1
|
Takeda Y, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Noda T, Takahashi H, Asaoka T, Shimizu J, Doki Y, Eguchi H. MicroRNA-26a-5p is a reliable biomarker in the adjuvant setting for pancreatic ductal adenocarcinoma. PLoS One 2024; 19:e0310328. [PMID: 39288140 PMCID: PMC11407630 DOI: 10.1371/journal.pone.0310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high recurrence rate even after radical resection because of subclinical tumors. To manage them, a reliable biomarker that can indicate the presence of subclinical tumors and predict their chemosensitivity is required. This study aimed to identify a miRNA as a biomarker that can be used to individualize postoperative adjuvant chemotherapy using postoperative peripheral blood samples. Integrating miRNA microarray data from the blood of 18 patients with PDAC and the in vitro results regarding the phenotypes of chemoresistant PDAC cells, a candidate miRNA was identified. The relationships between candidate miRNA expression and chemosensitivity were examined in vitro and in clinical samples from other cohorts of 33 patients with recurrence. Comprehensive analyses of blood samples detected 5 candidate miRNAs. Of these, miR-26a-5p was considered a candidate biomarker of chemosensitive phenotypes. In validation experiments, chemosensitivity was inversely correlated with miR-26a-5p expression in vitro. Moreover, the ability of miR-26a-5p to predict chemosensitivity was clinically evaluated using blood samples. Patients with high miR-26a-5p expression in the blood after radical resection exhibited a significantly longer survival time after recurrence. Thus, we concluded that miR-26a-5p is a potentially useful biomarker for managing patients with PDAC, especially those undergoing adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yu Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Junzo Shimizu
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Kato K, Noda T, Kobayashi S, Sasaki K, Iwagami Y, Yamada D, Tomimaru Y, Takahashi H, Uemura M, Asaoka T, Shimizu J, Doki Y, Eguchi H. KLK10 derived from tumor endothelial cells accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. Cancer Sci 2024; 115:1520-1535. [PMID: 38475666 PMCID: PMC11093189 DOI: 10.1111/cas.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor endothelial cells (TECs), which are thought to be structurally and functionally different from normal endothelial cells (NECs), are increasingly attracting attention as a therapeutic target in hypervascular malignancies. Although colorectal liver metastasis (CRLM) tumors are hypovascular, inhibitors of angiogenesis are a key drug in multidisciplinary therapy, and TECs might be involved in the development and progression of cancer. Here, we analyzed the function of TEC in the CRLM tumor microenvironment. We used a murine colon cancer cell line (CT26) and isolated TECs from CRLM tumors. TECs showed higher proliferation and migration than NECs. Coinjection of CT26 and TECs yielded rapid tumor formation in vivo. Immunofluorescence analysis showed that coinjection of CT26 and TECs increased vessel formation and Ki-67+ cells. Transcriptome analysis identified kallikrein-related peptide 10 (KLK10) as a candidate target. Coinjection of CT26 and TECs after KLK10 downregulation with siRNA suppressed tumor formation in vivo. TEC secretion of KLK10 decreased after KLK10 downregulation, and conditioned medium after KLK10 knockdown in TECs suppressed CT26 proliferative activity. Double immunofluorescence staining of KLK10 and CD31 in CRLM tissues revealed a significant correlation between poor prognosis and positive KLK10 expression in TECs and tumor cells. On multivariate analysis, KLK10 expression was an independent prognostic factor in disease-free survival. In conclusion, KLK10 derived from TECs accelerates colon cancer cell proliferation and hematogenous liver metastasis formation. KLK10 in TECs might offer a promising therapeutic target in CRLM.
Collapse
Affiliation(s)
- Kazuya Kato
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Junzo Shimizu
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
3
|
Oyama K, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Noda T, Asaoka T, Takahashi H, Tanemura M, Doki Y, Eguchi H. Removal of gemcitabine-induced senescent cancer cells by targeting glutaminase1 improves the therapeutic effect in pancreatic ductal adenocarcinoma. Int J Cancer 2024; 154:912-925. [PMID: 37699232 DOI: 10.1002/ijc.34725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Insufficient cancer treatment can induce senescent cancer cell formation and treatment resistance. The characteristics of induced senescent cancer (iSnCa) cells remain unclear. Pancreatic ductal adenocarcinoma (PDAC) has a low and nondurable response rate to current treatments. Our study aimed to analyze the properties of iSnCa cells and the relationship between cellular senescence and prognosis in PDAC. We evaluated the characteristics of gemcitabine-induced senescent cancer cells and the effect of senescence-associated secretory phenotype (SASP) factors released by iSnCa cells on surrounding PDAC cells. The relationship between cellular senescence and the prognosis was investigated in 50 patients with PDAC treated with gemcitabine-based neoadjuvant chemotherapy. Exposure to 5 ng/mL gemcitabine-induced senescence, decreased proliferation and increased senescence-associated β-galactosidase-cell staining without cell death in PDAC cells; the expression of glutaminase1 (GLS1) and SASP factors also increased and caused epithelial-mesenchymal transition in surrounding PDAC cells. iSnCa cells were selectively removed by the GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) through apoptosis induction. Cellular senescence was induced in PDAC cells via insufficient gemcitabine in subcutaneous tumor model mice. GLS1 expression was an independent prognostic factor in patients with PDAC who received gemcitabine-based neoadjuvant chemotherapy. This is the first study to identify the relationship between senescence and GLS1 in PDAC. Low-dose gemcitabine-induced senescence and increased GLS1 expression were observed in PDAC cells. Cellular senescence may contribute to treatment resistance of PDAC, hence targeting GLS1 in iSnCa cells may improve the therapeutic effect.
Collapse
Affiliation(s)
- Keisuke Oyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Łabędź N, Anisiewicz A, Stachowicz-Suhs M, Banach J, Kłopotowska D, Maciejczyk A, Gazińska P, Piotrowska A, Dzięgiel P, Matkowski R, Wietrzyk J. Dual effect of vitamin D 3 on breast cancer-associated fibroblasts. BMC Cancer 2024; 24:209. [PMID: 38360633 PMCID: PMC10868064 DOI: 10.1186/s12885-024-11961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Despite the well-known in vitro antitumoral effect of vitamin D3 (VD3), its impact on breast CAFs is almost unknown. In this study, we analyzed the ex vivo effects of calcitriol on CAFs isolated from breast cancer tissues. METHODS CAFs were cultured with 1 and 10 nM calcitriol and their phenotype; gene expression, protein expression, and secretion were assessed. Calcitriol-treated CAFs-conditioned media (CM) were used to analyze the effect of CAFs on the migration and protein expression of MCF-7 and MDA-MB-231 cells. RESULTS Tumor tissues from VD3-deficient patients exhibited lower levels of β-catenin and TGFβ1, along with higher levels of CYP24A1 compared to VD3-normal patients. In VD3-deficient patients, CAF infiltration was inversely associated with CYP24A1 levels and positively correlated with OPN levels. Calcitriol diminished CAFs' viability, but this effect was weaker in premenopausal and VD3-normal patients. Calcitriol reduced mRNA expression of CCL2, MMP9, TNC, and increased PDPN, SPP1, and TIMP1. It also decreased the secretion of CCL2, TNC, and the activity of MMP-2, while increasing cellular levels of TIMP1 in CAFs from all patient groups. In nonmetastatic and postmenopausal patients, PDPN surface expression increased, and CAFs CM from these groups decreased MCF-7 cell migration after ex vivo calcitriol treatment. In premenopausal and VD3-deficient patients, calcitriol reduced IDO1 expression in CAFs. Calcitriol-treated CAFs CM from these patients decreased OPN expression in MCF-7 and/or MDA-MB-231 cells. However, in premenopausal patients, calcitriol-treated CAFs CM also decreased E-cadherin expression in both cell lines. CONCLUSION The effects of calcitriol on breast CAFs, both at the gene and protein levels, are complex, reflecting the immunosuppressive or procancer properties of CAFs. The anticancer polarization of CAFs following ex vivo calcitriol treatment may result from decreased CCL2, TNC (gene and protein), MMP9, and MMP-2, while the opposite effect may result from increased PDPN, TIMP1 (gene and protein), and SPP1. Despite these multifaceted effects of calcitriol on molecule expression, CAFs' CMs from nonmetastatic and postmenopausal patients treated ex vivo with calcitriol decreased the migration of MCF-7 cells.
Collapse
Affiliation(s)
- Natalia Łabędź
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland.
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland.
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| | - Adam Maciejczyk
- Department of Oncology, Wroclaw Medical University, Pl. Ludwika Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, Pl. Ludwika Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Patrycja Gazińska
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
- Research Oncology, Division of Cancer Studies, Great Maze Pond, King's College London, London, SE1 3SS, UK
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Ul., Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Ul., Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, Pl. Ludwika Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, Pl. Ludwika Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
5
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
6
|
Eguchi S, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Noda T, Takahashi H, Asaoka T, Tanemura M, Doki Y, Eguchi H. Automated Analysis for the Prevalence of Cancer-Associated Fibroblasts in Resected Specimens of Intrahepatic Cholangiocarcinoma is a Simple and Reliable Evaluation System. Ann Surg Oncol 2023; 30:5420-5428. [PMID: 37222943 DOI: 10.1245/s10434-023-13633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) has a high recurrence rate and poor prognosis, and chemotherapy options are limited. The prevalence of cancer-associated fibroblasts (CAFs) in iCCA has recently emerged as a prognostic marker and therapeutic target. A method to quantify the expression of CAFs is needed; however, a simple and reliable quantification method has not yet been established. OBJECTIVE The aim of this study was to establish a simple and reliable method of quantifying CAFs. METHODS A total of 71 patients with iCCA who underwent curative resection from November 2006 to October 2020 in our hospital were investigated. Immunohistochemistry for alpha-smooth muscle actin (α-SMA) was performed and α-SMA-positive cells were quantified by an automated analysis system (new method) and visually counted (conventional method). The times required for measurement and the prognosis were compared. RESULTS The results of the quantification of CAFs by the new method were significantly correlated with the results by the conventional method, and the time required for measurement was significantly shorter with the new method. Patients with high-intensity CAFs showed a significantly poorer prognosis in terms of overall survival (OS) and the cumulative hepatic recurrence rate. In addition, high α-SMA levels were a significant risk factor for OS in multivariate analysis. CONCLUSIONS This new method may contribute to the management of patients with iCCA, not only for the prediction of prognosis of patients with iCCA, but also for the indication of targeted therapy against CAFs.
Collapse
Affiliation(s)
- Satoshi Eguchi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Kazuki Sasaki
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Takahashi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- The Department of Gastroenterological Surgery, Osaka Police Hospital, Tennoji, Osaka, Japan
| | - Masahiro Tanemura
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- The Department of Gastroenterological Surgery, Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Yuichiro Doki
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Toya K, Tomimaru Y, Kobayashi S, Harada A, Sasaki K, Iwagami Y, Yamada D, Noda T, Takahashi H, Kado T, Imamura H, Takaichi S, Chijimatsu R, Asaoka T, Tanemura M, Miyagawa S, Doki Y, Eguchi H. Efficacy of Autologous Skeletal Myoblast Cell Sheet Transplantation for Liver Regeneration in Liver Failure. Transplantation 2023; 107:e190-e200. [PMID: 37046371 DOI: 10.1097/tp.0000000000004567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND No effective therapies have yet been established for liver regeneration in liver failure. Autologous skeletal myoblast cell sheet transplantation has been proven to improve cardiac function in patients with heart failure, and one of the mechanisms has been reported to be a paracrine effect by various growth factors associated with liver regeneration. Therefore, the present study focused on the effect of myoblast cells on liver regeneration in vitro and in vivo. METHODS We assessed the effect of myoblast cells on the cells comprising the liver in vitro in association with liver regeneration. In addition, we examined in vivo effect of skeletal myoblast cell sheet transplantation in C57/BL/6 mouse models of liver failure, such as liver fibrosis induced by thioacetamide and hepatectomy. RESULTS In vitro, the myoblast cells exhibited a capacity to promote the proliferation of hepatic epithelial cells and the angiogenesis of liver sinusoidal endothelial cells, and suppress the activation of hepatic stellate cells. In vivo, sheet transplantation significantly suppressed liver fibrosis in the induced liver fibrosis model and accelerated liver regeneration in the hepatectomy model. CONCLUSIONS Autologous skeletal myoblast cell sheet transplantation significantly improved the liver failure in the in vitro and in vivo models. Sheet transplantation is expected to have the potential to be a clinically therapeutic option for liver regeneration in liver failure.
Collapse
Affiliation(s)
- Keisuke Toya
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Kado
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroki Imamura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shohei Takaichi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Luo W, Zhang T. Cancer-associated fibroblasts: A key target to snatch victory from defeat in therapy resistance associated with the pancreatic cancer stroma. Cancer Lett 2023:216279. [PMID: 37336287 DOI: 10.1016/j.canlet.2023.216279] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The stroma plays a dual role in the tumour microenvironment (TME), where it can both promote or restrict tumour growth. These effects are significantly modulated by the presence of cancer-associated fibroblasts (CAFs), key components of the TME. The stroma and CAFs influence pancreatic cancer (PC) both physically and functionally. The physical impact involves the deposition of a wall-like matrix, creating a solid barrier that prevents the escape of materials from the inside and the entry of substances from the outside. Functionally, the stroma influences PC treatment through crosstalk between CAFs, cancer cells, and immune cells. Transformation of the "CAFs wall", however, may reduce the original benefit of limiting PC metastasis. In this review, we found that targeting the CAFs and designing novel carriers allowing the entry of drugs or therapeutic agents into the TME are alternative strategies to effectively treat PC. This article aims to provide a specific review focusing on the possibly therapeutic markers and its novel therapeutic strategies of CAFs in PC, discussing the concise treatment methods and its new challenging in current advanced researches.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
9
|
Rubicon can predict prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant chemoradiotherapy. Int J Clin Oncol 2023; 28:576-586. [PMID: 36823392 DOI: 10.1007/s10147-023-02306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Despite previous therapeutic studies on autophagy in cancer, its role in the treatment of pancreatic ductal adenocarcinoma remains controversial, especially regarding its effect on chemotherapy, radiotherapy, and both combined. We focused on RUN domain Beclin-1 interacting and cysteine-rich-containing protein (Rubicon) to reveal its contribution to pancreatic ductal adenocarcinoma after chemoradiotherapy. METHODS To evaluate the clinical significance of Rubicon, immunohistochemistry was performed, and Rubicon expression was analyzed across 81 specimens resected from patients with pancreatic ductal adenocarcinoma after neoadjuvant chemoradiotherapy. A gemcitabine-resistant pancreatic ductal adenocarcinoma cell line was established followed by Rubicon expression and autophagy flux estimation. Finally, gemcitabine sensitivity, invasion ability, and cell viability were evaluated using Rubicon-targeting small interfering RNA. RESULTS Rubicon expression in resected pancreatic ductal adenocarcinoma samples after chemoradiotherapy revealed significantly worse overall survival and recurrence-free survival in the Rubicon-high expression group than in the Rubicon-low expression group (overall survival: median [years] 2.02 vs. 3.21, p = 0.0359; recurrence-free survival: median [years] 0.90 vs. 1.90, p = 0.0146). In vitro, gemcitabine-resistant pancreatic ductal adenocarcinoma cell lines exhibited higher Rubicon expression and lower autophagy flux than the parental cell line (p < 0.01). Transduction with small interfering RNA downregulated the expression without affecting gemcitabine sensitivity, but it reduced invasion ability and cell viability (p < 0.01) in the gemcitabine-resistant pancreatic ductal adenocarcinoma cell line. CONCLUSIONS High Rubicon expression is a significant, unfavorable prognostic factor in pancreatic ductal adenocarcinoma after neoadjuvant chemoradiotherapy. Downregulation of Rubicon expression improves invasion ability and cell viability in gemcitabine-resistant pancreatic ductal adenocarcinoma.
Collapse
|
10
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. Pancreatic cancer and fibrosis: Targeting metabolic reprogramming and crosstalk of cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2023; 14:1152312. [PMID: 37033960 PMCID: PMC10073477 DOI: 10.3389/fimmu.2023.1152312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Pancreatic cancer is one of the most dangerous types of cancer today, notable for its low survival rate and fibrosis. Deciphering the cellular composition and intercellular interactions in the tumor microenvironment (TME) is a necessary prerequisite to combat pancreatic cancer with precision. Cancer-associated fibroblasts (CAFs), as major producers of extracellular matrix (ECM), play a key role in tumor progression. CAFs display significant heterogeneity and perform different roles in tumor progression. Tumor cells turn CAFs into their slaves by inducing their metabolic dysregulation, exacerbating fibrosis to acquire drug resistance and immune evasion. This article reviews the impact of metabolic reprogramming, effect of obesity and cellular crosstalk of CAFs and tumor cells on fibrosis and describes relevant therapies targeting the metabolic reprogramming.
Collapse
|
11
|
Modulation of Fibroblast Activity via Vitamin D3 Is Dependent on Tumor Type—Studies on Mouse Mammary Gland Cancer. Cancers (Basel) 2022; 14:cancers14194585. [PMID: 36230508 PMCID: PMC9559296 DOI: 10.3390/cancers14194585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary This study, which was conducted in healthy mice and mice bearing three mouse mammary gland cancers—4T1, 67NR, and E0771—showed that the divergent effects of vitamin D3 supplementation (5000 IU) or deficiency (100 IU of vitamin D3) observed in healthy mice led to the formation of various body microenvironments depending on the mouse strain. Developing tumors themselves modified the microenvironments by producing higher concentrations of osteopontin, SDF-1 (4T1), TGF-β (4T1 and E0771), CCL2, VEGF, FGF23 (E0771), and IL-6 (67NR), which influences the response to vitamin D3 supplementation/deficiency and calcitriol administration and leads to enhanced/decreased activation of lung fibroblasts and modulation of tumor tissue blood flow. Abstract Vitamin D3 and its analogs are known to modulate the activity of fibroblasts under various disease conditions. However, their impact on cancer-associated fibroblasts (CAFs) is yet to be fully investigated. The aim of this study was to characterize CAFs and normal fibroblasts (NFs) from the lung of mice bearing 4T1, 67NR, and E0771 cancers and healthy mice fed vitamin-D3-normal (1000 IU), -deficient (100 IU), and -supplemented (5000 IU) diets. The groups receiving control (1000 IU) and deficient diets (100 IU) were gavaged with calcitriol (+cal). In the 4T1-bearing mice from the 100 IU+cal group, increased NFs activation (increased α-smooth muscle actin, podoplanin, and tenascin C (TNC)) with a decreased blood flow in the tumor was observed, whereas the opposite effect was observed in the 5000 IU and 100 IU groups. CAFs from the 5000 IU group of E0771-bearing mice were activated with increased expression of podoplanin, platelet-derived growth factor receptor β, and TNC. In the 100 IU+cal group of E0771-bearing mice, a decreased blood flow was recorded with decreased expression of fibroblast growth factor 23 (FGF23) and C-C motif chemokine ligand 2 (CCL2) in tumors and increased expression of TNC on CAFs. In the 67NR model, the impact of vitamin D3 on blood flow or CAFs and lung NFs was not observed despite changes in plasma and/or tumor tissue concentrations of osteopontin (OPN), CCL2, transforming growth factor-β, vascular endothelial growth factor, and FGF23. In healthy mice, divergent effects of vitamin D3 supplementation/deficiency were observed, which lead to the creation of various body microenvironments depending on the mouse strain. Tumors developing in such microenvironments themselves modified the microenvironments by producing, for example, higher concentrations of OPN and stromal-cell-derived factor 1 (4T1), which influences the response to vitamin D3 supplementation/deficiency and calcitriol administration.
Collapse
|
12
|
Mitsufuji S, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Akita H, Asaoka T, Noda T, Gotoh K, Takahashi H, Tanemura M, Doki Y, Eguchi H. Inhibition of Clusterin Represses Proliferation by Inducing Cellular Senescence in Pancreatic Cancer. Ann Surg Oncol 2022; 29:4937-4946. [PMID: 35397747 DOI: 10.1245/s10434-022-11668-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2023]
Abstract
BACKGROUND The outcome of pancreatic ductal adenocarcinoma (PDAC) is unsatisfactory, and the identification of novel therapeutic targets is urgently needed. Clinical studies on the antisense oligonucleotide that targets clusterin (CLU) expression have been conducted and have shown efficacy in other cancers. We aimed to investigate the effects of CLU in PDAC and the underlying mechanisms with a view to the clinical application of existing drugs. METHODS We knocked down CLU in PDAC cells and evaluated changes in cell proliferation. To elucidate the mechanism responsible for these changes, we performed western blot analysis, cell cycle assay, and senescence-associated β-galactosidase (SA-β-gal) staining. To evaluate the clinical significance of CLU, immunohistochemistry was performed, and CLU expression was analyzed in specimens resected from PDAC patients not treated with preoperative chemotherapy. RESULTS Knockdown of CLU significantly decreased cell proliferation and did not induce apoptosis, but did induce cellular senescence by increasing the percentage of G1-phase and SA-β-gal staining-positive cells. A marker of DNA damage such as γH2AX and factors related to cellular senescence, such as p21 and the senescence-associated secretory phenotype, were upregulated by knockdown of CLU. CLU expression in resected PDAC specimens was located in the cytoplasm of tumor cells and revealed significantly better recurrence-free survival and overall survival in the CLU-low group than in the CLU-high group. CONCLUSIONS We identified that CLU inhibition leads to cellular senescence in PDAC. Our findings suggest that CLU is a novel therapeutic target that contributes to the prognosis of PDAC by inducing cellular senescence.
Collapse
Affiliation(s)
- Suguru Mitsufuji
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Sakano Y, Noda T, Kobayashi S, Kitagawa A, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Asaoka T, Tanemura M, Umeshita K, Mimori K, Doki Y, Eguchi H. Clinical Significance of Acylphosphatase 1 Expression in Combined HCC-iCCA, HCC, and iCCA. Dig Dis Sci 2022; 67:3817-3830. [PMID: 34626299 DOI: 10.1007/s10620-021-07266-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Combined hepatocellular and cholangiocarcinoma is a rare primary liver cancer with histological features of both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Little is known about the prognostic features and molecular mechanism of cHCC-iCCA. Acylphosphatase 1 is a cytosolic enzyme that produces acetic acid from acetyl phosphate and plays an important role in cancer progression. AIMS We evaluated the clinical significance of ACYP1 expression in cHCC-iCCA, HCC, and iCCA. METHODS ACYP1 immunohistochemistry was performed in 39 cases diagnosed with cHCC-iCCA. The prognosis was evaluated in three different cohorts (cHCC-iCCA, HCC, and iCCA). The relationships between ACYP1 expression and cell viability, migration, invasiveness, and apoptosis were examined using siRNA methods in vitro. In vivo subcutaneous tumor volumes and cell apoptosis were evaluated after downregulation of ACYP1 expression. RESULTS Almost half of the patients with cHCC-iCCA were diagnosed with high ACYP1 expression. In all three cohorts, the cases with high ACYP1 expression had significantly lower overall survival, and high ACYP1 expression was identified as an independent prognostic factor. Downregulation of ACYP1 reduced the proliferative capacity, migration, and invasiveness of both HCC and iCCA cells. Moreover, knockdown of ACYP1 increased the ratio of apoptotic cells and decreased the expression of anti-apoptosis proteins. In vivo tumor growth was significantly inhibited by the transfection of ACYP1 siRNA, and the number of apoptotic cells increased. CONCLUSION High ACYP1 expression could influence the prognosis of cHCC-iCCA, HCC, and iCCA patients. In vitro ACYP1 expression influences the tumor growth and cell viability in both HCC and iCCA by regulating anti-apoptosis proteins.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akihiro Kitagawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Koji Umeshita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Chen PT, Hsieh CC, Chen MF. Role of vitamin D3 in tumor aggressiveness and radiation response for hepatocellular carcinoma. Mol Carcinog 2022; 61:787-796. [PMID: 35611989 DOI: 10.1002/mc.23421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Locoregional control is a significant prognostic factor for hepatocellular carcinoma (HCC). Historically, the use of radiotherapy (RT) for HCC was limited owing to the low radiotolerance of the liver and the need for high RT doses for disease control. We aimed to examine if 1α,25-dihydroxyvitamin D3 (calcitriol) has a role in the tumor inhibition and the radiation response of HCC in vitro and in vivo, and explore the underlying mechanisms. The human and murine liver cancer cell lines were selected for cellular and animal experiments to investigate the changes in tumor characteristics and the radiation response after calcitriol supplementation. The effects induced by calcitriol supplementation on interleukin-6 (IL-6) signaling and the tumor immune microenvironment following RT were also examined. Our data revealed that calcitriol supplementation attenuated tumor aggressive behavior, decrease IL-6 expression, and augmented radiation-induced tumor inhibition. The biological changes following calcitriol treatment included suppressed epithelial-mesenchymal transition, attenuated cancer stem cell-like properties and increased radiation-induced reactive oxygen species and cell death in vitro. Regarding immune microenvironment, calcitriol attenuated the recruitment of myeloid-derived suppressor cell (MDSC) recruitment and increased the infiltration of cytotoxic T cells in tumor following RT. Furthermore, When the primary liver tumor was irradiated with larger dose per fraction, calcitriol induced a smaller size of synchronous unirradiated tumor in mice, which linked with attenuated IL-6 signaling and MDSC recruitment. In conclusion, calcitriol treatment reduced tumor aggressiveness and enhanced the radiation response. The inhibited IL-6 signaling and subsequently enhanced antitumor immunity might be responsible to augment radiation-induced tumoricidal effect induced by calcitriol. Based on our results, we suggest that calcitriol could exert the antitumor and radiosensitization effects for HCC, especially for multifocal tumors.
Collapse
Affiliation(s)
- Ping-Tsung Chen
- Department of Hematology Oncology, Chang Gung Memorial Hospital at Chiayi, Puzi, Taiwan.,Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chuan Hsieh
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital at Chiayi, Puzi, Taiwan
| | - Miao-Fen Chen
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Puzi, Taiwan
| |
Collapse
|
15
|
Han L, Seward C, Leone G, Ostrowski MC. Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers. Adv Cancer Res 2022; 154:169-201. [PMID: 35459469 DOI: 10.1016/bs.acr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pancreas and breast cancers both contain abundant stromal components within the tumor tissues. A prominent cell type within the stroma is cancer-associated fibroblasts (CAFs). CAFs play critical and complex roles establishing the tumor microenvironment to either promote or prevent tumor progression. Recently, complex genetic models and single cell-based techniques have provided emerging insights on the precise functions and cellular heterogeneity of CAFs. The transformation of normal fibroblasts into CAFs is a key event during tumor initiation and progression. Such coordination between tumor cells and fibroblasts plays an important role in cancer development. Reprograming fibroblasts is currently being explored for therapeutic benefits. In this review, we will discuss recent literature shedding light on the tissues of origin, activation mechanisms, and heterogeneity of CAFs comparing pancreas and breast cancers.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Cara Seward
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin Cancer Center, Medical college of Wisconsin, Milwaukee, WI, United States
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
16
|
Masamune A, Hamada S. Editorial: Mechanisms of Inflammation and Fibrosis Interplays in the Digestive Diseases. Front Physiol 2022; 13:906742. [PMID: 35492620 PMCID: PMC9048022 DOI: 10.3389/fphys.2022.906742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
|
17
|
Sakano Y, Noda T, Kobayashi S, Sasaki K, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Takahashi H, Asaoka T, Tanemura M, Wada H, Doki Y, Eguchi H. Tumor endothelial cell-induced CD8(+) T-cell exhaustion via GPNMB in hepatocellular carcinoma. Cancer Sci 2022; 113:1625-1638. [PMID: 35289033 PMCID: PMC9128167 DOI: 10.1111/cas.15331] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
Tumor endothelial cells (TECs) promote tumor angiogenesis and regulate cytotoxic T cells in the tumor microenvironment. However, the roles of TECs for tumor‐infiltrating T‐cell in hepatocellular carcinoma (HCC) is still unknown. Here, we aimed to investigate how TECs influenced tumor growth and immune responses of HCC focusing on CD8+ T‐cell infiltration and exhaustion. First, TECs were isolated from subcutaneous HCC tumors with murine HCC cell lines (BNL‐T) with magnetic selection of CD31+ cells, and normal endothelial cells (NECs) were isolated from normal liver. Second, immunocompetent mice were injected with BNL‐T alone, BNL‐T + NECs, or BNL‐T + TECs for tumor formation, and the functions and exhaustion of tumor‐infiltrating CD8+ T cells were evaluated. The mice injected with BNL‐T + TEC showed rapid tumorigenesis and a decrease in the number of infiltrating CD8+ T cells. In addition, the percentage of CD8+ T‐cell exhaustion was significantly higher in tumors from the administration of BNL‐T + TEC. Third, the next‐generation sequencing on TECs was performed to identify mRNAs that might be a novel treatment target. The molecule of glycoprotein nonmetastatic melanoma protein B (GPNMB) was identified and the functions of GPNMB was analyzed by silencing of GPNMB expression using small interfering RNAs. The silencing of GPNMB expression in TECs induced the suppression of tumor growth and T‐cell exhaustion. In conclusion, TECs induced tumor‐infiltrating T‐cell exhaustion via GPNMB expression and GPNMB might be a novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Mori S, Akita H, Kobayashi S, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Gotoh K, Takeda Y, Tanemura M, Doki Y, Eguchi H. Inhibition of c-MET reverses radiation-induced malignant potential in pancreatic cancer. Cancer Lett 2021; 512:51-59. [PMID: 33965452 DOI: 10.1016/j.canlet.2021.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 01/27/2023]
Abstract
As a treatment option for PDAC, radiation therapy induces good local control. However, radiation also reportedly enhances the malignant potential (e.g., invasion and migration ability) in various cancers, thus increasing the risk of distant metastasis. It remains unclear how radiation induces malignant potential, and how such enhanced malignant potential can be suppressed. In the current study, we evaluated the sequential change of c-Met expression in pancreatic cancer cells following irradiation. We found that irradiation transiently induced c-Met expression in vitro. In an in vivo subcutaneous tumor mouse model, irradiation also enhanced downstream phosphorylated Met (p-Met). Furthermore, this enhancement of p-Met protein expression was suppressed by oral administration of the c-Met inhibitor INC280. Irradiated pancreatic cancer cells with enhanced c-Met expression exhibited higher malignant potential, including invasion and migration ability, compared with cells showing low c-Met expression. Pancreatic cancer cells that overexpressed c-met also showed enhanced malignant potential, which was reversed by c-Met inhibition. Additionally, c-Met inhibitor suppressed the metastatic potential in a liver metastasis mouse model using c-met-overexpressing cells. Overall, our present results revealed that irradiation could induce c-met expression in pancreatic cancer cells, leading to enhanced malignant potential (e.g., invasion and migration ability) and thus promoting distant metastasis. Moreover, a c-Met inhibitor could reverse this enhanced malignant potential.
Collapse
Affiliation(s)
- Soichiro Mori
- Department of Surgery, Osaka Rosai Hospital, Osaka, 591-8025, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yutaka Takeda
- Department of Surgery, Kansai Rosai Hospital, Hyogo, 660-8511, Japan
| | - Masahiro Tanemura
- Department of Surgery, Rinku General Medical Center, Osaka, 598-8577, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Alcaraz J, Ikemori R, Llorente A, Díaz-Valdivia N, Reguart N, Vizoso M. Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13153782. [PMID: 34359678 PMCID: PMC8345093 DOI: 10.3390/cancers13153782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death among both men and women, partly due to limited therapy responses. New avenues of knowledge are indicating that lung cancer cells do not form a tumor in isolation but rather obtain essential support from their surrounding host tissue rich in altered fibroblasts. Notably, there is growing evidence that tumor progression and even the current limited responses to therapies could be prevented by rescuing the normal behavior of fibroblasts, which are critical housekeepers of normal tissue function. For this purpose, it is key to improve our understanding of the molecular mechanisms driving the pathologic alterations of fibroblasts in cancer. This work provides a comprehensive review of the main molecular mechanisms involved in fibroblast transformation based on epigenetic reprogramming, and summarizes emerging therapeutic approaches to prevent or overcome the pathologic effects of tumor-associated fibroblasts. Abstract Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence: (J.A.); (M.V.)
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: (J.A.); (M.V.)
| |
Collapse
|
20
|
Vitamin D: Promises on the Horizon and Challenges Ahead for Fighting Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13112716. [PMID: 34072725 PMCID: PMC8198176 DOI: 10.3390/cancers13112716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is an almost universally lethal cancer, largely due to its late diagnosis, early metastasis, and therapeutic resistance. This highlights the need to develop novel and effective intervention strategies to improve the outcomes of patients with pancreatic cancer. Vitamin D is one of the hottest topics in cancer research and clinics because of its pleiotropic functions on the hallmarks of cancer. Here we critically review past and current efforts that define the effects of vitamin D on the risk, incidence, patient survival, and mortality of pancreatic cancer. We also provide overviews on the opportunities and challenges associated with vitamin D as an economic adjunct to improve the efficacy of immunotherapy and chemo- or radiotherapy for pancreatic cancer. Abstract Pancreatic cancer has a dismal prognosis, while its incidence is increasing. This is attributed, in part, to a profound desmoplastic and immunosuppressive tumor microenvironment associated with this cancer and resistance to current available therapies. Novel and effective intervention strategies are urgently needed to improve the outcomes of patients with pancreatic cancer. Vitamin D has pleiotropic functions beyond calcium–phosphate homeostasis and has been extensively studied both in the laboratory and clinic as a potential preventive agent or adjunct to standard therapies. Accumulating evidence from ecological, observational, and randomized controlled trials suggests that vitamin D has beneficial effects on risk, survival, and mortality in pancreatic cancer, although controversies still exist. Recent advances in demonstrating the important functions of vitamin D/vitamin D receptor (VDR) signaling in the regulation of stromal reprogramming, the microbiome, and immune response and the emergence of checkpoint immunotherapy provide opportunities for using vitamin D or its analogues as an adjunct for pancreatic cancer intervention. Many challenges lie ahead before the benefits of vitamin D can be fully realized in pancreatic cancer. These challenges include the need for randomized controlled trials of vitamin D to assess its impact on the risk and survival of pancreatic cancer, optimizing the timing and dosage of vitamin D or its analogues as an adjunct for pancreatic cancer intervention and elucidating the specific role of vitamin D/VDR signaling in the different stages of pancreatic cancer. Nevertheless, vitamin D holds great promise for reducing risk and improving outcomes of this disease.
Collapse
|
21
|
Wu CT, Huang YC, Chen WC, Chen MF. Effect of 1α,25-Dihydroxyvitamin D3 on the Radiation Response in Prostate Cancer: Association With IL-6 Signaling. Front Oncol 2021; 11:619365. [PMID: 34109109 PMCID: PMC8181126 DOI: 10.3389/fonc.2021.619365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy (RT) is the main treatment modality for prostate cancer (PCa). This study investigated the role of IL-6 in biological sequelae following irradiation and highlighted the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on the radiation response of PCa and its relationship with IL-6 signaling. Human and murine PCa cell lines were used to examine the response to irradiation in vitro and in vivo. The relationship of IL-6 expression with clinicopathologic characteristics in 104 PCa patients treated with definite RT was also examined. We also investigated the changes in radiation response after calcitriol supplementation and the relationship between calcitriol and IL-6 signaling by conducting cellular and animal experiments. Based on clinical samples, the positivity of IL-6 staining is a significant predictor of biochemical failure-free survival for PCa patients treated with definite RT. Data from preclinical models showed that inhibition of IL-6 increased the response of PCa to radiation, which was associated with increased oxidative DNA damage, attenuated EMT and MDSC recruitment, and decreased tumor regrowth. Moreover, increased vitamin D3 levels by calcitriol supplementation or induction by UVB-radiation was associated with inhibited IL-6 signaling and increased the response to irradiation observed in animal models. These data demonstrate that IL-6 play a critical role in the radiation response of PCa, which involved tumor cell killing and altering the tumor microenvironment. Directly targeting IL-6 signaling or vitamin D3 supplement with oral or light treatment could be a promising strategy to increase the response of PCa to radiation.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital at KeeLung, KeeLung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Ching Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Wen-Cheng Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Miao-Fen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| |
Collapse
|
22
|
Wu Y, Zhang C, Jiang K, Werner J, Bazhin AV, D'Haese JG. The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Front Oncol 2021; 10:621937. [PMID: 33520728 PMCID: PMC7841014 DOI: 10.3389/fonc.2020.621937] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal malignancy with a dismal clinical outcome. Accumulating evidence suggests that activated pancreatic stellate cells (PSCs), the major producers of extracellular matrix (ECM), drive the severe stromal/desmoplastic reaction in PDAC. Furthermore, the crosstalk among PSCs, pancreatic cancer cells (PCCs) as well as other stroma cells can establish a growth-supportive tumor microenvironment (TME) of PDAC, thereby enhancing tumor growth, metastasis, and chemoresistance via various pathways. Recently, targeting stroma has emerged as a promising strategy for PDAC therapy, and several novel strategies have been proposed. The aim of our study is to give a profound review of the role of PSCs in PDAC progression and recent advances in stroma-targeting strategies.
Collapse
Affiliation(s)
- Yang Wu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chun Zhang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kuirong Jiang
- Pancreas Center and Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
23
|
Vitamin D Prevents Pancreatic Cancer-Induced Apoptosis Signaling of Inflammatory Cells. Biomolecules 2020; 10:biom10071055. [PMID: 32679840 PMCID: PMC7408286 DOI: 10.3390/biom10071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Combined approaches based on immunotherapy and drugs supporting immune effector cell function might increase treatment options for pancreatic ductal adenocarcinoma (PDAC), vitamin D being a suitable drug candidate. In this study, we evaluated whether treatment with the vitamin D analogue, calcipotriol, counterbalances PDAC induced and SMAD4-associated intracellular calcium [Ca2+]i alterations, cytokines release, immune effector function, and the intracellular signaling of peripheral blood mononuclear cells (PBMCs). Calcipotriol counteracted the [Ca2+]i depletion of PBMCs induced by SMAD4-expressing PDAC cells, which conditioned media augmented the number of calcium flows while reducing whole [Ca2+]i. While calcipotriol inhibited spontaneous and PDAC-induced tumor necrosis factor alpha (TNF-α) release by PBMC and reduced intracellular transforming growth factor beta (TGF-β), it did not counteract the lymphocytes proliferation induced in allogenic co-culture by PDAC-conditioned PBMCs. Calcipotriol mainly antagonized PDAC-induced apoptosis and partially restored PDAC-inhibited NF-κB signaling pathway. In conclusion, alterations induced by PDAC cells in the [Ca2+]i of immune cells can be partially reverted by calcipotriol treatment, which promotes inflammation and antagonizes PBMCs apoptosis. These effects, together with the dampening of intracellular TGF-β, might result in an overall anti-tumor effect, thus supporting the administration of vitamin D in PDAC patients.
Collapse
|
24
|
|
25
|
Camara AB, Brandao IA. The Role of Vitamin D and Sunlight Incidence in Cancer. Anticancer Agents Med Chem 2020; 19:1418-1436. [PMID: 30864510 DOI: 10.2174/1389557519666190312123212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vitamin D (VD) deficiency affects individuals of different ages in many countries. VD deficiency may be related to several diseases, including cancer. OBJECTIVE This study aimed to review the relationship between VD deficiency and cancer. METHODS We describe the proteins involved in cancer pathogenesis and how those proteins can be influenced by VD deficiency. We also investigated a relationship between cancer death rate and solar radiation. RESULTS We found an increased bladder cancer, breast cancer, colon-rectum cancer, lung cancer, oesophagus cancer, oral cancer, ovary cancer, pancreas cancer, skin cancer and stomach cancer death rate in countries with low sunlight. It was also observed that amyloid precursor protein, ryanodine receptor, mammalian target of rapamycin complex 1, and receptor for advanced glycation end products are associated with a worse prognosis in cancer. While the Klotho protein and VD receptor are associated with a better prognosis in the disease. Nfr2 is associated with both worse and better prognosis in cancer. CONCLUSION The literature suggests that VD deficiency might be involved in cancer progression. According to sunlight data, we can conclude that countries with low average sunlight have high cancers death rate. New studies involving transcriptional and genomic data in combination with VD measurement in long-term experiments are required to establish new relationships between VD and cancer.
Collapse
Affiliation(s)
- Alice B Camara
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil
| | - Igor A Brandao
- Metrópole Digital Institute, Federal University of Rio Grande do Norte, 59078-970, Natal/RN, Brazil
| |
Collapse
|
26
|
Abdel-Rahman O, Spratlin J, Koski S. Vitamin and herbal supplements’ use among patients with advanced gastrointestinal cancers included in eight clinical trials. J Cancer Res Clin Oncol 2020; 146:2089-2097. [DOI: 10.1007/s00432-020-03201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
|
27
|
Kubo M, Gotoh K, Eguchi H, Kobayashi S, Iwagami Y, Tomimaru Y, Akita H, Asaoka T, Noda T, Takeda Y, Tanemura M, Mori M, Doki Y. Impact of CD36 on Chemoresistance in Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2020; 27:610-619. [PMID: 31605325 DOI: 10.1245/s10434-019-07927-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 12/17/2023]
Abstract
BACKGROUND CD36, a multi-ligand scavenger receptor, has been associated with several cancers. Many studies have revealed that CD36 contributed to cancer malignancy. This study aimed to reveal the function of CD36 expression in pancreatic ductal adenocarcinoma (PDAC). METHODS CD36 expression was characterized using immunohistochemistry in 95 clinical specimens resected from patients with PDAC. We divided patients into two groups, with different CD36 expression levels, and analyzed and compared their prognoses. CD36 expression was also assessed in PDAC cell lines. Gemcitabine-resistant (GR) PDAC cell lines were transfected with small interfering RNA (siRNA) that specifically targeted CD36 to evaluate chemoresistance and apoptosis. RESULTS In resected PDAC samples, CD36 expression was significantly correlated with microinvasion into the venous system (p = 0.0284). Patients with high CD36 expression had significantly lower overall survival (OS) and recurrence-free survival (RFS) rates than patients with low expression; thus, CD36 was an independent prognostic factor for OS and RFS. In subgroup analyses, CD36 was an independent risk factor for OS and RFS in 59 patients treated with gemcitabine adjuvant chemotherapy. CD36 expression was upregulated in PDAC-GR cell lines compared with the PDAC parent cell line. Transduction with siRNA downregulated CD36, which reduced PDAC cell resistance to gemcitabine and inhibited anti-apoptosis proteins. CONCLUSION CD36 expression influenced gemcitabine resistance by regulating anti-apoptosis proteins. High CD36 expression was a significant, unfavorable prognostic factor in PDAC. Anti-CD36 treatment might serve as an optional treatment for lowering resistance to gemcitabine.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Aged
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD36 Antigens/antagonists & inhibitors
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Non-Randomized Controlled Trials as Topic
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Small Interfering/genetics
- Retrospective Studies
- Survival Rate
- Tumor Cells, Cultured
- Gemcitabine
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Masahiko Kubo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan.
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
- Department of Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
- Department of Surgery and Science, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
28
|
Huang R, Xiang J, Zhou P. Vitamin D, gut microbiota, and radiation-related resistance: a love-hate triangle. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:493. [PMID: 31843023 PMCID: PMC6915920 DOI: 10.1186/s13046-019-1499-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Radiation resistance is a serious issue in radiotherapy. Increasing evidence indicates that the human gut microbiome plays a role in the development of radiation resistance. Vitamin D is an important supplement for cancer patients treated with radiotherapy. Against this background, this paper reviewed research regarding the associations among vitamin D, microbiota dysbiosis, and radiation resistance. A hypothesis is developed to describe the relationships among vitamin D, the gut microbiota, and radiotherapy outcomes. Radiotherapy changes the composition of the gut microbiota, which in turn influence the serum level of vitamin D, and its distribution and metabolism in the body. Alteration of vitamin D level influences the patient response to radiotherapy, where the underlying mechanisms may be associated with the intestinal microenvironment, immune molecules in the intestines, gut microbiome metabolites, and signaling pathways associated with vitamin D receptors. Our understanding of the contribution of vitamin D and the gut microbiota to radiotherapy outcomes has been increasing gradually. A better understanding of the relationships among vitamin D, the gut microbiota, and radiotherapy outcomes will shed more light on radiation resistance, and also promote the development of new strategies for overcoming it, thus addressing an important challenge associated with the currently available radiotherapy modalities for cancer patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Pingkun Zhou
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China. .,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| |
Collapse
|
29
|
Mukai Y, Eguchi H. ASO Author Reflections: Regulation of Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma by Vitamin D Supplementation. Ann Surg Oncol 2018; 25:816-817. [PMID: 30324470 DOI: 10.1245/s10434-018-6891-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yosuke Mukai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|