1
|
Gullo RL, Brunekreef J, Marcus E, Han LK, Eskreis-Winkler S, Thakur SB, Mann R, Lipman KG, Teuwen J, Pinker K. AI Applications to Breast MRI: Today and Tomorrow. J Magn Reson Imaging 2024; 60:2290-2308. [PMID: 38581127 PMCID: PMC11452568 DOI: 10.1002/jmri.29358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/08/2024] Open
Abstract
In breast imaging, there is an unrelenting increase in the demand for breast imaging services, partly explained by continuous expanding imaging indications in breast diagnosis and treatment. As the human workforce providing these services is not growing at the same rate, the implementation of artificial intelligence (AI) in breast imaging has gained significant momentum to maximize workflow efficiency and increase productivity while concurrently improving diagnostic accuracy and patient outcomes. Thus far, the implementation of AI in breast imaging is at the most advanced stage with mammography and digital breast tomosynthesis techniques, followed by ultrasound, whereas the implementation of AI in breast magnetic resonance imaging (MRI) is not moving along as rapidly due to the complexity of MRI examinations and fewer available dataset. Nevertheless, there is persisting interest in AI-enhanced breast MRI applications, even as the use of and indications of breast MRI continue to expand. This review presents an overview of the basic concepts of AI imaging analysis and subsequently reviews the use cases for AI-enhanced MRI interpretation, that is, breast MRI triaging and lesion detection, lesion classification, prediction of treatment response, risk assessment, and image quality. Finally, it provides an outlook on the barriers and facilitators for the adoption of AI in breast MRI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joren Brunekreef
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Eric Marcus
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lynn K Han
- Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ritse Mann
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kevin Groot Lipman
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jonas Teuwen
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Yaghoobpoor S, Fathi M, Ghorani H, Valizadeh P, Jannatdoust P, Tavasol A, Zarei M, Arian A. Machine learning approaches in the prediction of positive axillary lymph nodes post neoadjuvant chemotherapy using MRI, CT, or ultrasound: A systematic review. Eur J Radiol Open 2024; 12:100561. [PMID: 38699592 PMCID: PMC11063585 DOI: 10.1016/j.ejro.2024.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Background and objective Neoadjuvant chemotherapy is a standard treatment approach for locally advanced breast cancer. Conventional imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound, have been used for axillary lymph node evaluation which is crucial for treatment planning and prognostication. This systematic review aims to comprehensively examine the current research on applying machine learning algorithms for predicting positive axillary lymph nodes following neoadjuvant chemotherapy utilizing imaging modalities, including MRI, CT, and ultrasound. Methods A systematic search was conducted across databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published up to December 2023. Articles employing machine learning algorithms to predict positive axillary lymph nodes using MRI, CT, or ultrasound data after neoadjuvant chemotherapy were included. The review follows the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, encompassing data extraction and quality assessment. Results Seven studies were included, comprising 1502 patients. Four studies used MRI, two used CT, and one applied ultrasound. Two studies developed deep-learning models, while five used classic machine-learning models mainly based on multiple regression. Across the studies, the models showed high predictive accuracy, with the best-performing models combining radiomics and clinical data. Conclusion This systematic review demonstrated the potential of utilizing advanced data analysis techniques, such as deep learning radiomics, in improving the prediction of positive axillary lymph nodes in breast cancer patients following neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Shirin Yaghoobpoor
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mobina Fathi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Ghorani
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parya Valizadeh
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Payam Jannatdoust
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arian Tavasol
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Melika Zarei
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Radiology and Nuclear Medicine, Paramedical School, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Arvin Arian
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Cancer Research Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
3
|
Du Y, Wang D, Liu M, Zhang X, Ren W, Sun J, Yin C, Yang S, Zhang L. Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images. J Cancer Res Ther 2024; 20:625-632. [PMID: 38687933 DOI: 10.4103/jcrt.jcrt_1796_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To establish a multimodal model for distinguishing benign and malignant breast lesions. MATERIALS AND METHODS Clinical data, mammography, and MRI images (including T2WI, diffusion-weighted images (DWI), apparent diffusion coefficient (ADC), and DCE-MRI images) of 132 benign and breast cancer patients were analyzed retrospectively. The region of interest (ROI) in each image was marked and segmented using MATLAB software. The mammography, T2WI, DWI, ADC, and DCE-MRI models based on the ResNet34 network were trained. Using an integrated learning method, the five models were used as a basic model, and voting methods were used to construct a multimodal model. The dataset was divided into a training set and a prediction set. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the model were calculated. The diagnostic efficacy of each model was analyzed using a receiver operating characteristic curve (ROC) and an area under the curve (AUC). The diagnostic value was determined by the DeLong test with statistically significant differences set at P < 0.05. RESULTS We evaluated the ability of the model to classify benign and malignant tumors using the test set. The AUC values of the multimodal model, mammography model, T2WI model, DWI model, ADC model and DCE-MRI model were 0.943, 0.645, 0.595, 0.905, 0.900, and 0.865, respectively. The diagnostic ability of the multimodal model was significantly higher compared with that of the mammography and T2WI models. However, compared with the DWI, ADC, and DCE-MRI models, there was no significant difference in the diagnostic ability of these models. CONCLUSION Our deep learning model based on multimodal image training has practical value for the diagnosis of benign and malignant breast lesions.
Collapse
Affiliation(s)
- Yanan Du
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University and Qianfoshan Hospital, Jinan City, Shandong Province, China
| | - Dawei Wang
- Department of Health Management Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Menghan Liu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University and Qianfoshan Hospital, Jinan City, Shandong Province, China
| | - Xiaodong Zhang
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan City, Shandong Province, China
| | - Wanqing Ren
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan City, Shandong Province, China
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Qianfoshan Hospital, Jinan City, Shandong Province, China
| | - Jingxiang Sun
- Postgraduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan City, Shandong Province, China
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Qianfoshan Hospital, Jinan City, Shandong Province, China
| | - Chao Yin
- Department of Radiology, Yantai Taocun Central Hospital, Yantai City, Shandong Province, China
| | - Shiwei Yang
- Department of Anorectal Surgery, The First Affiliated Hospital of Shandong First Medical University and Qianfoshan Hospital, Jinan City, Shandong Province, China
| | - Li Zhang
- Department of Pharmacology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| |
Collapse
|
4
|
Cuccurullo V, Rapa M, Catalfamo B, Cascini GL. Role of Nuclear Sentinel Lymph Node Mapping Compared to New Alternative Imaging Methods. J Pers Med 2023; 13:1219. [PMID: 37623469 PMCID: PMC10455335 DOI: 10.3390/jpm13081219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
With the emergence of sentinel node technology, many patients can be staged histopathologically using lymphatic mapping and selective lymphadenectomy. Structural imaging by using US, CT and MR permits precise measurement of lymph node volume, which is strongly associated with neoplastic involvement. Sentinel lymph node detection has been an ideal field of application for nuclear medicine because anatomical data fails to represent the close connections between the lymphatic system and regional lymph nodes, or, more specifically, to identify the first draining lymph node. Hybrid imaging has demonstrated higher accuracy than standard imaging in SLN visualization on images, but it did not change in terms of surgical detection. New alternatives without ionizing radiations are emerging now from "non-radiological" fields, such as ophthalmology and dermatology, where fluorescence or opto-acoustic imaging, for example, are widely used. In this paper, we will analyze the advantages and limits of the main innovative methods in sentinel lymph node detection, including innovations in lymphoscintigraphy techniques that persist as the gold standard to date.
Collapse
Affiliation(s)
- Vincenzo Cuccurullo
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Marco Rapa
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Barbara Catalfamo
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy (G.L.C.)
| | - Giuseppe Lucio Cascini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy (G.L.C.)
| |
Collapse
|
5
|
Khan N, Adam R, Huang P, Maldjian T, Duong TQ. Deep Learning Prediction of Pathologic Complete Response in Breast Cancer Using MRI and Other Clinical Data: A Systematic Review. Tomography 2022; 8:2784-2795. [PMID: 36412691 PMCID: PMC9680498 DOI: 10.3390/tomography8060232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer patients who have pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) are more likely to have better clinical outcomes. The ability to predict which patient will respond to NAC early in the treatment course is important because it could help to minimize unnecessary toxic NAC and to modify regimens mid-treatment to achieve better efficacy. Machine learning (ML) is increasingly being used in radiology and medicine because it can identify relationships amongst complex data elements to inform outcomes without the need to specify such relationships a priori. One of the most popular deep learning methods that applies to medical images is the Convolutional Neural Networks (CNN). In contrast to supervised ML, deep learning CNN can operate on the whole images without requiring radiologists to manually contour the tumor on images. Although there have been many review papers on supervised ML prediction of pCR, review papers on deep learning prediction of pCR are sparse. Deep learning CNN could also incorporate multiple image types, clinical data such as demographics and molecular subtypes, as well as data from multiple treatment time points to predict pCR. The goal of this study is to perform a systematic review of deep learning methods that use whole-breast MRI images without annotation or tumor segmentation to predict pCR in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Tim Q. Duong
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
6
|
Radiomic and Volumetric Measurements as Clinical Trial Endpoints—A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205076. [PMID: 36291865 PMCID: PMC9599928 DOI: 10.3390/cancers14205076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The extraction of quantitative data from standard-of-care imaging modalities offers opportunities to improve the relevance and salience of imaging biomarkers used in drug development. This review aims to identify the challenges and opportunities for discovering new imaging-based biomarkers based on radiomic and volumetric assessment in the single-site solid tumor sites: breast cancer, rectal cancer, lung cancer and glioblastoma. Developing approaches to harmonize three essential areas: segmentation, validation and data sharing may expedite regulatory approval and adoption of novel cancer imaging biomarkers. Abstract Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas—segmentation, validation and data sharing strategies—where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation.
Collapse
|
7
|
Chen M, Xu Z, Zhu C, Liu Y, Ye Y, Liu C, Liu Z, Liang C, Liu C. Multiple-parameter MRI after neoadjuvant systemic therapy combining clinicopathologic features in evaluating axillary pathologic complete response in patients with clinically node-positive breast cancer. Br J Radiol 2022; 95:20220533. [PMID: 36000676 PMCID: PMC9793477 DOI: 10.1259/bjr.20220533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate axillary pathologic complete response (pCR) after neoadjuvant systemic therapy (NST) in clinically node-positive breast cancer (BC) patients based on post-NST multiple-parameter MRI and clinicopathological characteristics. METHODS In this retrospective study, females with clinically node-positive BC who received NST and followed by surgery between January 2017 and September 2021 were included. All axillary lymph nodes (ALNs) on MRI were matched with pathology by ALN markers or sizes. MRI morphological parameters, signal intensity curve (TIC) patterns and apparent diffusion coefficient (ADC) values of post-NST ALNs were measured. The clinicopathological characteristics was also collected and analyzed. Univariable and multivariable logistic regression analyses were performed to evaluate the independent predictors of axillary pCR. RESULTS Pathologically confirmed 137 non-pCR ALNs in 71 patients and 87 pCR ALNs in 87 patients were included in this study. Cortical thickness, fatty hilum, and TIC patterns of ALNs, hormone receptor, and human epidermal growth factor receptor 2 (HER2) status were significantly different between the two groups (all, p < 0.05). There was no significant difference for ADC values (p = 0.875). On multivariable analysis, TIC patterns (odds ratio [OR], 2.67, 95% confidence interval [CI]: 1.33, 5.34, p = 0.006), fatty hilum (OR, 2.88, 95% CI:1.39, 5.98, p = 0.004), hormone receptor (OR, 8.40, 95% CI: 2.48, 28.38, p = 0.001) and HER2 status (OR, 8.57, 95% CI: 3.85, 19.08, p < 0.001) were identified as independent predictors associated with axillary pCR. The area under the curve of the multivariate analysis using these predictors was 0.85 (95% CI: 0.79, 0.91). CONCLUSION Combining post-NST multiple-parameter MRI and clinicopathological characteristics allowed more accurate identification of BC patients who had received axillary pCR after NST. ADVANCES IN KNOWLEDGE A combined model incorporated multiple-parameter MRI and clinicopathologic features demonstrated good performance in evaluating axillary pCR preoperatively and non-invasively.
Collapse
Affiliation(s)
- Minglei Chen
- Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | | | - Chunling Liu
- Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Mazaheri Y, Thakur SB, Bitencourt AGV, Lo Gullo R, Hötker AM, Bates DDB, Akin O. Evaluation of cancer outcome assessment using MRI: A review of deep-learning methods. BJR Open 2022; 4:20210072. [PMID: 36105425 PMCID: PMC9459949 DOI: 10.1259/bjro.20210072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate evaluation of tumor response to treatment is critical to allow personalized treatment regimens according to the predicted response and to support clinical trials investigating new therapeutic agents by providing them with an accurate response indicator. Recent advances in medical imaging, computer hardware, and machine-learning algorithms have resulted in the increased use of these tools in the field of medicine as a whole and specifically in cancer imaging for detection and characterization of malignant lesions, prognosis, and assessment of treatment response. Among the currently available imaging techniques, magnetic resonance imaging (MRI) plays an important role in the evaluation of treatment assessment of many cancers, given its superior soft-tissue contrast and its ability to allow multiplanar imaging and functional evaluation. In recent years, deep learning (DL) has become an active area of research, paving the way for computer-assisted clinical and radiological decision support. DL can uncover associations between imaging features that cannot be visually identified by the naked eye and pertinent clinical outcomes. The aim of this review is to highlight the use of DL in the evaluation of tumor response assessed on MRI. In this review, we will first provide an overview of common DL architectures used in medical imaging research in general. Then, we will review the studies to date that have applied DL to magnetic resonance imaging for the task of treatment response assessment. Finally, we will discuss the challenges and opportunities of using DL within the clinical workflow.
Collapse
Affiliation(s)
| | | | | | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Andreas M. Hötker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - David D B Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
9
|
Mercado C, Chhor C, Scheel JR. MRI in the Setting of Neoadjuvant Treatment of Breast Cancer. JOURNAL OF BREAST IMAGING 2022; 4:320-330. [PMID: 38422421 DOI: 10.1093/jbi/wbab059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 03/02/2024]
Abstract
Neoadjuvant therapy may reduce tumor burden preoperatively, allowing breast conservation treatment for tumors previously unresectable or requiring mastectomy without reducing disease-free survival. Oncologists can also use the response of the tumor to neoadjuvant chemotherapy (NAC) to identify treatment likely to be successful against any unknown potential distant metastasis. Accurate preoperative estimations of tumor size are necessary to guide appropriate treatment with minimal delays and can provide prognostic information. Clinical breast examination and mammography are inaccurate methods for measuring tumor size after NAC and can over- and underestimate residual disease. While US is commonly used to measure changes in tumor size during NAC due to its availability and low cost, MRI remains more accurate and simultaneously images the entire breast and axilla. No method is sufficiently accurate at predicting complete pathological response that would obviate the need for surgery. Diffusion-weighted MRI, MR spectroscopy, and MRI-based radiomics are emerging fields that potentially increase the predictive accuracy of tumor response to NAC.
Collapse
Affiliation(s)
- Cecilia Mercado
- NYU Grossman School of Medicine, Department of Radiology, New York, NY, USA
| | - Chloe Chhor
- NYU Grossman School of Medicine, Department of Radiology, New York, NY, USA
| | - John R Scheel
- University of Washington, Department of Radiology, Seattle, WA, USA
| |
Collapse
|
10
|
Bhowmik A, Eskreis-Winkler S. Deep learning in breast imaging. BJR Open 2022; 4:20210060. [PMID: 36105427 PMCID: PMC9459862 DOI: 10.1259/bjro.20210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Millions of breast imaging exams are performed each year in an effort to reduce the morbidity and mortality of breast cancer. Breast imaging exams are performed for cancer screening, diagnostic work-up of suspicious findings, evaluating extent of disease in recently diagnosed breast cancer patients, and determining treatment response. Yet, the interpretation of breast imaging can be subjective, tedious, time-consuming, and prone to human error. Retrospective and small reader studies suggest that deep learning (DL) has great potential to perform medical imaging tasks at or above human-level performance, and may be used to automate aspects of the breast cancer screening process, improve cancer detection rates, decrease unnecessary callbacks and biopsies, optimize patient risk assessment, and open up new possibilities for disease prognostication. Prospective trials are urgently needed to validate these proposed tools, paving the way for real-world clinical use. New regulatory frameworks must also be developed to address the unique ethical, medicolegal, and quality control issues that DL algorithms present. In this article, we review the basics of DL, describe recent DL breast imaging applications including cancer detection and risk prediction, and discuss the challenges and future directions of artificial intelligence-based systems in the field of breast cancer.
Collapse
Affiliation(s)
- Arka Bhowmik
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
11
|
Sun S, Mutasa S, Liu MZ, Nemer J, Sun M, Siddique M, Desperito E, Jambawalikar S, Ha RS. Deep learning prediction of axillary lymph node status using ultrasound images. Comput Biol Med 2022; 143:105250. [PMID: 35114444 DOI: 10.1016/j.compbiomed.2022.105250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the ability of our convolutional neural network (CNN) to predict axillary lymph node metastasis using primary breast cancer ultrasound (US) images. METHODS In this IRB-approved study, 338 US images (two orthogonal images) from 169 patients from 1/2014-12/2016 were used. Suspicious lymph nodes were seen on US and patients subsequently underwent core-biopsy. 64 patients had metastatic lymph nodes. A custom CNN was utilized on 248 US images from 124 patients in the training dataset and tested on 90 US images from 45 patients. The CNN was implemented entirely of 3 × 3 convolutional kernels and linear layers. The 9 convolutional kernels consisted of 6 residual layers, totaling 12 convolutional layers. Feature maps were down-sampled using strided convolutions. Dropout with a 0.5 keep probability and L2 normalization was utilized. Training was implemented by using the Adam optimizer and a final SoftMax score threshold of 0.5 from the average of raw logits from each pixel was used for two class classification (metastasis or not). RESULTS Our CNN achieved an AUC of 0.72 (SD ± 0.08) in predicting axillary lymph node metastasis from US images in the testing dataset. The model had an accuracy of 72.6% (SD ± 8.4) with a sensitivity and specificity of 65.5% (SD ± 28.6) and 78.9% (SD ± 15.1) respectively. Our algorithm is available to be shared for research use. (https://github.com/stmutasa/MetUS). CONCLUSION It's feasible to predict axillary lymph node metastasis from US images using a deep learning technique. This can potentially aid nodal staging in patients with breast cancer.
Collapse
Affiliation(s)
- Shawn Sun
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA
| | - Simukayi Mutasa
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA
| | - Michael Z Liu
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA
| | | | - Mary Sun
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA
| | - Maham Siddique
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA
| | - Richard S Ha
- Breast Imaging Section Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Tomita H, Kobayashi T, Takaya E, Mishiro S, Hirahara D, Fujikawa A, Kurihara Y, Mimura H, Kobayashi Y. Deep learning approach of diffusion-weighted imaging as an outcome predictor in laryngeal and hypopharyngeal cancer patients with radiotherapy-related curative treatment: a preliminary study. Eur Radiol 2022; 32:5353-5361. [PMID: 35201406 DOI: 10.1007/s00330-022-08630-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES This preliminary study aimed to develop a deep learning (DL) model using diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps to predict local recurrence and 2-year progression-free survival (PFS) in laryngeal and hypopharyngeal cancer patients treated with various forms of radiotherapy-related curative therapy. METHODS Seventy patients with laryngeal and hypopharyngeal cancers treated by radiotherapy, chemoradiotherapy, or induction-(chemo)radiotherapy were enrolled and divided into training (N = 49) and test (N = 21) groups based on presentation timeline. All patients underwent MR before and 4 weeks after the start of radiotherapy. The DL models that extracted imaging features on pre- and intra-treatment DWI and ADC maps were trained to predict the local recurrence within a 2-year follow-up. In the test group, each DL model was analyzed for recurrence prediction. Additionally, the Kaplan-Meier and multivariable Cox regression analyses were performed to evaluate the prognostic significance of the DL models and clinical variables. RESULTS The highest area under the receiver operating characteristics curve and accuracy for predicting the local recurrence in the DL model were 0.767 and 81.0%, respectively, using intra-treatment DWI (DWIintra). The log-rank test showed that DWIintra was significantly associated with PFS (p = 0.013). DWIintra was an independent prognostic factor for PFS in multivariate analysis (p = 0.023). CONCLUSION DL models using DWIintra may have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. The model-related findings may contribute to determining the therapeutic strategy in the early stage of the treatment. KEY POINTS • Deep learning models using intra-treatment diffusion-weighted imaging have prognostic value in patients with laryngeal and hypopharyngeal cancers treated by curative radiotherapy. • The findings from these models may contribute to determining the therapeutic strategy at the early stage of the treatment.
Collapse
Affiliation(s)
- Hayato Tomita
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Tatsuaki Kobayashi
- Department of Advanced Biomedical Imaging Informatics, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Eichi Takaya
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Sono Mishiro
- Department of AI Research Lab, Harada Academy, 2-54-4, Higashitaniyama, Kagoshima, Kagoshima, 891-0113, Japan
| | - Daisuke Hirahara
- Department of AI Research Lab, Harada Academy, 2-54-4, Higashitaniyama, Kagoshima, Kagoshima, 891-0113, Japan
| | - Atsuko Fujikawa
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yoshiko Kurihara
- Department of Radiology, Machida Municipal Hospital, 2-15-41 Asahi-cho, Machida, Tokyo, 194-0023, Japan
| | - Hidefumi Mimura
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yasuyuki Kobayashi
- Department of Advanced Biomedical Imaging Informatics, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
13
|
Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: Where are we and where are we heading? Eur J Radiol 2021; 142:109882. [PMID: 34392105 PMCID: PMC8387447 DOI: 10.1016/j.ejrad.2021.109882] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Significant advances in imaging analysis and the development of high-throughput methods that can extract and correlate multiple imaging parameters with different clinical outcomes have led to a new direction in medical research. Radiomics and artificial intelligence (AI) studies are rapidly evolving and have many potential applications in breast imaging, such as breast cancer risk prediction, lesion detection and classification, radiogenomics, and prediction of treatment response and clinical outcomes. AI has been applied to different breast imaging modalities, including mammography, ultrasound, and magnetic resonance imaging, in different clinical scenarios. The application of AI tools in breast imaging has an unprecedented opportunity to better derive clinical value from imaging data and reshape the way we care for our patients. The aim of this study is to review the current knowledge and future applications of AI-enhanced breast imaging in clinical practice.
Collapse
Affiliation(s)
- Almir Bitencourt
- Department of Imaging, A.C.Camargo Cancer Center, Sao Paulo, SP, Brazil; Dasa, Sao Paulo, SP, Brazil
| | - Isaac Daimiel Naranjo
- Department of Radiology, Breast Imaging Service, Guy's and St. Thomas' NHS Trust, Great Maze Pond, London, UK
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
Samiei S, Simons JM, Engelen SME, Beets-Tan RGH, Classe JM, Smidt ML. Axillary Pathologic Complete Response After Neoadjuvant Systemic Therapy by Breast Cancer Subtype in Patients With Initially Clinically Node-Positive Disease: A Systematic Review and Meta-analysis. JAMA Surg 2021; 156:e210891. [PMID: 33881478 PMCID: PMC8060891 DOI: 10.1001/jamasurg.2021.0891] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Importance An overview of rates of axillary pathologic complete response (pCR) for all breast cancer subtypes, both for patients with and without pathologically proven clinically node-positive disease, is lacking. Objective To provide pooled data of all studies in the neoadjuvant setting on axillary pCR rates for different breast cancer subtypes in patients with initially clinically node-positive disease. Data Sources The electronic databases Embase and PubMed were used to conduct a systematic literature search on July 16, 2020. The references of the included studies were manually checked to identify other eligible studies. Study Selection Studies in the neoadjuvant therapy setting were identified regarding axillary pCR for different breast cancer subtypes in patients with initially clinically node-positive disease (ie, defined as node-positive before the initiation of neoadjuvant systemic therapy). Data Extraction and Synthesis Two reviewers independently selected eligible studies according to the inclusion criteria and extracted all data. All discrepant results were resolved during a consensus meeting. To identify the different subtypes, the subtype definitions as reported by the included articles were used. The random-effects model was used to calculate the overall pooled estimate of axillary pCR for each breast cancer subtype. Main Outcomes and Measures The main outcome of this study was the rate of axillary pCR and residual axillary lymph node disease after neoadjuvant systemic therapy for different breast cancer subtypes, differentiating studies with and without patients with pathologically proven clinically node-positive disease. Results This pooled analysis included 33 unique studies with 57 531 unique patients and showed the following axillary pCR rates for each of the 7 reported subtypes in decreasing order: 60% for hormone receptor (HR)-negative/ERBB2 (formerly HER2)-positive, 59% for ERBB2-positive (HR-negative or HR-positive), 48% for triple-negative, 45% for HR-positive/ERBB2-positive, 35% for luminal B, 18% for HR-positive/ERBB2-negative, and 13% for luminal A breast cancer. No major differences were found in the axillary pCR rates per subtype by analyzing separately the studies of patients with and without pathologically proven clinically node-positive disease before neoadjuvant systemic therapy. Conclusions and Relevance The HR-negative/ERBB2-positive subtype was associated with the highest axillary pCR rate. These data may help estimate axillary treatment response in the neoadjuvant setting and thus select patients for more or less invasive axillary procedures.
Collapse
Affiliation(s)
- Sanaz Samiei
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Janine M. Simons
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Sanne M. E. Engelen
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Regina G. H. Beets-Tan
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam
| | - Jean-Marc Classe
- Department of Surgical Oncology, Institut de Cancérologie de l’Ouest, Saint-Herblain, Loire Atlantique, France
| | - Marjolein L. Smidt
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | |
Collapse
|
15
|
Eskreis-Winkler S, Onishi N, Pinker K, Reiner JS, Kaplan J, Morris EA, Sutton EJ. Using Deep Learning to Improve Nonsystematic Viewing of Breast Cancer on MRI. JOURNAL OF BREAST IMAGING 2021; 3:201-207. [PMID: 38424820 DOI: 10.1093/jbi/wbaa102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To investigate the feasibility of using deep learning to identify tumor-containing axial slices on breast MRI images. METHODS This IRB-approved retrospective study included consecutive patients with operable invasive breast cancer undergoing pretreatment breast MRI between January 1, 2014, and December 31, 2017. Axial tumor-containing slices from the first postcontrast phase were extracted. Each axial image was subdivided into two subimages: one of the ipsilateral cancer-containing breast and one of the contralateral healthy breast. Cases were randomly divided into training, validation, and testing sets. A convolutional neural network was trained to classify subimages into "cancer" and "no cancer" categories. Accuracy, sensitivity, and specificity of the classification system were determined using pathology as the reference standard. A two-reader study was performed to measure the time savings of the deep learning algorithm using descriptive statistics. RESULTS Two hundred and seventy-three patients with unilateral breast cancer met study criteria. On the held-out test set, accuracy of the deep learning system for tumor detection was 92.8% (648/706; 95% confidence interval: 89.7%-93.8%). Sensitivity and specificity were 89.5% and 94.3%, respectively. Readers spent 3 to 45 seconds to scroll to the tumor-containing slices without use of the deep learning algorithm. CONCLUSION In breast MR exams containing breast cancer, deep learning can be used to identify the tumor-containing slices. This technology may be integrated into the picture archiving and communication system to bypass scrolling when viewing stacked images, which can be helpful during nonsystematic image viewing, such as during interdisciplinary tumor board meetings.
Collapse
Affiliation(s)
| | - Natsuko Onishi
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
- University of California, Department of Radiology, San Francisco, CA
| | - Katja Pinker
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Jeffrey S Reiner
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Jennifer Kaplan
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Elizabeth A Morris
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Elizabeth J Sutton
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| |
Collapse
|
16
|
Kim J, Kim HJ, Kim C, Kim WH. Artificial intelligence in breast ultrasonography. Ultrasonography 2020; 40:183-190. [PMID: 33430577 PMCID: PMC7994743 DOI: 10.14366/usg.20117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Although breast ultrasonography is the mainstay modality for differentiating between benign and malignant breast masses, it has intrinsic problems with false positives and substantial interobserver variability. Artificial intelligence (AI), particularly with deep learning models, is expected to improve workflow efficiency and serve as a second opinion. AI is highly useful for performing three main clinical tasks in breast ultrasonography: detection (localization/segmentation), differential diagnosis (classification), and prognostication (prediction). This article provides a current overview of AI applications in breast ultrasonography, with a discussion of methodological considerations in the development of AI models and an up-to-date literature review of potential clinical applications.
Collapse
Affiliation(s)
- Jaeil Kim
- School of Computer Science and Engineering, Kyungpook National University, Daegu, Korea
| | - Hye Jung Kim
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Chanho Kim
- School of Computer Science and Engineering, Kyungpook National University, Daegu, Korea
| | - Won Hwa Kim
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| |
Collapse
|
17
|
New technologies in breast cancer sentinel lymph node biopsy; from the current gold standard to artificial intelligence. Surg Oncol 2020; 34:324-335. [DOI: 10.1016/j.suronc.2020.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/28/2020] [Accepted: 06/18/2020] [Indexed: 01/14/2023]
|
18
|
Orlando A, Dimarco M, Cannella R, Bartolotta TV. Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of art. Artif Intell Med Imaging 2020; 1:6-18. [DOI: 10.35711/aimi.v1.i1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer represents the most common malignancy in women, being one of the most frequent cause of cancer-related mortality. Ultrasound, mammography, and magnetic resonance imaging (MRI) play a pivotal role in the diagnosis of breast lesions, with different levels of accuracy. Particularly, dynamic contrast-enhanced MRI has shown high diagnostic value in detecting multifocal, multicentric, or contralateral breast cancers. Radiomics is emerging as a promising tool for quantitative tumor evaluation, allowing the extraction of additional quantitative data from radiological imaging acquired with different modalities. Radiomics analysis may provide novel information through the quantification of lesions heterogeneity, that may be relevant in clinical practice for the characterization of breast lesions, prediction of tumor response to systemic therapies and evaluation of prognosis in patients with breast cancers. Several published studies have explored the value of radiomics with good-to-excellent diagnostic and prognostic performances for the evaluation of breast lesions. Particularly, the integrations of radiomics data with other clinical and histopathological parameters have demonstrated to improve the prediction of tumor aggressiveness with high accuracy and provided precise models that will help to guide clinical decisions and patients management. The purpose of this article in to describe the current application of radiomics in breast dynamic contrast-enhanced MRI.
Collapse
Affiliation(s)
- Alessia Orlando
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Mariangela Dimarco
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Roberto Cannella
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Tommaso Vincenzo Bartolotta
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
- Department of Radiology, Fondazione Istituto Giuseppe Giglio, Ct.da Pietrapollastra, Palermo 90015, Italy
| |
Collapse
|
19
|
Cherezov D, Paul R, Fetisov N, Gillies RJ, Schabath MB, Goldgof DB, Hall LO. Lung Nodule Sizes Are Encoded When Scaling CT Image for CNN's. ACTA ACUST UNITED AC 2020; 6:209-215. [PMID: 32548298 PMCID: PMC7289250 DOI: 10.18383/j.tom.2019.00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noninvasive diagnosis of lung cancer in early stages is one task where radiomics helps. Clinical practice shows that the size of a nodule has high predictive power for malignancy. In the literature, convolutional neural networks (CNNs) have become widely used in medical image analysis. We study the ability of a CNN to capture nodule size in computed tomography images after images are resized for CNN input. For our experiments, we used the National Lung Screening Trial data set. Nodules were labeled into 2 categories (small/large) based on the original size of a nodule. After all extracted patches were re-sampled into 100-by-100-pixel images, a CNN was able to successfully classify test nodules into small- and large-size groups with high accuracy. To show the generality of our discovery, we repeated size classification experiments using Common Objects in Context (COCO) data set. From the data set, we selected 3 categories of images, namely, bears, cats, and dogs. For all 3 categories a 5- × 2-fold cross-validation was performed to put them into small and large classes. The average area under receiver operating curve is 0.954, 0.952, and 0.979 for the bear, cat, and dog categories, respectively. Thus, camera image rescaling also enables a CNN to discover the size of an object. The source code for experiments with the COCO data set is publicly available in Github (https://github.com/VisionAI-USF/COCO_Size_Decoding/).
Collapse
Affiliation(s)
- Dmitry Cherezov
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, FL
| | - Rahul Paul
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, FL
| | - Nikolai Fetisov
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, FL
| | | | - Matthew B Schabath
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Dmitry B Goldgof
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, FL
| | - Lawrence O Hall
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, FL
| |
Collapse
|
20
|
Mojahed D, Ha RS, Chang P, Gan Y, Yao X, Angelini B, Hibshoosh H, Taback B, Hendon CP. Fully Automated Postlumpectomy Breast Margin Assessment Utilizing Convolutional Neural Network Based Optical Coherence Tomography Image Classification Method. Acad Radiol 2020; 27:e81-e86. [PMID: 31324579 DOI: 10.1016/j.acra.2019.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The purpose of this study was to develop a deep learning classification approach to distinguish cancerous from noncancerous regions within optical coherence tomography (OCT) images of breast tissue for potential use in an intraoperative setting for margin assessment. METHODS A custom ultrahigh-resolution OCT (UHR-OCT) system with an axial resolution of 2.7 μm and a lateral resolution of 5.5 μm was used in this study. The algorithm used an A-scan-based classification scheme and the convolutional neural network (CNN) was implemented using an 11-layer architecture consisting of serial 3 × 3 convolution kernels. Four tissue types were classified, including adipose, stroma, ductal carcinoma in situ, and invasive ductal carcinoma. RESULTS The binary classification of cancer versus noncancer with the proposed CNN achieved 94% accuracy, 96% sensitivity, and 92% specificity. The mean five-fold validation F1 score was highest for invasive ductal carcinoma (mean standard deviation, 0.89 ± 0.09) and adipose (0.79 ± 0.17), followed by stroma (0.74 ± 0.18), and ductal carcinoma in situ (0.65 ± 0.15). CONCLUSION It is feasible to use CNN based algorithm to accurately distinguish cancerous regions in OCT images. This fully automated method can overcome limitations of manual interpretation including interobserver variability and speed of interpretation and may enable real-time intraoperative margin assessment.
Collapse
|
21
|
Reig B, Heacock L, Lewin A, Cho N, Moy L. Role of MRI to Assess Response to Neoadjuvant Therapy for Breast Cancer. J Magn Reson Imaging 2020; 52. [DOI: 10.1002/jmri.27145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Beatriu Reig
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Laura Heacock
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Alana Lewin
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
| | - Nariya Cho
- Department of Radiology Seoul National University Hospital Seoul Republic of Korea
- Department of Radiology Seoul National University College of Medicine Seoul Republic of Korea
| | - Linda Moy
- Department of Radiology New York University Grossman School of Medicine New York New York USA
- New York University Laura and Isaac Perlmutter Cancer Center New York New York USA
- Bernard and Irene Schwartz Center for Biomedical Imaging Department of Radiology, New York University Grossman School of Medicine New York New York USA
- Center for Advanced Imaging Innovation and Research (CAI2 R) New York University Grossman School of Medicine New York New York USA
| |
Collapse
|
22
|
Reig B, Heacock L, Geras KJ, Moy L. Machine learning in breast MRI. J Magn Reson Imaging 2019; 52:998-1018. [PMID: 31276247 DOI: 10.1002/jmri.26852] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Machine-learning techniques have led to remarkable advances in data extraction and analysis of medical imaging. Applications of machine learning to breast MRI continue to expand rapidly as increasingly accurate 3D breast and lesion segmentation allows the combination of radiologist-level interpretation (eg, BI-RADS lexicon), data from advanced multiparametric imaging techniques, and patient-level data such as genetic risk markers. Advances in breast MRI feature extraction have led to rapid dataset analysis, which offers promise in large pooled multiinstitutional data analysis. The object of this review is to provide an overview of machine-learning and deep-learning techniques for breast MRI, including supervised and unsupervised methods, anatomic breast segmentation, and lesion segmentation. Finally, it explores the role of machine learning, current limitations, and future applications to texture analysis, radiomics, and radiogenomics. Level of Evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:998-1018.
Collapse
Affiliation(s)
- Beatriu Reig
- The Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Laura Heacock
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Krzysztof J Geras
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Linda Moy
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2 R), New York University School of Medicine, New York, New York, USA
| |
Collapse
|
23
|
Insights into innovative breast imaging techniques. Clin Imaging 2019; 55:v-vi. [DOI: 10.1016/j.clinimag.2018.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 11/15/2022]
|
24
|
Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. Artificial intelligence in breast imaging. Clin Radiol 2019; 74:357-366. [PMID: 30898381 DOI: 10.1016/j.crad.2019.02.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
This article reviews current limitations and future opportunities for the application of computer-aided detection (CAD) systems and artificial intelligence in breast imaging. Traditional CAD systems in mammography screening have followed a rules-based approach, incorporating domain knowledge into hand-crafted features before using classical machine learning techniques as a classifier. The first commercial CAD system, ImageChecker M1000, relies on computer vision techniques for pattern recognition. Unfortunately, CAD systems have been shown to adversely affect some radiologists' performance and increase recall rates. The Digital Mammography DREAM Challenge was a multidisciplinary collaboration that provided 640,000 mammography images for teams to help decrease false-positive rates in breast cancer screening. Winning solutions leveraged deep learning's (DL) automatic hierarchical feature learning capabilities and used convolutional neural networks. Start-ups Therapixel and Kheiron Medical Technologies are using DL for breast cancer screening. With increasing use of digital breast tomosynthesis, specific artificial intelligence (AI)-CAD systems are emerging to include iCAD's PowerLook Tomo Detection and ScreenPoint Medical's Transpara. Other AI-CAD systems are focusing on breast diagnostic techniques such as ultrasound and magnetic resonance imaging (MRI). There is a gap in the market for contrast-enhanced spectral mammography AI-CAD tools. Clinical implementation of AI-CAD tools requires testing in scenarios mimicking real life to prove its usefulness in the clinical environment. This requires a large and representative dataset for testing and assessment of the reader's interaction with the tools. A cost-effectiveness assessment should be undertaken, with a large feasibility study carried out to ensure there are no unintended consequences. AI-CAD systems should incorporate explainable AI in accordance with the European Union General Data Protection Regulation (GDPR).
Collapse
Affiliation(s)
- E P V Le
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK; EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge CB3 0WA, UK
| | - Y Wang
- EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge CB3 0WA, UK
| | - Y Huang
- EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge CB3 0WA, UK; Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - S Hickman
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - F J Gilbert
- EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge CB3 0WA, UK; Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|