1
|
Žukauskaitė K, Baušys B, Horvath A, Sabaliauskaitė R, Šeštokaitė A, Mlynska A, Jarmalaitė S, Stadlbauer V, Baušys R, Baušys A. Gut Microbiome Changes After Neoadjuvant Chemotherapy and Surgery in Patients with Gastric Cancer. Cancers (Basel) 2024; 16:4074. [PMID: 39682264 DOI: 10.3390/cancers16234074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Neoadjuvant chemotherapy (NAC) followed by radical gastrectomy is the current standard approach for locally advanced gastric cancer (GC) in the West. Both NAC and gastrectomy can significantly influence the gut microbiome, potentially leading to clinically significant changes. However, no longitudinal studies to date support this hypothesis. This study investigates gut microbiome changes throughout GC treatment, including NAC and gastrectomy. METHODS This longitudinal observational study included GC patients undergoing NAC followed by gastrectomy. Fecal microbiome composition, intestinal inflammation (fecal calprotectin), and gut permeability (LBP, sCD14) markers were investigated at baseline, after NAC, and after gastrectomy. RESULTS A total of 38 patients were included in the study. The results showed that NAC did not affect the gut microbiome composition at the phylum level. In contrast, radical gastrectomy led to an increased abundance of Bacteroidetes and Proteobacteria and a decreased abundance of Firmicutes and Actinobacteria. Furthermore, NAC alone did not impact alpha or beta diversity, while a combination of NAC and gastrectomy significantly influenced both. After gastrectomy, the gut microbiome composition analysis also revealed enrichment of oralization-associated bacterial species such as Escherichia-Shigella, Streptococcus equinus, uncultured Streptococcus species, and species from the Enterobacteriaceae family. Intestinal inflammation and gut permeability markers did not significantly change throughout the treatment. CONCLUSIONS The radical treatment of advanced GC with NAC and radical surgery has long-term effects on the gut microbiome, characterized by gut microbiome oralization. These sustained alterations primarily stem from the radical gastrectomy rather than the NAC. Since previous studies have linked oralization-associated dysbiosis to various gastrointestinal symptoms, this study highlights the gut microbiome as a potential therapeutic target to enhance the quality of life in long-term survivors following gastrectomy.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Bernardas Baušys
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Angela Horvath
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
- Division of Translational Precision Medicine, Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Rasa Sabaliauskaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Laboratory of Genetic Diagnostics, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Agnė Šeštokaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Laboratory of Genetic Diagnostics, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, 08406 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Laboratory of Genetic Diagnostics, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
- Division of Translational Precision Medicine, Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Rimantas Baušys
- Department of General and Abdominal Surgery and Oncology, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Augustinas Baušys
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Department of General and Abdominal Surgery and Oncology, National Cancer Institute, 08406 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Translational Health Research Institute, Faculty of Medicine, 03101 Vilnius, Lithuania
| |
Collapse
|
2
|
Zheng J, Chen H. Effects of intratumoral microbiota on tumorigenesis, anti-tumor immunity, and microbe-based cancer therapy. Front Oncol 2024; 14:1429722. [PMID: 39391251 PMCID: PMC11464362 DOI: 10.3389/fonc.2024.1429722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Intratumoral microbiota (IM) has emerged as a significant component of the previously thought sterile tumor microenvironment (TME), exerting diverse functions in tumorigenesis and immune modulation. This review outlines the historical background, classification, and diversity of IM, elucidating its pivotal roles in oncogenicity, cancer development, and progression, alongside its influence on anti-tumor immunity. The signaling pathways through which IM impacts tumorigenesis and immunity, including reactive oxygen species (ROS), β-catenin, stimulator of interferon genes (STING), and other pathways [NF-κB, Toll-like receptor (TLR), complement, RhoA/ROCK, PKR-like ER kinase (PERK)], are discussed comprehensively. Furthermore, we briefly introduce the clinical implications of IM, emphasizing its potential as a target for novel cancer therapies, diagnostic biomarkers, and prognostic indicators. Notably, microbe-based therapeutic strategies such as fecal microbiome transplantation (FMT), probiotics regulation, bacteriotherapy, bacteriophage therapy, and oncolytic virotherapy are highlighted. These strategies hold promise for enhancing the efficacy of current cancer treatments and warrant further exploration in clinical settings.
Collapse
Affiliation(s)
| | - Hao Chen
- Department of Pathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
3
|
Christodoulidis G, Koumarelas KE, Tsagkidou K, Agko ES, Bartzi D, Koumarelas K, Zacharoulis D. The Impact of Gastrectomy on Inflammatory Bowel Disease Risk in Gastric Cancer Patients: A Critical Analysis. Curr Oncol 2024; 31:5789-5801. [PMID: 39451734 PMCID: PMC11506527 DOI: 10.3390/curroncol31100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Gastrectomy, a prevalent surgical procedure for gastric cancer, results in substantial alterations to the gastrointestinal tract, including reduced gastric acid production and significant modifications to the gut microbiota. These changes can impair postoperative recovery, influence metabolic functions, and predispose patients to inflammatory bowel disease (IBD). Studies have shown an increased risk of IBD, particularly Crohn's disease (CD) and ulcerative colitis (UC), in patients following gastrectomy and bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). For instance, patients undergoing RYGB have a higher hazard ratio for developing CD, while SG patients show an increased risk for UC. The surgical alteration of the gastrointestinal tract promotes dysbiosis, with a significant increase in pathogenic bacteria and a decrease in beneficial microbial populations. This dysbiosis can impair the intestinal mucosal barrier and promote systemic inflammation. Understanding the mechanisms behind these changes and their clinical implications is essential for developing effective postoperative management strategies. Probiotics and enhanced recovery after surgery (ERAS) protocols have shown promise in mitigating these adverse effects, improving gut microbiota balance, and enhancing patient outcomes. Further research is necessary to fully elucidate the long-term impacts of gastrectomy on gastrointestinal health and to refine therapeutic approaches for postoperative care.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| | | | - Kyriaki Tsagkidou
- Department of Gastroenterology, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Eirini-Sara Agko
- Department of ICU, Asklepios Paulinen Clinic Wiesbaden, Geisenheimer Str. 10, 65197 Wiesbaden, Germany;
| | - Dimitra Bartzi
- Department of Oncology, 251 Air Force General Hospital, 11525 Athens, Greece;
| | | | - Dimitrios Zacharoulis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, 41110 Larissa, Greece;
| |
Collapse
|
4
|
Žukauskaitė K, Li M, Horvath A, Jarmalaitė S, Stadlbauer V. Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3113. [PMID: 39272971 PMCID: PMC11394127 DOI: 10.3390/cancers16173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Human diseases are multifaceted, starting with alterations at the cellular level, damaging organs and their functions, and disturbing interactions and immune responses. In vitro systems offer clarity and standardisation, which are crucial for effectively modelling disease. These models aim not to replicate every disease aspect but to dissect specific ones with precision. Controlled environments allow researchers to isolate key variables, eliminate confounding factors and elucidate disease mechanisms more clearly. Technological progress has rapidly advanced model systems. Initially, 2D cell culture models explored fundamental cell interactions. The transition to 3D cell cultures and organoids enabled more life-like tissue architecture and enhanced intercellular interactions. Advanced bioreactor-based devices now recreate the physicochemical environments of specific organs, simulating features like perfusion and the gastrointestinal tract's mucus layer, enhancing physiological relevance. These systems have been simplified and adapted for high-throughput research, marking significant progress. This review focuses on in vitro systems for modelling gastrointestinal tract cancer and the side effects of cancer treatment. While cell cultures and in vivo models are invaluable, our main emphasis is on bioreactor-based in vitro modelling systems that include the gut microbiome.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Melissa Li
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Biotech Campus Tulln, Fachhochschule Wiener Neustadt, 3430 Tulln, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| |
Collapse
|
5
|
Oh HN, Sul WJ, Son SY, Han SU, Hur H, Lim SG. Effect of Enterotype-Dependent Stability of the Gut Microbiome on Postgastrectomy Malnutrition in Gastric Cancer Patients. Gastroenterology 2024:S0016-5085(24)05347-2. [PMID: 39151706 DOI: 10.1053/j.gastro.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Affiliation(s)
- Han Na Oh
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, Korea; Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Sang-Yong Son
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea.
| | - Sun Gyo Lim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
6
|
Troci A, Philippen S, Rausch P, Rave J, Weyland G, Niemann K, Jessen K, Schmill LP, Aludin S, Franke A, Berg D, Bang C, Bartsch T. Disease- and stage-specific alterations of the oral and fecal microbiota in Alzheimer's disease. PNAS NEXUS 2024; 3:pgad427. [PMID: 38205031 PMCID: PMC10776369 DOI: 10.1093/pnasnexus/pgad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Microbial communities in the intestinal tract are suggested to impact the ethiopathogenesis of Alzheimer's disease (AD). The human microbiome might modulate neuroinflammatory processes and contribute to neurodegeneration in AD. However, the microbial compositions in patients with AD at different stages of the disease are still not fully characterized. We used 16S rRNA analyses to investigate the oral and fecal microbiota in patients with AD and mild cognitive impairment (MCI; n = 84), at-risk individuals (APOE4 carriers; n = 17), and healthy controls (n = 50) and investigated the relationship of microbial communities and disease-specific markers via multivariate- and network-based approaches. We found a slightly decreased diversity in the fecal microbiota of patients with AD (average Chao1 diversity for AD = 212 [SD = 66]; for controls = 215 [SD = 55]) and identified differences in bacterial abundances including Bacteroidetes, Ruminococcus, Sutterella, and Porphyromonadaceae. The diversity in the oral microbiota was increased in patients with AD and at-risk individuals (average Chao1 diversity for AD = 174 [SD = 60], for at-risk group = 195 [SD = 49]). Gram-negative proinflammatory bacteria including Haemophilus, Neisseria, Actinobacillus, and Porphyromonas were dominant oral bacteria in patients with AD and MCI and the abundance correlated with the cerebrospinal fluid biomarker. Taken together, we observed a strong shift in the fecal and the oral communities of patients with AD already prominent in prodromal and, in case of the oral microbiota, in at-risk stages. This indicates stage-dependent alterations in oral and fecal microbiota in AD which may contribute to the pathogenesis via a facilitated intestinal and systemic inflammation leading to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Alba Troci
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Julius Rave
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Gina Weyland
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Niemann
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Jessen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Lars-Patrick Schmill
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Schekeb Aludin
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
7
|
Park CH. Unveiling the Gastrointestinal Microbiome Symphony: Insights Into Post-Gastric Cancer Treatment Microbial Patterns and Potential Therapeutic Avenues. J Gastric Cancer 2024; 24:89-98. [PMID: 38225768 PMCID: PMC10774752 DOI: 10.5230/jgc.2024.24.e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
This review delved into the intricate relationship between the gastrointestinal microbiome and gastric cancer, particularly focusing on post-treatment alterations, notably following gastrectomy, and the effects of anticancer therapies. Following gastrectomy, analysis of fecal samples revealed an increased presence of oral cavity aerotolerant and bile acid-transforming bacteria in the intestine. Similar changes were observed in the gastric microbiome, highlighting significant alterations in taxon abundance and emphasizing the reciprocal interaction between the oral and gastric microbiomes. In contrast, the impact of chemotherapy and immunotherapy on the gut microbiome was subtle, although discernible differences were noted between treatment responders and non-responders. Certain bacterial taxa showed promise as potential prognostic markers. Notably, probiotics emerged as a promising approach for postgastrectomy recovery, displaying the capacity to alleviate inflammation, bolster immune responses, and maintain a healthy gut microbiome. Several strains, including Bifidobacterium, Lactobacillus, and Clostridium butyricum, exhibited favorable outcomes in postoperative patients, suggesting their potential roles in comprehensive patient care. In conclusion, understanding the intricate interplay between the gastrointestinal microbiome and gastric cancer treatment offers prospects for predicting responses and enhancing postoperative recovery. Probiotics, with their positive impact on inflammation and immunity, have emerged as potential adjuncts in patient care. Continued research is imperative to fully harness the potential of microbiome-based interventions in the management of gastric cancer.
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea.
| |
Collapse
|
8
|
Fujita M, Nakauchi M, Suzuki K, Serizawa A, Akimoto S, Tanaka T, Shibasaki S, Inaba K, Tochio T, Hirooka Y, Uyama I, Suda K. Incidence and clinical relevance of postoperative diarrhea after minimally invasive gastrectomy for gastric cancer: a single institution retrospective study of 1476 patients. Langenbecks Arch Surg 2023; 408:364. [PMID: 37725176 DOI: 10.1007/s00423-023-03097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Postoperative diarrhea (PD) remains one of the significant complications. Only a few studies focused on PD after minimally invasive surgery. We aimed to investigate PD after minimally invasive gastrectomy for gastric cancer. METHODS A total of 1476 consecutive patients with gastric cancer undergoing laparoscopic or robotic gastrectomy between 2009 and 2019 at our institution were retrospectively reviewed. PD was defined as continuous diarrhea for ≥ 2 days, positive stool culture, or positive clostridial antigen test. The incidence, causes, and related clinical factors were analyzed. RESULTS Of the 1476 patients, the median age was 69 years. Laparoscopic and robotic approaches were performed in 1072 (72.6%) and 404 (27.4%), respectively. Postoperative complications with Clavien-Dindo classification grade of ≥ IIIa occurred in 108 (7.4%) patients. PD occurred in 89 (6.0%) patients. Of the 89 patients with PD, Clostridium difficile, enteropathogenic Escherichia coli, and methicillin-resistant Staphylococcus aureus were detected in 24 (27.0%), 16 (33.3%), and 7 (14.6%) patients, respectively. Multivariate analysis revealed that age ≥ 75 years (OR 1.62, 95% CI [1.02-2.60], p = 0.042) and postoperative complications (OR 6.04, 95% CI [3.54-10.32], p < 0.001) were independent risk factors for PD. In patients without complications, TG (OR 1.88) and age of ≥ 75 years(OR 1.71) were determined as independent risk factors. CONCLUSION The incidence of PD following minimally invasive gastrectomy for gastric cancer was 6.0%. Older age and TG were obvious risk factors in such a surgery, with the latter being a significant risk even in the absence of complications.
Collapse
Affiliation(s)
- Masahiro Fujita
- Department of Surgery, Fujita Health University, Toyoake, Japan
| | - Masaya Nakauchi
- Department of Advanced Robotic and Endoscopic Surgery, Fujita Health University, Toyoake, Japan.
| | | | - Akiko Serizawa
- Department of Surgery, Fujita Health University, Toyoake, Japan
| | - Shingo Akimoto
- Department of Surgery, Fujita Health University, Toyoake, Japan
| | - Tsuyoshi Tanaka
- Department of Surgery, Fujita Health University, Toyoake, Japan
| | | | - Kazuki Inaba
- Department of Advanced Robotic and Endoscopic Surgery, Fujita Health University, Toyoake, Japan
| | - Takumi Tochio
- Collaborative Laboratory for Medical Research On Prebiotics and Probiotics, Fujita Health University, Kutsukake, Toyoake, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Japan
| | - Ichiro Uyama
- Department of Advanced Robotic and Endoscopic Surgery, Fujita Health University, Toyoake, Japan
- Collaborative Laboratory for Research and Development in Advanced Surgical Technology, Fujita Health University, Toyoake, Japan
| | - Koichi Suda
- Department of Surgery, Fujita Health University, Toyoake, Japan
- Collaborative Laboratory for Research and Development in Advanced Surgical Technology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
9
|
Wu J, Yu C, Shen S, Ren Y, Cheng H, Xiao H, Liu D, Chen S, Ye X, Chen J. RGI-Type Pectic Polysaccharides Modulate Gut Microbiota in a Molecular Weight-Dependent Manner In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2160-2172. [PMID: 36648986 DOI: 10.1021/acs.jafc.2c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the fermentation characteristics of high rhamnogalacturonan I pectic polysaccharides (RGI) and free-radical degraded RGI (DRGI) were evaluated by a human fecal batch-fermentation model, and their structural properties were also investigated. As a result, the Mw of RGI decreased from 246.8 to 11.6 kDa, and the branches were broken dramatically. Fermentation showed that RGI degraded faster and produced more acetate and propionate than DRGI. Both of them reduced the Firmicutes/Bacteroidetes ratio and promoted the development of Bacteroides, Bifidobacterium, and Lactobacillus, bringing benefits to the gut ecosystem. However, the composition and metabolic pathways of the microbiota in RGI and DRGI were different. Most of the dominant bacteria of RGI (such as [Eubacterium]_eligens_group) participated in carbohydrate utilization, leading to better performance in glucolipid metabolism and energy metabolism. This work elucidated that large molecular weight matters in the gut microbiota modulatory effect of RGI-type pectic polysaccharides in vitro.
Collapse
Affiliation(s)
- Jiaxiong Wu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- NingboTech University, Ningbo315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
10
|
Dang DX, Lee H, Lee SJ, Song JH, Mun S, Lee KY, Han K, Kim IH. Tributyrin and anise mixture supplementation improves growth performance, nutrient digestibility, jejunal villus height, and fecal microbiota in weaned pigs. Front Vet Sci 2023; 10:1107149. [PMID: 36777676 PMCID: PMC9911537 DOI: 10.3389/fvets.2023.1107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The objective of this study was to investigate the effects of dietary supplementation of tributyrin and anise mixture (TA) on growth performance, apparent nutrient digestibility, fecal noxious gas emission, fecal score, jejunal villus height, hematology parameters, and fecal microbiota of weaned pigs. Methods A total of 150 21-day-old crossbred weaned pigs [(Landrace × Yorkshire) × Duroc] were used in a randomized complete block design experiment. All pigs were randomly assigned to 3 groups based on the initial body weight (6.19 ± 0.29 kg). Each group had 10 replicate pens with 5 pigs (three barrows and two gilts) per pen. The experimental period was 42 days and consisted of 3 phases (phase 1, days 1-7; phase 2, days 8-21; phase 3, days 22-42). Dietary treatments were based on a corn-soybean meal-basal diet and supplemented with 0.000, 0.075, or 0.150% TA. Results and discussion We found that dietary supplementation of graded levels of TA linearly improved body weight, body weight gain, average daily feed intake, and feed efficiency (P < 0.05). TA supplementation also had positive effects on apparent dry matter, crude protein, and energy digestibility (P < 0.05) and jejunal villus height (P < 0.05). The emission of ammonia from feces decreased linearly with the dose of TA increased (P < 0.05). Moreover, TA supplementation was capable to regulate the fecal microbiota diversity, manifesting in a linearly increased Chao1 index and observed species and a linearly decreased Pielou's index (P < 0.05). The abundance of Lactobacillus reuteri, Lactobacillus amylovorus, Clostridium butyricum were increased, while the abundance of Prevotella copri was decreased, by treatment (P < 0.05). Therefore, we speculated that TA supplementation would improve growth performance and reduce fecal ammonia emission through improving nutrient digestibility, which was attributed to the increase of jejunal villus height and the regulation of fecal microbiota.
Collapse
Affiliation(s)
- De Xin Dang
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea
| | - Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Yongin-si, Republic of Korea
| | - Seung Jae Lee
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea
| | - Jun Ho Song
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan-si, Republic of Korea,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan-si, Republic of Korea
| | | | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin-si, Republic of Korea,Department of Microbiology, College of Science & Technology, Dankook University, Cheonan-si, Republic of Korea,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan-si, Republic of Korea,*Correspondence: Kyudong Han ✉
| | - In Ho Kim
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea,In Ho Kim ✉
| |
Collapse
|
11
|
Dang DX, Li CJ, Li SH, Fan XY, Xu W, Cui Y, Li D. Ultra-early weaning alters growth performance, hematology parameters, and fecal microbiota in piglets with same genetic background. Front Microbiol 2022; 13:990905. [PMID: 36406459 PMCID: PMC9666885 DOI: 10.3389/fmicb.2022.990905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
Piglets with the same genetic background were used to investigate the effects of different lengths of suckling period on growth performance, hematology parameters, and fecal microbiota. All piglets were born by a sow (Landrace×Yorkshire). On day 14 postpartum, a total of 16 piglets [Duroc×(Landrace×Yorkshire)] with a similar initial body weight (2.48 ± 0.25 kg) were randomly assigned into two groups with four replicates per group, two pigs per replicate pen (one barrow and one gilt). On day 14 of age, experiment started, piglets from the first group were weaned (14W), whereas the others continued to receive milk until day 28 of age (28W). The experiment completed on day 70 of age, last 56 days. Growth performance parameters including body weight, average daily gain, feed intake, feed efficiency, and growth rate and hematology parameters including immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM), albumin, globulin, and total protein were measured in this study. Additionally, a technique of 16S rRNA gene sequencing was used to analyze fecal microbiota for revealing how the changes in the lengths of suckling period on intestinal microbiota. We found that ultra-early weaning impaired growth performance of piglets, whose worse body weight, average daily gain, feed intake, feed efficiency, and growth rate were observed in 14W group at all measured timepoints in comparison with those in 28W group (P < 0.05). Moreover, higher contents of serum IgA (P = 0.028), IgG (P = 0.041), and IgM (P = 0.047), as well as lower contents of serum albumin (P = 0.002), albumin-to-globulin ratio (P = 0.003), and total protein (P = 0.004), were observed in 14W group in comparison with those in 28W group on day 28 of age, but not on day 70 of age. High-throughput pyrosequencing of 16S rRNA indicated that the intestinal microbiota richness in 14W group was lower than that in 28W group (P < 0.05); moreover, in comparison with 28W group at all sampling timepoints, fecal microbiota in 14W group showed more beneficial bacteria and fewer pathogenic bacteria (P < 0.05). Therefore, we considered that ultra-early weaning had positive effects on immune status and fecal microbiota composition in piglets, but negative effects on growth performance and fecal microbiota abundance.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Shi Han Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xin Yan Fan
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Weiguo Xu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,*Correspondence: Desheng Li,
| |
Collapse
|
12
|
Jeon M, Youn N, Kim S. What are the late effects of older gastric cancer survivors?: A scoping review. Asia Pac J Oncol Nurs 2022; 9:100113. [PMID: 36158706 PMCID: PMC9500514 DOI: 10.1016/j.apjon.2022.100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Misun Jeon
- College of Nursing & Brain Korea 21 FOUR Project, Yonsei University, Seoul, South Korea
| | - Nayung Youn
- College of Nursing & Mo-Im Kim Nursing Research Institute, Yonsei University, Seoul, South Korea
| | - Sanghee Kim
- College of Nursing & Mo-Im Kim Nursing Research Institute, Yonsei University, Seoul, South Korea
- Corresponding author.
| |
Collapse
|
13
|
Yan W, Yan S, He W. Clinical Efficacy of Laparoscopic Billroth II Subtotal Gastrectomy Plus Lienal Polypeptide Injection for Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5162225. [PMID: 35783513 PMCID: PMC9242771 DOI: 10.1155/2022/5162225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Objective To evaluate the clinical efficacy of laparoscopic Billroth II subtotal gastrectomy plus lienal polypeptide injection for gastric cancer. Methods Between May 2018 and January 2021, 110 patients with gastric cancer treated in Jingzhou First People's Hospital were recruited and assigned via the random number table method to either an observation group or a control group, with 55 patients in each group. All patients received laparoscopic Billroth II subtotal gastrectomy, and the observation group additionally received lienal polypeptide injection. Outcome measures include surgical indexes, clinical efficacy, and adverse events. Results The patients in the observation group had significantly less intraoperative hemorrhage volume, smaller surgical wounds, shorter time lapse before passing gas and hospital stay, and longer operation time than those in the control group (P < 0.001). The observation group showed significantly higher efficacy than the control group (P=0.001). The observation group had a significantly lower incidence of toxic side effects and adverse events than the control group (P < 0.05). After treatment, the CD3+ and CD4+ levels were significantly elevated and the CD8+ level was decreased, with higher CD3+ and CD4+ levels and lower CD8+ levels in the observation group than in the control group (P < 0.05). Conclusion In the treatment of patients with gastric cancer, laparoscopic Billroth II subtotal gastrectomy plus lienal polypeptide injection features promising efficacy, improves the immune function of patients, effectively reduces the occurrence of toxic side effects and adverse reactions, with less trauma and rapid recovery, which shows good potential for use in clinical application.
Collapse
Affiliation(s)
- Wei Yan
- Department of Oncology, Jingzhou First People's Hospital, Jingzhou 434000, China
| | - Siqi Yan
- Department of Oncology, Jingzhou First People's Hospital, Jingzhou 434000, China
| | - Wu He
- Department of Oncology, Jingzhou First People's Hospital, Jingzhou 434000, China
| |
Collapse
|
14
|
The Implication of Gastric Microbiome in the Treatment of Gastric Cancer. Cancers (Basel) 2022; 14:cancers14082039. [PMID: 35454944 PMCID: PMC9028069 DOI: 10.3390/cancers14082039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Gastric cancer (GC) represents the fifth most common cancer worldwide. Recent developments in PCR and metagenomics clarify that the stomach contains a powerful microbiota. Conventional treatments for GC that include surgery, chemotherapy, and radiotherapy are not very effective. That’s why new therapeutic strategies are needed. The intestinal microbiota is involved in oncogenesis and cancer prevention, and the effectiveness of chemotherapy. Recent studies have shown that certain bacteria may enhance the effect of some traditional antineoplastic drugs and immunotherapies. Abstract Gastric cancer (GC) is one of the most common and deadly malignancies worldwide. Helicobacter pylori have been documented as a risk factor for GC. The development of sequencing technology has broadened the knowledge of the gastric microbiome, which is essential in maintaining homeostasis. Recent studies have demonstrated the involvement of the gastric microbiome in the development of GC. Therefore, the elucidation of the mechanism by which the gastric microbiome contributes to the development and progression of GC may improve GC’s prevention, diagnosis, and treatment. In this review, we discuss the current knowledge about changes in gastric microbial composition in GC patients, their role in carcinogenesis, the possible therapeutic role of the gastric microbiome, and its implications for current GC therapy.
Collapse
|
15
|
Franklin S, Aitken SL, Shi Y, Sahasrabhojane PV, Robinson S, Peterson CB, Daver N, Ajami NA, Kontoyiannis DP, Shelburne SA, Galloway-Peña J. Oral and Stool Microbiome Coalescence and Its Association With Antibiotic Exposure in Acute Leukemia Patients. Front Cell Infect Microbiol 2022; 12:848580. [PMID: 35433514 PMCID: PMC9010033 DOI: 10.3389/fcimb.2022.848580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Failure to maintain segregation of oral and gut microbial communities has been linked to several diseases. We sought to characterize oral-fecal microbiome community coalescence, ectopic extension of oral bacteria, clinical variables contributing to this phenomenon, and associated infectious consequences by analyzing the 16S rRNA V4 sequences of longitudinal fecal (n=551) and oral (n=737) samples from 97 patients with acute myeloid leukemia (AML) receiving induction chemotherapy (IC). Clustering observed in permutation based multivariate analysis of variance (PERMANOVA) of Bray-Curtis dissimilarity and PCoA plot of UniFrac distances between intra-patient longitudinal oral-stool sample pairs suggested potential oral-stool microbial community coalescence. Bray-Curtis dissimilarities and UniFrac distances were used to create an objective definition of microbial community coalescence. We determined that only 23 of the 92 patients exhibited oral-stool community coalescence. This was validated through a linear mixed model which determined that patients who experienced coalescence had an increased proportion of shared to unique OTUs between their oral-stool sample pairs over time compared to non-coalesced patients. Evaluation of longitudinal microbial characteristics revealed that patients who experienced coalescence had increased stool abundance of Streptococcus and Stenotrophomonas compared to non-coalesced patients. When treated as a time-varying covariate, each additional day of linezolid (HR 1.15, 95% CI 1.06 – 1.24, P <0.001), meropenem (HR 1.13, 95% CI 1.05 – 1.21, P = 0.001), metronidazole (HR 1.13, 95% CI 1.05 – 1.21, P = 0.001), and cefepime (HR 1.10, 95% CI 1.01 – 1.18, P = 0.021) increased the hazard of oral-stool microbial community coalescence. Levofloxacin receipt was associated with a lower risk of microbiome community coalescence (HR 0.75, 95% CI 0.61 – 0.93, P = 0.009). By the time of neutrophil recovery, the relative abundance of Bacteroidia (P<0.001), Fusobacteria (P=0.012), and Clostridia (P=0.013) in the stool were significantly lower in patients with oral-gut community coalescence. Exhibiting oral-stool community coalescence was associated with the occurrence of infections prior to neutrophil recovery (P=0.002), as well as infections during the 90 days post neutrophil recovery (P=0.027). This work elucidates specific antimicrobial effects on microbial ecology and furthers the understanding of oral/intestinal microbial biogeography and its implications for adverse clinical outcomes.
Collapse
Affiliation(s)
- Samantha Franklin
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - Samuel L. Aitken
- Department of Pharmacy, Michigan Medicine, Ann Arbor, MI, United States
| | - Yushi Shi
- Department of Statistics and Center for Biomedical Informatics, University of Missouri, Columbia, MO, United States
| | - Pranoti V. Sahasrabhojane
- Department of Infectious Disease, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sarah Robinson
- Department of Statistics, Rice University, Houston, TX, United States
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nadim A. Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Disease, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samuel A. Shelburne
- Department of Infectious Disease, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica Galloway-Peña
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jessica Galloway-Peña,
| |
Collapse
|
16
|
Li M, Yang L, Cao J, Liu T, Liu X. Enriched and Decreased Intestinal Microbes in Active VKH Patients. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35142786 PMCID: PMC8842635 DOI: 10.1167/iovs.63.2.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose To determine the possible microbiome related to Vogt–Koyanagi–Harada (VKH) disease in comparison to patients with noninfectious anterior scleritis and healthy people. Methods Fecal samples were extracted from 42 individuals, including 11 patients with active VKH, 11 healthy people, and 20 patients with noninfectious anterior scleritis. We amplified the V3 to V4 16S ribosomal DNA (rDNA) region to obtain the target sequence. Then, the target sequence was amplified by polymerase chain reaction. The obtained target sequences were sequenced by high-throughput 16S rDNA analysis. Results At the genus level, there were three enriched (Stomatobaculum, Pseudomonas, Lachnoanaerobaculum) and two depleted (Gordonibacter, Slackia) microbes that were detected only in patients with VKH. There were 10 enriched and 12 depleted microbes that were observed in both patients with VKH disease and noninfectious anterior scleritis (P < 0.05). The interactions of these microbes were graphed. Tyzzerella and Eggerthella were the nodes of interaction between these microorganisms, which were regulated by both positive and negative aspects, but the expression level in patients with active VKH was upregulated. Conclusions Special or nonspecial enrichment and decreased intestinal microbes were observed in patients with active VKH. The action mechanism of these microbes needs further study.
Collapse
Affiliation(s)
- Mengyao Li
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China.,Clinical College, Jilin University, Changchun, P.R. China
| | - Li Yang
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| | - Jinfeng Cao
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| | - Tao Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, P.R. China
| |
Collapse
|
17
|
Tang S, Zhang S, Zhong R, Su D, Xia B, Liu L, Chen L, Zhang H. Time-course alterations of gut microbiota and short-chain fatty acids after short-term lincomycin exposure in young swine. Appl Microbiol Biotechnol 2021; 105:8441-8456. [PMID: 34651253 DOI: 10.1007/s00253-021-11627-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that antibiotic administration causes gut injury, negatively affecting nutrient digestion, immune regulation, and colonization resistance against pathogens due to the disruption of gut microbiota. However, the time-course effects of therapeutic antibiotics on alterations of gut microbes and short-chain fatty acids (SCFAs) in young swine are still unknown. In this study, twenty piglets were assigned into two groups and fed commercial diets with or without lincomycin in the first week for a 28-day trial period. Results showed that 1-week lincomycin exposure (LE) did reduce the body weight on day 14 (p = 0.0450) and 28 (p = 0.0362). The alpha-diversity notably reduced after 1-week LE, and then gradually raised and reached the control group level in the second week on cessation of LE, indicated by the variation of Sobs, Chao, Shannon, and ACE index (p < 0.05). Beta-diversity analysis revealed that the distinct microbial cluster existed persistently for the whole trial period between two groups (p < 0.001). The relative abundance of most microbes including fiber-degrading (e.g., Agathobacter and Coprococcus), beneficial (e.g., Lactobacillus and Mitsuokella), or pathogenic bacteria (e.g., Terrisporobacter and Lachnoclostridium) decreased (LDA score > 3), and the concentration of SCFAs also diminished in the feces of 1-week lincomycin-administrated young swine, indicating that therapeutic LE killed most bacteria and reduced SCFA production with gut dysbiosis occurring. After the LE stopped, the state of gut dysbiosis gradually attenuated and formed new gut-microbe homeostasis distinct from microbial homeostasis of young pigs unexposed to lincomycin. The increased presence of potential pathogens, such as Terrisporobacter, Negativibacillus, and Escherichia-Shigella, and decreased beneficial bacteria, such as Lactobacillus and Agathobacter, were observed in new homeostasis reshaped by short-lincomycin administration (LDA score > 3 or p < 0.05), adversely affecting gut development and health of young pigs. Collectively, these results suggested that severe disruption of the commensal microbiota occurred after short-term LE or termination of LE in young swine. KEY POINTS: • Therapeutic lincomycin exposure induced gut dysbiosis, killing most bacteria and reducing short-chain fatty acid production. • Gut dysbiosis gradually attenuated and formed new homeostasis after lincomycin exposure stopped. • The new homeostasis, increased Escherichia-Shigella etc. and decreased Lactobacillus etc., was potentially harmful to gut health.
Collapse
Affiliation(s)
- Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Dan Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
18
|
Maksimaityte V, Bausys A, Kryzauskas M, Luksta M, Stundiene I, Bickaite K, Bausys B, Poskus T, Bausys R, Strupas K. Gastrectomy impact on the gut microbiome in patients with gastric cancer: A comprehensive review. World J Gastrointest Surg 2021; 13:678-688. [PMID: 34354801 PMCID: PMC8316847 DOI: 10.4240/wjgs.v13.i7.678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide and gastrectomy remains the only potentially curative treatment option for this disease. However, the surgery leads to significant physiological and anatomical changes in the gastrointestinal (GI) tract including loss of the gastric barrier, an increase in oxygenation levels in the distal gut, and biliary diversion after gastrectomy. These changes in the GI tract influence the composition of the gut microbiome and thus, host health. Gastrectomy-induced dysbiosis is characterized by increased abundance of typical oral cavity bacteria, an increase in aero-tolerant bacteria (aerobes/facultative anaerobes), and increased abundance of bile acid-transforming bacteria. Furthermore, this dysbiosis is linked to intestinal inflammation, small intestinal bacterial overgrowth, various GI symptoms, and an increased risk of colorectal cancer.
Collapse
Affiliation(s)
- Vaidota Maksimaityte
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
| | - Augustinas Bausys
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
- Department of Abdominal Surgery and Oncology, National Cancer Institute, Vilnius 08660, Lithuania
| | - Marius Kryzauskas
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
| | - Martynas Luksta
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
| | - Ieva Stundiene
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
| | | | - Bernardas Bausys
- Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
| | - Tomas Poskus
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
| | - Rimantas Bausys
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
- Department of Abdominal Surgery and Oncology, National Cancer Institute, Vilnius 08660, Lithuania
| | - Kestutis Strupas
- Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 03101, Lithuania
| |
Collapse
|
19
|
Barra WF, Sarquis DP, Khayat AS, Khayat BCM, Demachki S, Anaissi AKM, Ishak G, Santos NPC, Dos Santos SEB, Burbano RR, Moreira FC, de Assumpção PP. Gastric Cancer Microbiome. Pathobiology 2021; 88:156-169. [PMID: 33588422 DOI: 10.1159/000512833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Identifying a microbiome pattern in gastric cancer (GC) is hugely debatable due to the variation resulting from the diversity of the studied populations, clinical scenarios, and metagenomic approach. H. pylori remains the main microorganism impacting gastric carcinogenesis and seems necessary for the initial steps of the process. Nevertheless, an additional non-H. pylori microbiome pattern is also described, mainly at the final steps of the carcinogenesis. Unfortunately, most of the presented results are not reproducible, and there are no consensual candidates to share the H. pylori protagonists. Limitations to reach a consistent interpretation of metagenomic data include contamination along every step of the process, which might cause relevant misinterpretations. In addition, the functional consequences of an altered microbiome might be addressed. Aiming to minimize methodological bias and limitations due to small sample size and the lack of standardization of bioinformatics assessment and interpretation, we carried out a comprehensive analysis of the publicly available metagenomic data from various conditions relevant to gastric carcinogenesis. Mainly, instead of just analyzing the results of each available publication, a new approach was launched, allowing the comprehensive analysis of the total sample amount, aiming to produce a reliable interpretation due to using a significant number of samples, from different origins, in a standard protocol. Among the main results, Helicobacter and Prevotella figured in the "top 6" genera of every group. Helicobacter was the first one in chronic gastritis (CG), gastric cancer (GC), and adjacent (ADJ) groups, while Prevotella was the leader among healthy control (HC) samples. Groups of bacteria are differently abundant in each clinical situation, and bacterial metabolic pathways also diverge along the carcinogenesis cascade. This information may support future microbiome interventions aiming to face the carcinogenesis process and/or reduce GC risk.
Collapse
Affiliation(s)
| | | | - André Salim Khayat
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Samia Demachki
- Unidade Laboratorial de Anatomia Patológica, Universidade Federal do Pará, Belém, Brazil
| | - Ana Karyssa Mendes Anaissi
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.,Unidade Laboratorial de Anatomia Patológica, Universidade Federal do Pará, Belém, Brazil
| | - Geraldo Ishak
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.,Serviço de Cirurgia Geral e do Aparelho Digestivo, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Rommel Rodriguez Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Hospital Ophir Loyola, Belém, Brazil
| | | | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil, .,Serviço de Cirurgia Geral e do Aparelho Digestivo, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil,
| |
Collapse
|
20
|
Horvath A, Stadlbauer V. [Proton Pump Inhibitors and their Microbiome-Mediated Side Effects]. Zentralbl Chir 2020; 146:165-169. [PMID: 33327006 DOI: 10.1055/a-1312-7587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Proton pump inhibitors are valuable treatment options for gastric acid associated diseases, such as peptic ulcer disease or reflux diseases. Due to their irreversible inhibition of the proton pumps in the parietal cells of the stomach, gastric acid secretion can be effectively reduced. With the reduction in gastric acid, however, proton pump inhibitors also block a highly conserved, crucial part of the unspecific immune system. The gastric barrier protects the body - and here mainly the intestinal microbiome - from food-borne pathogens and oral bacteria that can reach more distal parts of the gastrointestinal tract during proton pump inhibitor therapy. Resulting changes in the intestinal microbiome, such as the reduction in microbial diversity or small intestinal bacterial overgrowth, can be linked to side effects of (long-term) proton pump inhibitor therapy, such as the increased risk of Clostridium difficile infections or gastrointestinal discomfort. In liver cirrhosis patients, the increase in oral bacteria in the intestine is associated with intestinal inflammation and permeability, and can even be used as a biomarker for 3-year liver related mortality. Therefore, microbiome-mediated side effects should be included in the risk assessment of proton pump inhibitor therapy and the evaluation of potential alternatives.
Collapse
Affiliation(s)
- Angela Horvath
- Klinische Abteilung für Gastroenterologie und Hepatologie, Medizinische Universität Graz, Österreich.,Center for Biomarker Research in Medicine, Graz, Österreich
| | - Vanessa Stadlbauer
- Klinische Abteilung für Gastroenterologie und Hepatologie, Medizinische Universität Graz, Österreich
| |
Collapse
|
21
|
Bausys A, Horvath A. ASO Author Reflections: Gut Microbiome Oralization and Intestinal Inflammation After Distal Gastrectomy with Billroth II Reconstruction is Linked to Gastrointestinal Symptoms. Ann Surg Oncol 2020; 27:775-776. [PMID: 32514808 PMCID: PMC7677262 DOI: 10.1245/s10434-020-08703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Augustinas Bausys
- Department of Abdominal Surgery and Oncology, National Cancer Institute, Vilnius, Lithuania. .,Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Ciurlionio str. 21, 03101, Vilnius, Lithuania. .,Department of Transplantation Surgery, Medical University of Graz, Graz, Austria.
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, Graz, Austria
| |
Collapse
|