayer I, Zhu Y, Phan S, Cortés J. Analysis of patients without and with an initial triple-negative breast cancer diagnosis in the phase 3 randomized ASCENT study of sacituzumab govitecan in metastatic triple-negative breast cancer. Breast Cancer Res Treat 2022; 195:127-139. [PMID: 35545724 PMCID: PMC9374646 DOI: 10.1007/s10549-022-06602-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Sacituzumab govitecan (SG) is an antibody-drug conjugate composed of an anti-Trop-2 antibody coupled to SN-38 via a proprietary hydrolyzable linker. In the ASCENT study, SG improved survival versus single-agent treatment of physician's choice (TPC) in pre-treated metastatic triple-negative breast cancer (mTNBC). Hormone/HER2 receptor changes are common, particularly at relapse/metastasis. This subanalysis assessed outcomes in patients who did/did not have TNBC at initial diagnosis, before enrollment. METHODS TNBC diagnosis was only required at study entry. Patients with mTNBC refractory/relapsing after ≥ 2 prior chemotherapies were randomized 1:1 to receive SG or TPC. Primary endpoint was progression-free survival (PFS) in patients without brain metastases. RESULTS Overall, 70/235 (30%) and 76/233 (33%) patients who received SG and TPC, respectively, did not have TNBC at initial diagnosis. Clinical benefit with SG versus TPC was observed in this subset. Median PFS was 4.6 versus 2.3 months (HR 0.48; 95% CI 0.32-0.72), median overall survival was 12.4 versus 6.7 months (HR 0.44; 95% CI 0.30-0.64), and objective response rate (ORR) was 31% versus 4%; those who also received prior CDK4/6 inhibitors had ORRs of 21% versus 5%. Efficacy and safety for patients with TNBC at initial diagnosis were generally similar to those who did not present with TNBC at initial diagnosis. CONCLUSION Patients without TNBC at initial diagnosis had improved clinical outcomes and a manageable safety profile with SG, supporting SG as a treatment option for mTNBC regardless of subtype at initial diagnosis. Subtype reassessment in advanced breast cancer allows for optimal treatment. Clinical trial registration number NCT02574455, registered October 12, 2015.
Collapse
Affiliation(s)
- Joyce O'Shaughnessy
- Medical Oncology, Texas Oncology-Baylor Charles A. Sammons Cancer Center, 3410 Worth St., Suite 400, Dallas, TX, 75246, USA.
| | - Adam Brufsky
- Magee-Womens Hospital and the Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Sagar Sardesai
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Delphine Loirat
- Medical Oncology Department and D3i, Institut Curie, Paris, France
| | - Tiffany Traina
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Sara A Hurvitz
- Medical Oncology, University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kevin Kalinsky
- Columbia University Irving Medical Center, New York, NY, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Aditya Bardia
- Department of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Stephanie Henry
- Department of Oncology-Hematology, Radiotherapy, and Nuclear Medicine, CHU UCL Namur, Namur, Belgium
| | - Ingrid Mayer
- Breast Cancer Program, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yanni Zhu
- Department of Biostatistics, Gilead Sciences, Inc., Foster City, CA, USA
| | - See Phan
- Department of Clinical Development, Gilead Sciences, Inc., Foster City, CA, USA
| | - Javier Cortés
- International Breast Cancer Center, Quironsalud Group, Barcelona, Spain
| |
Collapse
|
24
|
Gnanamuttupulle M, Henke O, Ntundu SH, Serventi F, Mwakipunda LE, Amsi P, Mremi A, Chilonga K, Msuya D, Chugulu SG. Clinicopathological characteristics of breast cancer patients from Northern Tanzania: common aspects of late stage presentation and triple negative breast cancer. Ecancermedicalscience 2021; 15:1282. [PMID: 34824605 PMCID: PMC8580599 DOI: 10.3332/ecancer.2021.1282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 01/22/2023] Open
Abstract
Purpose Breast cancer (BC) is the second most common cancer among Tanzanian women. Oestrogen (ER), progesterone and human epidermal growth factor receptor 2 play major roles in prognosis and treatment but data for Tanzania are sparse. This study aimed to determine these patterns and histological types, tumour grading and staging of BC patients in northern Tanzania for a better understanding of BC in the Sub-Saharan African (SSA) setting. Methods A cross-sectional study recorded newly diagnosed BC cases at Kilimanjaro Christian Medical Centre between October 2018 and March 2019. Receptor status, histological types and grade, clinical stage and socio-demographic were recorded and descriptive and bivariate analyses performed. Results 116 patients were enrolled. Median age was 53 years, 71.6% were ≥45 years. The commonest molecular subtype was triple negative breast cancer (TNBC) (n = 33; 28.4%). One hundred and two (87.9%) patients had invasive ductal carcinoma (IDC), poorly differentiated tumours (60; 51.7%) and clinical stage III disease (62; 53.0%). ER negative tumours were associated with poorly differentiated histological grade (relative risk (RR): 1.34 (0.87–2.07)), tumour size > 5 cm (RR: 1.67 (0.33–8.35)) and IDC (RR: 3.35 (0.56–20.23)). Clinical stages III & IV (odds ratio (OR): 1.64 (0.63–4.24)) were associated with hormone receptor (HR) negative tumours and metastasis (OR: 1.60 (0.68–3.74)) with TNBC. 18% of the patients reported about first-degree relatives with BC. Conclusions Most patients presented in advanced stages and TNBC in their menopause. HR negative tumours were associated with poor histological differentiation and IDC. The high percentage of positive family history of BC and the differences in receptor patterns compared to other parts of the world should urge further genetic research on BC in SSA.
Collapse
Affiliation(s)
- Marianne Gnanamuttupulle
- Department of General Surgery, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania.,Faculty of Medicine, Kilimanjaro Christian Medical University College, PO Box 2240, Moshi, Tanzania
| | - Oliver Henke
- Cancer Care Centre, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania
| | - Shilanaiman Hilary Ntundu
- Department of General Surgery, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania.,Faculty of Medicine, Kilimanjaro Christian Medical University College, PO Box 2240, Moshi, Tanzania
| | - Furaha Serventi
- Cancer Care Centre, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania
| | - Leila E Mwakipunda
- Cancer Care Centre, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania
| | - Patrick Amsi
- Department of Pathology, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania
| | - Alex Mremi
- Department of Pathology, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania
| | - Kondo Chilonga
- Department of General Surgery, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania.,Faculty of Medicine, Kilimanjaro Christian Medical University College, PO Box 2240, Moshi, Tanzania
| | - David Msuya
- Department of General Surgery, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania.,Faculty of Medicine, Kilimanjaro Christian Medical University College, PO Box 2240, Moshi, Tanzania
| | - Samuel G Chugulu
- Department of General Surgery, Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania.,Faculty of Medicine, Kilimanjaro Christian Medical University College, PO Box 2240, Moshi, Tanzania
| |
Collapse
|
25
|
Vegunta S, Bhatt AA, Choudhery SA, Pruthi S, Kaur AS. Identifying women with increased risk of breast cancer and implementing risk-reducing strategies and supplemental imaging. Breast Cancer 2021; 29:19-29. [PMID: 34665436 DOI: 10.1007/s12282-021-01298-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer (BC) is the second most common cancer in women, affecting 1 in 8 women in the United States (12.5%) in their lifetime. However, some women have a higher lifetime risk of BC because of genetic and lifestyle factors, mammographic breast density, and reproductive and hormonal factors. Because BC risk is variable, screening and prevention strategies should be individualized after considering patient-specific risk factors. Thus, health care professionals need to be able to assess risk profiles, identify high-risk women, and individualize screening and prevention strategies through a shared decision-making process. In this article, we review the risk factors for BC, risk-assessment models that identify high-risk patients, and preventive medications and lifestyle modifications that may decrease risk. We also discuss the benefits and limitations of various supplemental screening methods.
Collapse
Affiliation(s)
- Suneela Vegunta
- Division of Women's Health Internal Medicine, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA.
| | - Asha A Bhatt
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Sandhya Pruthi
- Division of General Internal Medicine, Breast Cancer Clinic, Mayo Clinic, Rochester, MN, USA
| | - Aparna S Kaur
- Division of General Internal Medicine, Breast Cancer Clinic, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Lee J, Kim SH, Kang BJ, Lee A, Park WC, Hwang J. Imaging characteristics of young age breast cancer (YABC) focusing on pathologic correlation and disease recurrence. Sci Rep 2021; 11:20205. [PMID: 34642389 PMCID: PMC8511101 DOI: 10.1038/s41598-021-99600-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to investigate imaging characteristics of young age breast cancer (YABC) focusing on correlation with pathologic factors and association with disease recurrence. From January 2017 to December 2019, patients under 40 years old who were diagnosed as breast cancer were enrolled in this study. Morphologic analysis of tumor and multiple quantitative parameters were obtained from pre-treatment dynamic contrast enhanced breast magnetic resonance imaging (DCE-MRI). Tumor-stroma ratio (TSR), microvessel density (MVD) and endothelial Notch 1 (EC Notch 1) were investigated for correlation with imaging parameters. In addition, recurrence associated factors were assessed using both clinico-pathologic factors and imaging parameters. A total of 53 patients were enrolled. Several imaging parameters derived from apparent diffusion coefficient (ADC) histogram showed negative correlation with TSR; and there was negative correlation between MVD and Ve in perfusion analysis. There were nine cases of recurrences with median interval of 16 months. Triple negative subtype and low CD34 MVD positivity in Notch 1 hotspots showed significant association with tumor recurrence. Texture parameters reflecting tumor sphericity and homogeneity were also associated with disease recurrence. In conclusion, several quantitative MRI parameters can be used as imaging biomarkers for tumor microenvironment and can predict disease recurrence in YABC.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sung Hun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Bong Joo Kang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Chan Park
- Division of Breast-Thyroid Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinwoo Hwang
- Philips Healthcare Korea, Seoul, Republic of Korea
| |
Collapse
|
27
|
Goel N, Yadegarynia S, Lubarsky M, Choi S, Kelly K, Balise R, Kesmodel SB, Kobetz E. Racial and Ethnic Disparities in Breast Cancer Survival: Emergence of a Clinically Distinct Hispanic Black Population. Ann Surg 2021; 274:e269-e275. [PMID: 34132699 PMCID: PMC8384141 DOI: 10.1097/sla.0000000000005004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To understand the impact of Black race on breast cancer (BC) presentation, treatment, and survival among Hispanics. SUMMARY OF BACKGROUND DATA It is well-documented that non-Hispanic Blacks (NHB) present with late-stage disease, are less likely to complete treatment, and have worse survival compared to their non-Hispanic White (NHW) counterparts. However, no data evaluates whether this disparity extends to Hispanic Blacks (HB) and Hispanic Whites (HW). Given our location in Miami, gateway to Latin America and the Caribbean, we have the diversity to evaluate BC outcomes in HB and HW. METHODS Retrospective cohort study of stage I-IV BC patients treated at our institution from 2005-2017. Kaplan-Meier survival curves were generated and compared using the log-rank test. Multivariable survival models were computed using Cox proportional hazards regression. RESULTS Race/ethnicity distribution of 5951 patients: 28% NHW, 51% HW, 3% HB, and 18% NHB. HB were more economically disadvantaged, had more aggressive disease, and less treatment compliant compared to HW. 5-year OS by race/ethnicity was: 85% NHW, 84.8% HW, 79.4% HB, and 72.7% NHB (P < 0.001). After adjusting for covariates, NHB was an independent predictor of worse OS [hazard ratio:1.25 (95% confidence interval: 1.01-1.52), P < 0.041)]. CONCLUSIONS In this first comprehensive analysis of HB and HW, HB have worse OS compared to HW, suggesting that race/ethnicity is a complex variable acting as a proxy for tumor and host biology, as well as individual and neighborhood-level factors impacted by structural racism. This study identifies markers of vulnerability associated with Black race and markers of resiliency associated with Hispanic ethnicity to narrow a persistent BC survival gap.
Collapse
Affiliation(s)
- Neha Goel
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
- University of Miami, Miller School of Medicine, Miami, FL
| | | | - Maya Lubarsky
- University of Miami, Miller School of Medicine, Miami, FL
| | - Seraphina Choi
- University of Miami, Miller School of Medicine, Miami, FL
| | - Kristin Kelly
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Raymond Balise
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Susan B Kesmodel
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
- University of Miami, Miller School of Medicine, Miami, FL
| | - Erin Kobetz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
- University of Miami, Miller School of Medicine, Miami, FL
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL
- Division of Internal Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
28
|
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel) 2021; 13:cancers13174287. [PMID: 34503097 PMCID: PMC8428369 DOI: 10.3390/cancers13174287] [Citation(s) in RCA: 608] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is the most common cancer among women. It is estimated that 2.3 million new cases of BC are diagnosed globally each year. Based on mRNA gene expression levels, BC can be divided into molecular subtypes that provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. This review addresses the overview on the BC epidemiology, risk factors, classification with an emphasis on molecular types, prognostic biomarkers, as well as possible treatment modalities. Abstract Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide with more than 2 million new cases in 2020. Its incidence and death rates have increased over the last three decades due to the change in risk factor profiles, better cancer registration, and cancer detection. The number of risk factors of BC is significant and includes both the modifiable factors and non-modifiable factors. Currently, about 80% of patients with BC are individuals aged >50. Survival depends on both stage and molecular subtype. Invasive BCs comprise wide spectrum tumors that show a variation concerning their clinical presentation, behavior, and morphology. Based on mRNA gene expression levels, BC can be divided into molecular subtypes (Luminal A, Luminal B, HER2-enriched, and basal-like). The molecular subtypes provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. The eighth edition of TNM classification outlines a new staging system for BC that, in addition to anatomical features, acknowledges biological factors. Treatment of breast cancer is complex and involves a combination of different modalities including surgery, radiotherapy, chemotherapy, hormonal therapy, or biological therapies delivered in diverse sequences.
Collapse
Affiliation(s)
- Sergiusz Łukasiewicz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Robert Sitarz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| | - Andrzej Stanisławek
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Oncology, Chair of Oncology and Environmental Health, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
29
|
Zahran AM, El-Badawy O, Kamel LM, Rayan A, Rezk K, Abdel-Rahim MH. Accumulation of Regulatory T Cells in Triple Negative Breast Cancer Can Boost Immune Disruption. Cancer Manag Res 2021; 13:6019-6029. [PMID: 34377021 PMCID: PMC8349183 DOI: 10.2147/cmar.s285128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Background and Aim The present study was conducted to evaluate the number of Tregs in triple negative breast cancer (TNBC), in normal breast parenchyma and in the peripheral blood of these patients and controls, in addition to their correlations with the clinico-pathologic features and the outcomes of TNBC. Methods Thirty adult treatment-naïve women with non-metastatic TNBC were recruited. In addition, 20 ages matched healthy females participated as a control group. Peripheral blood samples were collected from all participants in tubes containing heparin, fresh tumor tissues were also obtained from all patients undergoing surgery, and 20 normal breast tissue samples were obtained from the same patients’ areas adjacent to the safety margins; all these samples were taken for flow cytometric detection of Tregs. Results The mean percentages of CD4+CD25+highT cells and Tregs were higher in TNBC peripheral blood than healthy controls and in malignant tissue than normal tissue. Moreover, the frequencies of tumor-infiltrating CD4+T cells and Tregs were exceeding those in the peripheral blood of cancer patients. Only tumor-infiltrating Tregs have shown increasing levels with the increase in the tumor size and were significantly higher in patients with local recurrences than those without recurrence. In addition, Tregs showed significant inverse relation with DFS and direct relation with the level of the peripheral Tregs. Conclusion The findings of the current study support the possibility that TNBC microenvironment conveys specific characteristics on Tregs distinguishing them from those in normal breast tissue or Tregs in peripheral blood, improving the capabilities of tumor-infiltrating Tregs to enhance tumor growth, local recurrence and reduce the DFS.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lamiaa M Kamel
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid Rezk
- Surgical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mona H Abdel-Rahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
30
|
Agnello L, Tortorella S, d'Argenio A, Carbone C, Camorani S, Locatelli E, Auletta L, Sorrentino D, Fedele M, Zannetti A, Franchini MC, Cerchia L. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J Exp Clin Cancer Res 2021; 40:239. [PMID: 34294133 PMCID: PMC8299618 DOI: 10.1186/s13046-021-02039-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic side effects and drug resistance. Novel site-directed aptamer-based nanotherapeutics have the potential to overcome obstacles of chemotherapy. In this study we investigated the tumor targeting and the anti-tumorigenic effectiveness of novel cisplatin-loaded and aptamer-decorated nanosystems in TNBC. METHODS Nanotechnological procedures were applied to entrap cisplatin at high efficacy into polymeric nanoparticles (PNPs) that were conjugated on their surface with the epidermal growth factor receptor (EGFR) selective and cell-internalizing CL4 aptamer to improve targeted therapy. Internalization into TNBC MDA-MB-231 and BT-549 cells of aptamer-decorated PNPs, loaded with BODIPY505-515, was monitored by confocal microscopy using EGFR-depleted cells as negative control. Tumor targeting and biodistribution was evaluated by fluorescence reflectance imaging upon intravenously injection of Cyanine7-labeled nanovectors in nude mice bearing subcutaneous MDA-MB-231 tumors. Cytotoxicity of cisplatin-loaded PNPs toward TNBC cells was evaluated by MTT assay and the antitumor effect was assessed by tumor growth experiments in vivo and ex vivo analyses. RESULTS We demonstrate specific, high and rapid uptake into EGFR-positive TNBC cells of CL4-conjugated fluorescent PNPs which, when loaded with cisplatin, resulted considerably more cytotoxic than the free drug and nanovectors either unconjugated or conjugated with a scrambled aptamer. Importantly, animal studies showed that the CL4-equipped PNPs achieve significantly higher tumor targeting efficiency and enhanced therapeutic effects, without any signs of systemic toxicity, compared with free cisplatin and untargeted PNPs. CONCLUSIONS Our study proposes novel and safe drug-loaded targeted nanosystems for EGFR-positive TNBC with excellent potential for the application in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
- University of Campania "L.Vanvitelli" Department of Precision Medicine, S. Andrea delle Dame - Via L. De Crecchio, 7 - 80138, Naples, Italy
| | - Silvia Tortorella
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Annachiara d'Argenio
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Clarissa Carbone
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Luigi Auletta
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Domenico Sorrentino
- Ceinge-Biotecnologie Avanzate s.c.a.r.l, via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
31
|
Oncologic Anthropology: An Interdisciplinary Approach to Understanding the Association Between Genetically Defined African Ancestry and Susceptibility for Triple Negative Breast Cancer. CURRENT BREAST CANCER REPORTS 2021. [DOI: 10.1007/s12609-021-00426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
The Role of Screening Mammography in Addressing Disparities in Breast Cancer Diagnosis, Treatment, and Outcomes. CURRENT BREAST CANCER REPORTS 2021. [DOI: 10.1007/s12609-021-00427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Stringer-Reasor EM, Elkhanany A, Khoury K, Simon MA, Newman LA. Disparities in Breast Cancer Associated With African American Identity. Am Soc Clin Oncol Educ Book 2021; 41:e29-e46. [PMID: 34161138 DOI: 10.1200/edbk_319929] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Persistent disparities in the burden of breast cancer between African Americans and White Americans have been documented over many decades. Features characterizing breast cancer in the African American community include a 40% higher mortality rate, younger age distribution, greater advanced-stage distribution, increased risk of biologically aggressive disease such as the triple-negative phenotype, and increased incidence of male breast cancer. Public health experts, genetics researchers, clinical trialists, multidisciplinary oncology teams, and advocates must collaborate to comprehensively address the multifactorial etiology of and remedies for breast cancer disparities. Efforts to achieve breast health equity through improved access to affordable, high-quality care are especially imperative in the context of the COVID-19 pandemic and its disproportionately high economic toll on African Americans.
Collapse
Affiliation(s)
- Erica M Stringer-Reasor
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Ahmed Elkhanany
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Katia Khoury
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Melissa A Simon
- Department of Obstetrics and Gynecology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Lisa A Newman
- Department of Surgery, Weill Cornell Medicine/New York Presbyterian Hospital Network, New York, NY
| |
Collapse
|
34
|
Martini R, Chen Y, Jenkins BD, Elhussin IA, Cheng E, Hoda SA, Ginter PS, Hanover J, Zeidan RB, Oppong JK, Adjei EK, Jibril A, Chitale D, Bensenhaver JM, Awuah B, Bekele M, Abebe E, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Nathansan SD, Jackson L, Jiagge E, Petersen LF, Proctor E, Nikolinakos P, Gyan KK, Yates C, Kittles R, Newman LA, Davis MB. Investigation of triple-negative breast cancer risk alleles in an International African-enriched cohort. Sci Rep 2021; 11:9247. [PMID: 33927264 PMCID: PMC8085076 DOI: 10.1038/s41598-021-88613-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Large-scale efforts to identify breast cancer (BC) risk alleles have historically taken place among women of European ancestry. Recently, there are new efforts to verify if these alleles increase risk in African American (AA) women as well. We investigated the effect of previously reported AA breast cancer and triple-negative breast cancer (TNBC) risk alleles in our African-enriched International Center for the Study of Breast Cancer Subtypes (ICSBCS) cohort. Using case-control, case-series and race-nested approaches, we report that the Duffy-null allele (rs2814778) is associated with TNBC risk (OR = 3.814, p = 0.001), specifically among AA individuals, after adjusting for self-indicated race and west African ancestry (OR = 3.368, p = 0.007). We have also validated the protective effect of the minor allele of the ANKLE1 missense variant rs2363956 among AA for TNBC (OR = 0.420, p = 0.005). Our results suggest that an ancestry-specific Duffy-null allele and differential prevalence of a polymorphic gene variant of ANKLE1 may play a role in TNBC breast cancer outcomes. These findings present opportunities for therapeutic potential and future studies to address race-specific differences in TNBC risk and disease outcome.
Collapse
Affiliation(s)
- Rachel Martini
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
- Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Brittany D Jenkins
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Isra A Elhussin
- Department of Biology & Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Syed A Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paula S Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Rozina B Zeidan
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
| | - Joseph K Oppong
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Ernest K Adjei
- Department of Pathology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Aisha Jibril
- Department of Pathology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | | | | | - Baffour Awuah
- Directorate of Oncology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Mahteme Bekele
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Engida Abebe
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Ishmael Kyei
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frances S Aitpillah
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael O Adinku
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwasi Ankomah
- Directorate of Radiology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | | | - LaToya Jackson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Evelyn Jiagge
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | | | - Erica Proctor
- Department of Surgery, Henry Ford Health System, Detroit, MI, USA
| | | | - Kofi K Gyan
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
| | - Clayton Yates
- Department of Biology & Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Rick Kittles
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lisa A Newman
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, 420 E 70th Street, New York City, NY, 10021, USA.
| |
Collapse
|
35
|
Chen Y, Susick L, Davis M, Bensenhaver J, Nathanson SD, Burns J, Newman LA. Evaluation of Triple-Negative Breast Cancer Early Detection via Mammography Screening and Outcomes in African American and White American Patients. JAMA Surg 2021; 155:440-442. [PMID: 32074266 DOI: 10.1001/jamasurg.2019.6032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yalei Chen
- Henry Ford Cancer Institute, Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Laura Susick
- Henry Ford Cancer Institute, Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Jessica Bensenhaver
- Henry Ford Cancer Institute, Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - S David Nathanson
- Henry Ford Cancer Institute, Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Jessica Burns
- Henry Ford Cancer Institute, Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Lisa A Newman
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
36
|
Roelands J, Mall R, Almeer H, Thomas R, Mohamed MG, Bedri S, Al-Bader SB, Junejo K, Ziv E, Sayaman RW, Kuppen PJK, Bedognetti D, Hendrickx W, Decock J. Ancestry-associated transcriptomic profiles of breast cancer in patients of African, Arab, and European ancestry. NPJ Breast Cancer 2021; 7:10. [PMID: 33558495 PMCID: PMC7870839 DOI: 10.1038/s41523-021-00215-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer largely dominates the global cancer burden statistics; however, there are striking disparities in mortality rates across countries. While socioeconomic factors contribute to population-based differences in mortality, they do not fully explain disparity among women of African ancestry (AA) and Arab ancestry (ArA) compared to women of European ancestry (EA). In this study, we sought to identify molecular differences that could provide insight into the biology of ancestry-associated disparities in clinical outcomes. We applied a unique approach that combines the use of curated survival data from The Cancer Genome Atlas (TCGA) Pan-Cancer clinical data resource, improved single-nucleotide polymorphism-based inferred ancestry assignment, and a novel breast cancer subtype classification to interrogate the TCGA and a local Arab breast cancer dataset. We observed an enrichment of BasalMyo tumors in AA patients (38 vs 16.5% in EA, p = 1.30E - 10), associated with a significant worse overall (hazard ratio (HR) = 2.39, p = 0.02) and disease-specific survival (HR = 2.57, p = 0.03). Gene set enrichment analysis of BasalMyo AA and EA samples revealed differences in the abundance of T-regulatory and T-helper type 2 cells, and enrichment of cancer-related pathways with prognostic implications (AA: PI3K-Akt-mTOR and ErbB signaling; EA: EGF, estrogen-dependent and DNA repair signaling). Strikingly, AMPK signaling was associated with opposing prognostic connotation (AA: 10-year HR = 2.79, EA: 10-year HR = 0.34). Analysis of ArA patients suggests enrichment of BasalMyo tumors with a trend for differential enrichment of T-regulatory cells and AMPK signaling. Together, our findings suggest that the disparity in the clinical outcome of AA breast cancer patients is likely related to differences in cancer-related and microenvironmental features.
Collapse
Affiliation(s)
- Jessica Roelands
- Functional Cancer Omics Lab, Cancer Group, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Hossam Almeer
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mahmoud G Mohamed
- Women's Hospital, Hamad Medical Corporation, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | | | | | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Doha, Qatar
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Davide Bedognetti
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy.
- Cancer Immunogenetics Lab, Cancer Group, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| | - Wouter Hendrickx
- Functional Cancer Omics Lab, Cancer Group, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
37
|
Inhibition of platelet-derived growth factor C and their receptors additionally increases doxorubicin effects in triple-negative breast cancer cells. Eur J Pharmacol 2021; 895:173868. [PMID: 33460613 DOI: 10.1016/j.ejphar.2021.173868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Complex of platelet-derived growth factor (PDGF) isoforms and PDGF receptors have important functions in the regulation of growth and survival of various cell types. Herein, it was found that aberrant PDGFC expression is closely associated with survival rates in triple-negative breast cancer (TNBC) patients. In addition, PDGFC expression was identified to be significantly increased in TNBC cells unlike other subtypes such as PDGFA, PDGFB, and PDGFD. Apparently, the effects of specific PDGF receptor (PDGFR) inhibitors such as sunitinib and ponatinib on HCC1806 and Hs578T TNBC cells were investigated. Both inhibitors decreased cell viability in a dose-dependent manner. In addition, the inhibitors completely inhibited cell growth in both the cell lines and decreased the expression of matrix metalloproteinase-1 (MMP-1), one of the metastasis-related genes. Cell migration was also decreased by the inhibitors. Finally, the combined effects of the inhibitors with doxorubicin (DOX) were investigated. The results showed that the combination of two PDGFR inhibitors with DOX inhibited the growth of cells and enhanced the apoptotic cell death more uniformly than DOX. Consequently, it is demonstrated that PDGFR inhibitors, sunitinib and ponatinib hold the potential for effective treatment of TNBC.
Collapse
|
38
|
Jin H. Perspectives of Aptamers for Medical Applications. APTAMERS FOR MEDICAL APPLICATIONS 2021:405-462. [DOI: 10.1007/978-981-33-4838-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Asong G, Amissah F, Voshavar C, Nkembo AT, Ntantie E, Lamango NS, Ablordeppey SY. A Mechanistic Investigation on the Anticancer Properties of SYA013, a Homopiperazine Analogue of Haloperidol with Activity against Triple Negative Breast Cancer Cells. ACS OMEGA 2020; 5:32907-32918. [PMID: 33403252 PMCID: PMC7774091 DOI: 10.1021/acsomega.0c03495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 05/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the most malignant cancers associated with early metastasis, poor clinical prognosis, and high recurrence rate. TNBC is a distinct subtype of breast cancer that lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptors (HER2). Development of effective TNBC therapies has been limited partially due to the lack of specific molecular targets and chemotherapy involving different cytotoxic drugs suffers from significant side effects and drug-resistance development. Therefore, there is an unmet need for the development of novel and efficient therapeutic drugs with reduced side effects to treat TNBC. We have previously reported that certain analogues of haloperidol (a typical antipsychotic drug used for treating mental/mood disorders such as schizophrenia and bipolar disorder) suppress the viability of a variety of solid tumor cell lines, and we have identified 4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluoro-phenyl)butan-1-one (SYA013) with such antiproliferative properties. Interestingly, unlike haloperidol, SYA013 shows moderate selectivity toward σ2 receptors. In this study, we explored the potential of SYA013 in modulating the important biological events associated with cell survival and progression as well as the mechanistic aspects of apoptosis in a representative TNBC cell line (MDA-MB-231). Our results indicate that SYA013 inhibits the proliferation of MDA-MB-231 cells in a concentration-dependent manner and suppresses cell migration and invasion. Apoptotic studies were also conducted in MDA-MB-468 cells (cells derived from a 51-year old Black female with metastatic adenocarcinoma of the breast.). In addition, we have demonstrated that SYA013 induces MDA-MB-231 cell death through the intrinsic apoptotic pathway and may suppress tumor progression and metastasis. Taken together, our study presents a mechanistic pathway of the anticancer properties of SYA013 against TNBC cell lines and suggests a potential for exploring SYA013 as a lead agent for development against TNBC.
Collapse
Affiliation(s)
- Gladys
M. Asong
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Felix Amissah
- College
of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Chandrashekhar Voshavar
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Augustine T. Nkembo
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Elizabeth Ntantie
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Nazarius S. Lamango
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Seth Y. Ablordeppey
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| |
Collapse
|
40
|
Janeva S, Zhang C, Kovács A, Parris TZ, Crozier JA, Pezzi CM, Linderholm B, Audisio RA, Olofsson Bagge R. Adjuvant chemotherapy and survival in women aged 70 years and older with triple-negative breast cancer: a Swedish population-based propensity score-matched analysis. THE LANCET. HEALTHY LONGEVITY 2020; 1:e117-e124. [DOI: 10.1016/s2666-7568(20)30018-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
|
41
|
Trusler O, Goodwin J, Laslett AL. BRCA1 and BRCA2 associated breast cancer and the roles of current modelling systems in drug discovery. Biochim Biophys Acta Rev Cancer 2020; 1875:188459. [PMID: 33129865 DOI: 10.1016/j.bbcan.2020.188459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
For a drug candidate to be fully developed takes years and investment of hundreds of millions of dollars. There is no doubt that drug development is difficult and risky, but vital to protecting against devastating disease. This difficulty is clearly evident in BRCA1 and BRCA2 related breast cancer, with current treatment options largely confined to invasive surgical procedures, as well as chemotherapy and radiotherapy regimes which damage healthy tissue and can leave remnant disease. Consequently, patient survival and relapse rates are far from ideal, and new candidate treatments are needed. The preclinical stages of drug discovery are crucial to get right for translation to hospital beds. Disease models must take advantage of current technologies and be accurate for rapid and translatable treatments. Careful selection of cell lines must be coupled with high throughput techniques, with promising results trialled further in highly accurate humanised patient derived xenograft models. Traditional adherent drug screening should transition to 3D culture systems amenable to high throughput techniques if the gap between in vitro and in vivo studies is to be partially bridged. The possibility of organoid, induced pluripotent stem cell, and conditionally reprogrammed in vitro models is tantalising, however protocols are yet to be fully established. This review of BRCA1 and BRCA2 cancer biology and current modelling systems will hopefully guide the design of future drug discovery endeavours and highlight areas requiring improvement.
Collapse
Affiliation(s)
- Oliver Trusler
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Jacob Goodwin
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Andrew L Laslett
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
42
|
Camorani S, Passariello M, Agnello L, Esposito S, Collina F, Cantile M, Di Bonito M, Ulasov IV, Fedele M, Zannetti A, De Lorenzo C, Cerchia L. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res 2020; 39:180. [PMID: 32892748 PMCID: PMC7487859 DOI: 10.1186/s13046-020-01694-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers allowing for combination therapies with immune-checkpoint blockade. Platelet-derived growth factor receptor β (PDGFRβ) is highly expressed in invasive TNBC, both on tumor cells and tumor microenvironment. We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRβ aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRβ aptamer and anti-PD-L1 mAbs in TNBC. METHODS The targeting ability of the anti-human PDGFRβ aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays. The anti-proliferative effects of the PDGFRβ aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4 T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4 T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAb combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. RESULTS We show that the PDGFRβ aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAb-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in mice. It acts on both tumor cells, inhibiting Akt and ERK1/2 signaling pathways, and immune populations, increasing intratumoral CD8 + T cells and reducing FOXP3 + Treg cells. CONCLUSION Co-treatment of PDGFRβ aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first time an evidence of the efficacy of PDGFRβ/PD-L1 co-targeting combination therapy in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Silvia Esposito
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
43
|
Ghani S, Sochat M, Luo J, Tao Y, Ademuyiwa F. Characteristics of male triple negative breast cancer: A population-based study. Breast J 2020; 26:1748-1755. [PMID: 32856383 DOI: 10.1111/tbj.14023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/28/2022]
Abstract
Male triple negative breast cancer (TNBC), which lacks expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), is a very rare entity, comprising only a very small percentage of all male breast cancer cases. Management strategies are typically based off research conducted in female TNBC patients; however, there is still much that remains unknown in the male cohort, such as risk factors for developing these malignancies, the optimal treatment approach, and both short-term and long-term outcome data. In this retrospective cohort study, we aimed to address these concerns by assessing both the characteristics of male patients who develop TNBC as well as their outcomes. We harnessed data from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program and identified 66 male patients diagnosed with TNBC between 2010 and 2016. Patients were stratified by several variables including age, insurance status, time period of diagnosis, histology, nodal status, tumor grade, tumor stage at diagnosis, and treatment strategy employed for the assessment of overall survival (OS) differences. Our analysis demonstrated that stage remains the most important prognostic factor for OS, with higher stage corresponding to worse OS. A significant OS benefit was also identified in men undergoing a total mastectomy, compared to partial mastectomy or no surgery at all. We also identified that male patients are more likely to present with more advanced disease stages compared to their female counterparts and, therefore, have worse outcomes on average. This may be due to various factors, including the rarity of male TNBC cases and less clear screening guidelines for male breast cancer in general. Trends toward poorer OS with higher tumor grade, higher tumor T stage, advanced age, earlier time period of diagnosis, and ductal histology were also identified, but did not achieve statistical significance. The remaining variables did not appear to influence outcomes in a meaningful manner. In summary, our study suggests, similar to population studies of women with TNBC, that tumor stage is a major prognostic factor of OS in men with TNBC. The data also suggest that the surgical treatment strategy employed is also likely of significance, with improved OS being seen with total mastectomies over partial mastectomies. Other variables such as tumor grade and T stage also likely play a role, but did not achieve statistical significance owing to the small population size. Owing to the rarity of cases, further studies of male TNBC are needed to better understand this rare entity and guide future management strategies.
Collapse
Affiliation(s)
- Sofia Ghani
- Division of Hematology/Oncology, St. Louis University Hospital, St. Louis, Missouri, USA
| | - Matthew Sochat
- Division of Hematology/Oncology, St. Louis University Hospital, St. Louis, Missouri, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Alvin J. Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yu Tao
- Division of Public Health Sciences, Alvin J. Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Foluso Ademuyiwa
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
44
|
Salvioni L, Zuppone S, Andreata F, Monieri M, Mazzucchelli S, Di Carlo C, Morelli L, Cordiglieri C, Donnici L, De Francesco R, Corsi F, Prosperi D, Vago R, Colombo M. Nanoparticle‐Mediated Suicide Gene Therapy for Triple Negative Breast Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucia Salvioni
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| | - Stefania Zuppone
- Urologic Research InstituteDivision of Experimental OncologyIRCCS San Raffaele Scientific Institute via Olgettina 60 Milan 20132 Italy
| | - Francesco Andreata
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
| | - Matteo Monieri
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
| | - Serena Mazzucchelli
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
| | - Caterina Di Carlo
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| | - Lucia Morelli
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| | - Chiara Cordiglieri
- INGM – Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Via Francesco Sforza 35 Milan 20122 Italy
| | - Lorena Donnici
- INGM – Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Via Francesco Sforza 35 Milan 20122 Italy
| | - Raffaele De Francesco
- INGM – Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Via Francesco Sforza 35 Milan 20122 Italy
- Department of Pharmacological and Biomolecular Sciences via Balzaretti 9 Milano 20133 Italy
| | - Fabio Corsi
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
- Breast UnitSurgery DepartmentICS Maugeri IRCCS via S. Maugeri 10 Pavia 27100 Italy
| | - Davide Prosperi
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
- Breast UnitSurgery DepartmentICS Maugeri IRCCS via S. Maugeri 10 Pavia 27100 Italy
| | - Riccardo Vago
- Urologic Research InstituteDivision of Experimental OncologyIRCCS San Raffaele Scientific Institute via Olgettina 60 Milan 20132 Italy
- Università Vita‐Salute San Raffaele via Olgettina, 58 Milan 20132 Italy
| | - Miriam Colombo
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| |
Collapse
|
45
|
Newman L. US Preventive Services Task Force Breast Cancer Recommendation Statement on Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer. JAMA Surg 2020; 154:895-896. [PMID: 31429868 DOI: 10.1001/jamasurg.2019.3184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lisa Newman
- Interdisciplinary Breast Program, NewYork-Presbyterian/Weill Cornell Medical Center, New York.,International Center for the Study of Breast Cancer Subtypes, NewYork-Presbyterian/Weill Cornell Medical Center, New York.,Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York
| |
Collapse
|
46
|
Stewart RL, Matynia AP, Factor RE, Varley KE. Spatially-resolved quantification of proteins in triple negative breast cancers reveals differences in the immune microenvironment associated with prognosis. Sci Rep 2020; 10:6598. [PMID: 32313087 PMCID: PMC7170957 DOI: 10.1038/s41598-020-63539-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/27/2020] [Indexed: 01/28/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. Recent studies have shown that MHC class II (MHCII) expression and tumor infiltrating lymphocytes are important prognostic factors in patients with TNBC, although the relative importance of lymphocyte subsets and associated protein expression is incompletely understood. NanoString Digital Spatial Profiling (DSP) allows for spatially resolved, highly multiplexed quantification of proteins in clinical samples. In this study, we sought to determine if DSP could be used to characterize expression of MHCII and other immune related proteins in tumor epithelial versus stromal compartments of patient-derived TNBCs (N = 10) using a panel of 39 markers. We confirmed that a subset of TNBCs have elevated expression of HLA-DR in tumor epithelial cells; HLA-DR expression was also significantly higher in the tumors of patients with long-term disease-free survival when compared to patients that relapsed. HLA-DR expression in the epithelial compartment was correlated with high expression of CD4 and ICOS in the stromal compartment of the same tumors. We also identified candidate protein biomarkers with significant differential expression between patients that relapsed versus those that did not. In conclusion, DSP is a powerful method that allows for quantification of proteins in the immune microenvironment of TNBCs.
Collapse
Affiliation(s)
- Rachel L Stewart
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna P Matynia
- Department of Pathology, ARUP Laboratories, University of Utah Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Rachel E Factor
- Department of Pathology, ARUP Laboratories, University of Utah Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
47
|
Novel Aptamers Selected on Living Cells for Specific Recognition of Triple-Negative Breast Cancer. iScience 2020; 23:100979. [PMID: 32222697 PMCID: PMC7103779 DOI: 10.1016/j.isci.2020.100979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a high heterogeneous group of tumors with a distinctly aggressive nature and high rates of relapse. So far, the lack of any known targetable proteins has not allowed a specific anti-tumor treatment. Therefore, the identification of novel agents for specific TNBC targeting and treatment is desperately needed. Here, by integrating cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) for the specific recognition of TNBC cells with high-throughput sequencing technology, we identified a panel of 2′-fluoropyrimidine-RNA aptamers binding to TNBC cells and their cisplatin- and doxorubicin-resistant derivatives at low nanomolar affinity. These aptamers distinguish TNBC cells from both non-malignant and non-TNBC breast cancer cells and are able to differentiate TNBC histological specimens. Importantly, they inhibit TNBC cell capacity of growing in vitro as mammospheres, indicating they could also act as anti-tumor agents. Therefore, our newly identified aptamers are a valuable tool for selectively dealing with TNBC. Six 2′FPy-RNA aptamers were obtained by TNBC Cell-SELEX/NGS They distinguish TNBC cells from non-malignant and non-TNBC breast cancer cells They differentiate TNBC histological specimens by aptamer-based staining They inhibit TNBC cell lines capacity of growing in vitro as mammospheres
Collapse
|
48
|
Cai B, Ma P, Ding P, Sun DW, Bu Q, Zhang J. Composition and plasticity of triple-negative breast carcinoma-infiltrating regulatory T cells. APMIS 2020; 128:260-269. [PMID: 31811667 DOI: 10.1111/apm.13022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
Low Foxp3+ regulatory T-cell (Treg) presence in the tumor-infiltrating lymphocytes (TILs) is considered favorable in breast cancer, and numerous CD25-targeting agents have been applied in the attempt to remove Foxp3+ Treg cells, which typically present CD4+ CD25+/hi surface phenotype. However, CD25 is not Treg-exclusive and can be upregulated by effector T cells. Hence, CD25 depletion may cause the elimination of activated T cells that are responding to tumor-specific antigens. In this study, the composition and function of CD4+ CD25+ cells inside the microenvironment of triple-negative breast carcinoma (TNBC) were investigated. Directly ex vivo, the Foxp3+ Treg cells represented a minor subset in total CD4+ CD25+ TILs. Significant differences were observed in the expression of Treg-associated molecules between CD4+ CD25+ Foxp3+ TILs and CD4+ CD25+ Foxp3- TILs. While both the CD4+ CD25+ Foxp3+ and the CD4+ CD25+ Foxp3- TILs could express CTLA-4 and LAG-3, the expression levels were significantly higher in CD4+ CD25+ Foxp3+ TILs than in CD4+ CD25+ Foxp3- TILs. Upon TCR stimulation, the expression of TGF-beta was significantly higher in CD4+ CD25+ Foxp3+ TILs, while the expression of IL-10 was significantly higher in CD4+ CD25+ Foxp3- TILs. These differences were conserved in the blood counterparts of these cells. Interestingly, the level of CD25+ Foxp3+ cells in circulating CD4+ T cells was positively correlated with the level of CD25+ Foxp3+ cells in CD4+ TILs, but the level of CD25+ Foxp3- cells in circulating CD4+ T cells was not associated with the level of CD25+ Foxp3- cells in CD4+ TILs. Th17-polarizing medium could readily remodel CD4+ CD25+ Foxp3- , but not CD4+ CD25+ Foxp3+ , T cells into RORgammat and IL-17-expressing T cells, demonstrating stronger plasticity of the former subset. Together, these data demonstrated that the CD4+ CD25+ TILs were composed of distinctive Foxp3- and Foxp3+ cells, with the former representing the major subset. The antigen specificity and effector molecule expression of the CD4+ CD25+ Foxp3- thus require further analyses.
Collapse
Affiliation(s)
- Bo Cai
- Breast-Thyroid Surgery Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Ping Ma
- Breast-Thyroid Surgery Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Pengpeng Ding
- Breast-Thyroid Surgery Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Di-Wen Sun
- Breast-Thyroid Surgery Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Qingao Bu
- Breast-Thyroid Surgery Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Jun Zhang
- Breast-Thyroid Surgery Department, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
49
|
Tuohy VK, Johnson JM, Mazumder S. Primary immunoprevention of adult onset cancers by vaccinating against retired tissue-specific self-proteins. Semin Immunol 2020; 47:101392. [PMID: 31926646 DOI: 10.1016/j.smim.2020.101392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/01/2020] [Indexed: 11/25/2022]
Abstract
Despite the enormous success of childhood prophylactic vaccination against diseases caused by pathogens, there is currently no similar preventive vaccine program against diseases confronted with age like breast cancer and ovarian cancer. With the exception of the annual influenza vaccine, current recommendations for adult vaccination are for either primary vaccines not received during childhood or for booster vaccinations to maintain the immunity against pathogens already induced during childhood. Here we describe a strategy to provide prophylactic pre-emptive immunity against the development of adult onset cancers not associated with any definitive etiopathogenic agent. We propose that safe and effective pre-emptive immunity may be induced in cancer-free subjects by vaccination against immunodominant tissue-specific self-proteins that are 'retired' from expression in normal tissues as part of the normal aging process but are expressed in tumors that emerge with age. Primary immunoprevention of adult onset cancers like breast cancer and ovarian cancer represents a great challenge and an even greater unmet need for our current healthcare.
Collapse
Affiliation(s)
- Vincent K Tuohy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA; Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.
| | - Justin M Johnson
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Suparna Mazumder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
50
|
Mema E, Schnabel F, Chun J, Kaplowitz E, Price A, Goodgal J, Moy L. The relationship of breast density in mammography and magnetic resonance imaging in women with triple negative breast cancer. Eur J Radiol 2020; 124:108813. [PMID: 31927471 DOI: 10.1016/j.ejrad.2020.108813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To evaluate the relationship between mammographic density, background parenchymal enhancement and fibroglandular tissue on MRI in women with triple negative breast cancer (TNBC) compared to women with non-triple negative breast cancer (non-TNBC). METHODS The institutional Breast Cancer Database was queried to identify the clinicopathologic and imaging characteristics among women who underwent mammography and breast MRI between 2010-2018. Statistical analyses included Pearson's Chi Square, Wilcoxon Rank-Sum and logistic regression. RESULTS Of 2995 women, 225 (7.5 %) had TNBC with a median age of 60 years (23-96) and median follow-up of 5.69 years. Compared to women with non-TNBC, TNBC was associated with African-American race 36/225 (16 %), BRCA1,2 positivity 34/225 (15.1 %), previous history of breast cancer 35/225 (15.6 %), presenting on breast exam 126/225 (56 %) or MRI 13/225 (5.8 %), palpability 133/225 (59.1 %), more invasive ductal carcinoma (IDC) 208/225 (92.4 %), higher stage (stage III) 37/225 (16.5 %), higher grade (grade 3) 186/225 (82.7 %) (all p < 0.001), lower mammographic breast density (MBD) 18/225 (8 %) (p = 0.04), lower fibroglandular tissue (FGT) 17/225 (7.6 %) (p = 0.01), and lower background parenchymal enhancement (BPE) 89/225 (39.8 %) (p = 0.02). Nine of 225 (4 %) women with TNBC experienced recurrence with no significant association with MBD, FGT, or BPE. There was no significant difference in median age of our TNBC and non-TNBC cohorts. CONCLUSIONS The higher proportion of women with lower MBD, FGT and BPE in women with TNBC suggests that MBD, amount of FGT and degree of BPE may be associated with breast cancer risk in women with TNBC.
Collapse
Affiliation(s)
- Eralda Mema
- Weill Cornell Medical Center, New York Presbyterian Hospital, Department of Radiology, United States; New York University Langone Medical Center, Department of Population Health, Division of Biostatistics, United States.
| | - Freya Schnabel
- New York University Langone Medical Center, Department of Surgery, Division of Breast Surgery, United States; New York University Langone Medical Center, Department of Population Health, Division of Biostatistics, United States
| | - Jennifer Chun
- New York University Langone Medical Center, Department of Surgery, Division of Breast Surgery, United States; New York University Langone Medical Center, Department of Population Health, Division of Biostatistics, United States
| | - Elianna Kaplowitz
- New York University Langone Medical Center, Department of Surgery, Division of Breast Surgery, United States; New York University Langone Medical Center, Department of Population Health, Division of Biostatistics, United States
| | - Alison Price
- New York University Langone Medical Center, Department of Surgery, Division of Breast Surgery, United States; New York University Langone Medical Center, Department of Population Health, Division of Biostatistics, United States
| | - Jenny Goodgal
- New York University Langone Medical Center, Department of Surgery, Division of Breast Surgery, United States; New York University Langone Medical Center, Department of Population Health, Division of Biostatistics, United States
| | - Linda Moy
- New York University Langone Medical Center, Department of Radiology, United States; New York University, Center for Advanced Imaging Innovation and Research, United States; New York University Langone Medical Center, Department of Population Health, Division of Biostatistics, United States
| |
Collapse
|