1
|
Lin HH, Peng YJ, Chang CF, Chang PY, Peng PC, Chang WC, Chen TW, Hsieh TY. Heterogenous liver parenchymal enhancement in CT is a favorable prognosis of HCC after hepatic resection. Am J Cancer Res 2024; 14:2984-2993. [PMID: 39005674 PMCID: PMC11236790 DOI: 10.62347/myns2426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to define the role of heterogeneity of liver parenchymal enhancement on computed tomography (CT) in the survival of patients with hepatocellular carcinoma (HCC) after hepatic resection. The medical records of patients with HCCs and who had undergone hepatic resection were retrospectively reviewed. The standard deviation (SD) of three different enhanced CT scan images was used to estimate the heterogeneity of liver parenchymal enhancement: SD of > 5.6, heterogenous enhancement, and SD of ≤ 5.6, homogeneous enhancement. A total of 57 patients had heterogenous enhancement, and 143 patients had homogeneous enhancement. The patients with heterogenous enhancement had longer disease-free and overall survivals than those with other enhancements (log-rank test, P < 0.001 and P = 0.036). The pathologic exam showed that heterogenous enhancement tended to develop septa in the peritumoral liver tissues. The prevalence of CD8+ cells was significantly higher in the peritumor liver tissues with septa than in those without (0.83% vs. 0.26%, P < 0.001). The peritumoral CD8/Foxp3 ratio was higher in the liver tissues with septa than in those without (1.22 vs. 0.47, P = 0.001), and patients with CD8/Foxp3 of > 0.8 had better overall survival than those with CD8/Foxp3 of ≤ 0.8 (log-rank test, P = 0.028). In conclusion, patients who had undergone hepatic resection with a heterogenous liver parenchymal enhancement tended to develop hepatic septa, which was associated with a higher CD8/Foxp3 ratio and longer survival. Therefore, contrast-enhanced CT scans might be a useful tool to predict the outcome of HCC.
Collapse
Affiliation(s)
- Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Yi-Jen Peng
- Division of Experimental Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Chao-Feng Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Ping-Ying Chang
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Ping-Chi Peng
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Teng-Wei Chen
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan
| |
Collapse
|
2
|
Ahmed B, Sheikhzadeh P, Changizi V, Abbasi M, Soleymani Y, Sarhan W, Rahmim A. CT radiomics analysis of primary colon cancer patients with or without liver metastases: a correlative study with [ 18F]FDG PET uptake values. Abdom Radiol (NY) 2023; 48:3297-3309. [PMID: 37453942 DOI: 10.1007/s00261-023-03999-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Utilizing [18F]Fluoro-2-deoxy-D-glucose Positron Emission Tomography/Computed Tomography ([18F]FDG PET/CT) scans on primary colon cancer (CC) patients including with liver metastases (LM), we aimed to determine the relationship between structural CT radiomic features and metabolic PET standard uptake value (SUV) in these patients. MATERIAL AND METHOD A retrospective analysis was performed on 60 patients with primary CC, of which 40 had liver metastases that were more than 2 cm in diameter. [18F]FDG PET/CT was used to calculate SUVmax, and 42 CT radiomic characteristics were extracted from non-enhanced CT images. Tumors were manually segmented on fused PET/CT scans by two experienced nuclear medicine physicians. Sixty primary CC and forty LM lesions were segmented accordingly. In the cases of multiple LM lesions, the lesion with the largest diameter was chosen for segmentation. In a univariate analysis approach, we used Spearman correlation with multiple testing correction (Benjamini-Hutchberg false discovery rate (FDR), α = 0.05) to ascertain the relationship between SUVmax and CT radiomic features. RESULT Twenty-two (52.3%) and twenty-six (61.9%) CT radiomic features were found to be significantly correlated with SUVmax values of primary CC (n = 60) and LM (n = 40) lesions, respectively (FDR-corrected p value < 0.05 and 0.6 < |ρ| < 1). GLCM_homogeneity (ρ = 0.839), GLCM_dissimilarity (ρ = - 0.832), GLZLM_ZLNU (ρ = 0.827), and GLCM_contrast (ρ = - 0.815) were the 4 features most correlated with SUVmax in CC. On the other hand, in LM, the 4 features most correlated with SUVmax were GLRLM_LRHGE (ρ = 0.859), GLRLM_LRE (ρ = 0.859), GLRLM_LRLGE (ρ = 0.857), and GLRLM_RP (ρ = - 0.820). CONCLUSION We investigated the relationship between SUVmax of preoperative primary CC lesions and their LM with CT radiomic features. We found some CT radiomic features having relationships with the metabolic characteristics of lesions. This work suggests that non-invasive predictive imaging biomarkers for precision medicine can be derived from CT radiomic.
Collapse
Affiliation(s)
- Badr Ahmed
- Department of Radiology Technology and Radiotherapy, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Vahid Changizi
- Department of Radiology Technology and Radiotherapy, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrshad Abbasi
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Yunus Soleymani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Wisam Sarhan
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nuclear Medicine International Hospital for Cancer and Nuclear Medicine, University of Kufa, Najaf, Iraq
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
4
|
Pierre K, Gupta M, Raviprasad A, Sadat Razavi SM, Patel A, Peters K, Hochhegger B, Mancuso A, Forghani R. Medical imaging and multimodal artificial intelligence models for streamlining and enhancing cancer care: opportunities and challenges. Expert Rev Anticancer Ther 2023; 23:1265-1279. [PMID: 38032181 DOI: 10.1080/14737140.2023.2286001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) has the potential to transform oncologic care. There have been significant developments in AI applications in medical imaging and increasing interest in multimodal models. These are likely to enable improved oncologic care through more precise diagnosis, increasingly in a more personalized and less invasive manner. In this review, we provide an overview of the current state and challenges that clinicians, administrative personnel and policy makers need to be aware of and mitigate for the technology to reach its full potential. AREAS COVERED The article provides a brief targeted overview of AI, a high-level review of the current state and future potential AI applications in diagnostic radiology and to a lesser extent digital pathology, focusing on oncologic applications. This is followed by a discussion of emerging approaches, including multimodal models. The article concludes with a discussion of technical, regulatory challenges and infrastructure needs for AI to realize its full potential. EXPERT OPINION There is a large volume of promising research, and steadily increasing commercially available tools using AI. For the most advanced and promising precision diagnostic applications of AI to be used clinically, robust and comprehensive quality monitoring systems and informatics platforms will likely be required.
Collapse
Affiliation(s)
- Kevin Pierre
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manas Gupta
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Abheek Raviprasad
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Seyedeh Mehrsa Sadat Razavi
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Anjali Patel
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Keith Peters
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bruno Hochhegger
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Anthony Mancuso
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Reza Forghani
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
- Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
5
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
6
|
Radiomics artificial intelligence modelling for prediction of local control for colorectal liver metastases treated with radiotherapy. Phys Imaging Radiat Oncol 2022; 24:36-42. [PMID: 36148155 PMCID: PMC9485899 DOI: 10.1016/j.phro.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
Computed tomography imaging contains quantifiable information to characterize colorectal liver metastases. Shape, texture, and intensity statistical features quantified the computed tomography liver volume. An artificial intelligence model to predict local progression from radiomic features was developed with high accuracy. Maximum dosage and textural coarseness of liver volume were features with highest predictive value.
Background and Purpose Prognostic assessment of local therapies for colorectal liver metastases (CLM) is essential for guiding management in radiation oncology. Computed tomography (CT) contains liver texture information which may be predictive of metastatic environments. To investigate the feasibility of analyzing CT texture, we sought to build an automated model to predict progression-free survival using CT radiomics and artificial intelligence (AI). Materials and Methods Liver CT scans and outcomes for N = 97 CLM patients treated with radiotherapy were retrospectively obtained. A survival model was built by extracting 108 radiomic features from liver and tumor CT volumes for a random survival forest (RSF) to predict local progression. Accuracies were measured by concordance indices (C-index) and integrated Brier scores (IBS) with 4-fold cross-validation. This was repeated with different liver segmentations and radiotherapy clinical variables as inputs to the RSF. Predictive features were identified by perturbation importances. Results The AI radiomics model achieved a C-index of 0.68 (CI: 0.62–0.74) and IBS below 0.25 and the most predictive radiomic feature was gray tone difference matrix strength (importance: 1.90 CI: 0.93–2.86) and most predictive treatment feature was maximum dose (importance: 3.83, CI: 1.05–6.62). The clinical data only model achieved a similar C-index of 0.62 (CI: 0.56–0.69), suggesting that predictive signals exist in radiomics and clinical data. Conclusions The AI model achieved good prediction accuracy for progression-free survival of CLM, providing support that radiomics or clinical data combined with machine learning may aid prognostic assessment and management.
Collapse
|
7
|
Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB (Oxford) 2022; 24:1341-1350. [PMID: 35283010 PMCID: PMC9355916 DOI: 10.1016/j.hpb.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most patients recur after resection of intrahepatic cholangiocarcinoma (IHC). We studied whether machine-learning incorporating radiomics and tumor size could predict intrahepatic recurrence within 1-year. METHODS This was a retrospective analysis of patients with IHC resected between 2000 and 2017 who had evaluable computed tomography imaging. Texture features (TFs) were extracted from the liver, tumor, and future liver remnant (FLR). Random forest classification using training (70.3%) and validation cohorts (29.7%) was used to design a predictive model. RESULTS 138 patients were included for analysis. Patients with early recurrence had a larger tumor size (7.25 cm [IQR 5.2-8.9] vs. 5.3 cm [IQR 4.0-7.2], P = 0.011) and a higher rate of lymph node metastasis (28.6% vs. 11.6%, P = 0.041), but were not more likely to have multifocal disease (21.4% vs. 17.4%, P = 0.643). Three TFs from the tumor, FD1, FD30, and IH4 and one from the FLR, ACM15, were identified by feature selection. Incorporation of TFs and tumor size achieved the highest AUC of 0.84 (95% CI 0.73-0.95) in predicting recurrence in the validation cohort. CONCLUSION This study demonstrates that radiomics and machine-learning can reliably predict patients at risk for early intrahepatic recurrence with good discrimination accuracy.
Collapse
|
8
|
The Hepatic Pre-Metastatic Niche. Cancers (Basel) 2022; 14:cancers14153731. [PMID: 35954395 PMCID: PMC9367402 DOI: 10.3390/cancers14153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The pre-metastatic niche is a recently established concept that could lead to targeted therapies that prevent metastasis before ever occurring. Considering that 90% of cancer mortality results from metastasis, the PMN is thus a salient opportunity for intervention. The purpose of the current review is to cover what is known specifically about the hepatic pre-metastatic niche, a topic that has garnered increasing research focus within the last decade. We discuss the methods of communication between primary tumors and the liver, the involved cell populations, the key changes within liver tissue, and perspectives on the future of the field. Abstract Primary tumors can communicate with the liver to establish a microenvironment that favors metastatic colonization prior to dissemination, forming what is termed the “pre-metastatic niche” (PMN). Through diverse signaling mechanisms, distant malignancies can both influence hepatic cells directly as well as recruit immune cells into the PMN. The result is a set of changes within the hepatic tissue that increase susceptibility of tumor cell invasion and outgrowth upon dissemination. Thus, the PMN offers a novel step in the traditional metastatic cascade that could offer opportunities for clinical intervention. The involved signaling molecules also offer promise as biomarkers. Ultimately, while the existence of the hepatic PMN is well-established, continued research effort and use of innovative models are required to reach a functional knowledge of PMN mechanisms that can be further targeted.
Collapse
|
9
|
Parker AL, Benguigui M, Fornetti J, Goddard E, Lucotti S, Insua-Rodríguez J, Wiegmans AP. Current challenges in metastasis research and future innovation for clinical translation. Clin Exp Metastasis 2022; 39:263-277. [PMID: 35072851 PMCID: PMC8971179 DOI: 10.1007/s10585-021-10144-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
While immense strides have been made in understanding tumor biology and in developing effective treatments that have substantially improved the prognosis of cancer patients, metastasis remains the major cause of cancer-related death. Improvements in the detection and treatment of primary tumors are contributing to a growing, detailed understanding of the dynamics of metastatic progression. Yet challenges remain in detecting metastatic dissemination prior to the establishment of overt metastases and in predicting which patients are at the highest risk of developing metastatic disease. Further improvements in understanding the mechanisms governing metastasis have great potential to inform the adaptation of existing therapies and the development of novel approaches to more effectively control metastatic disease. This article presents a forward-looking perspective on the challenges that remain in the treatment of metastasis, and the exciting emerging approaches that promise to transform the treatment of metastasis in cancer patients.
Collapse
Affiliation(s)
- Amelia L Parker
- Matrix and Metastasis Lab, Kinghorn Cancer Centre, Garvin Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, 2052, Australia.
| | - Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake, UT, USA
| | - Erica Goddard
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, NY, New York, USA
| | - Jacob Insua-Rodríguez
- Department of Physiology and Biophysics, Department of Biological Chemistry, Chao Family Comprehensive Cancer Centre, University of California, Irvine, CA, USA
| | - Adrian P Wiegmans
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, 4121, Australia
| |
Collapse
|
10
|
Waddell JJ, Townsend PH, Collins ZS, Walter C. Liver-Directed Therapy for Metastatic Colon Cancer: Update. CURRENT COLORECTAL CANCER REPORTS 2022. [DOI: 10.1007/s11888-022-00474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Artificial Intelligence Applications on Restaging [18F]FDG PET/CT in Metastatic Colorectal Cancer: A Preliminary Report of Morpho-Functional Radiomics Classification for Prediction of Disease Outcome. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate the application of [18F]FDG PET/CT images-based textural features analysis to propose radiomics models able to early predict disease progression (PD) and survival outcome in metastatic colorectal cancer (MCC) patients after first adjuvant therapy. For this purpose, 52 MCC patients who underwent [18F]FDGPET/CT during the disease restaging process after the first adjuvant therapy were analyzed. Follow-up data were recorded for a minimum of 12 months after PET/CT. Radiomics features from each avid lesion in PET and low-dose CT images were extracted. A hybrid descriptive-inferential method and the discriminant analysis (DA) were used for feature selection and for predictive model implementation, respectively. The performance of the features in predicting PD was performed for per-lesion analysis, per-patient analysis, and liver lesions analysis. All lesions were again considered to assess the diagnostic performance of the features in discriminating liver lesions. In predicting PD in the whole group of patients, on PET features radiomics analysis, among per-lesion analysis, only the GLZLM_GLNU feature was selected, while three features were selected from PET/CT images data set. The same features resulted more accurately by associating CT features with PET features (AUROC 65.22%). In per-patient analysis, three features for stand-alone PET images and one feature (i.e., HUKurtosis) for the PET/CT data set were selected. Focusing on liver metastasis, in per-lesion analysis, the same analysis recognized one PET feature (GLZLM_GLNU) from PET images and three features from PET/CT data set. Similarly, in liver lesions per-patient analysis, we found three PET features and a PET/CT feature (HUKurtosis). In discrimination of liver metastasis from the rest of the other lesions, optimal results of stand-alone PET imaging were found for one feature (SUVbwmin; AUROC 88.91%) and two features for merged PET/CT features analysis (AUROC 95.33%). In conclusion, our machine learning model on restaging [18F]FDGPET/CT was demonstrated to be feasible and potentially useful in the predictive evaluation of disease progression in MCC.
Collapse
|
12
|
Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol 2022; 19:132-146. [PMID: 34663898 PMCID: PMC9034765 DOI: 10.1038/s41571-021-00560-7] [Citation(s) in RCA: 288] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
The successful use of artificial intelligence (AI) for diagnostic purposes has prompted the application of AI-based cancer imaging analysis to address other, more complex, clinical needs. In this Perspective, we discuss the next generation of challenges in clinical decision-making that AI tools can solve using radiology images, such as prognostication of outcome across multiple cancers, prediction of response to various treatment modalities, discrimination of benign treatment confounders from true progression, identification of unusual response patterns and prediction of the mutational and molecular profile of tumours. We describe the evolution of and opportunities for AI in oncology imaging, focusing on hand-crafted radiomic approaches and deep learning-derived representations, with examples of their application for decision support. We also address the challenges faced on the path to clinical adoption, including data curation and annotation, interpretability, and regulatory and reimbursement issues. We hope to demystify AI in radiology for clinicians by helping them to understand its limitations and challenges, as well as the opportunities it provides as a decision-support tool in cancer management.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nathaniel Braman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Tempus Labs, Chicago, IL, USA
| | - Amit Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Vamsidhar Velcheti
- Department of Hematology and Oncology, NYU Langone Health, New York, NY, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Medical Center, Cleveland, OH, USA.
| |
Collapse
|
13
|
Radiogenomics: Hunting Down Liver Metastasis in Colorectal Cancer Patients. Cancers (Basel) 2021; 13:cancers13215547. [PMID: 34771709 PMCID: PMC8582778 DOI: 10.3390/cancers13215547] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third leading cause of cancer and the second most deadly tumor type in the world. The liver is the most common site of metastasis in CRC patients. The conversion of new imaging biomarkers into diagnostic, prognostic and predictive signatures, by the development of radiomics and radiogenomics, is an important potential new tool for the clinical management of cancer patients. In this review, we assess the knowledge gained from radiomics and radiogenomics studies in liver metastatic colorectal cancer patients and their possible use for early diagnosis, response assessment and treatment decisions. Abstract Radiomics is a developing new discipline that analyzes conventional medical images to extract quantifiable data that can be mined for new biomarkers that show the biology of pathological processes at microscopic levels. These data can be converted into image-based signatures to improve diagnostic, prognostic and predictive accuracy in cancer patients. The combination of radiomics and molecular data, called radiogenomics, has clear implications for cancer patients’ management. Though some studies have focused on radiogenomics signatures in hepatocellular carcinoma patients, only a few have examined colorectal cancer metastatic lesions in the liver. Moreover, the need to differentiate between liver lesions is fundamental for accurate diagnosis and treatment. In this review, we summarize the knowledge gained from radiomics and radiogenomics studies in hepatic metastatic colorectal cancer patients and their use in early diagnosis, response assessment and treatment decisions. We also investigate their value as possible prognostic biomarkers. In addition, the great potential of image mining to provide a comprehensive view of liver niche formation is examined thoroughly. Finally, new challenges and current limitations for the early detection of the liver premetastatic niche, based on radiomics and radiogenomics, are also discussed.
Collapse
|
14
|
Fiz F, Costa G, Gennaro N, la Bella L, Boichuk A, Sollini M, Politi LS, Balzarini L, Torzilli G, Chiti A, Viganò L. Contrast Administration Impacts CT-Based Radiomics of Colorectal Liver Metastases and Non-Tumoral Liver Parenchyma Revealing the "Radiological" Tumour Microenvironment. Diagnostics (Basel) 2021; 11:diagnostics11071162. [PMID: 34202253 PMCID: PMC8305553 DOI: 10.3390/diagnostics11071162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
The impact of the contrast medium on the radiomic textural features (TF) extracted from the CT scan is unclear. We investigated the modification of TFs of colorectal liver metastases (CLM), peritumoral tissue, and liver parenchyma. One hundred and sixty-two patients with 409 CLMs undergoing resection (2017–2020) into a single institution were considered. We analyzed the following volumes of interest (VOIs): The CLM (Tumor-VOI); a 5-mm parenchyma rim around the CLM (Margin-VOI); and a 2-mL sample of parenchyma distant from CLM (Liver-VOI). Forty-five TFs were extracted from each VOI (LIFEx®®). Contrast enhancement affected most TFs of the Tumor-VOI (71%) and Margin-VOI (62%), and part of those of the Liver-VOI (44%, p = 0.010). After contrast administration, entropy increased and energy decreased in the Tumor-VOI (0.93 ± 0.10 vs. 0.85 ± 0.14 in pre-contrast; 0.14 ± 0.03 vs. 0.18 ± 0.04, p < 0.001) and Margin-VOI (0.89 ± 0.11 vs. 0.85 ± 0.12; 0.16 ± 0.04 vs. 0.18 ± 0.04, p < 0.001), while remaining stable in the Liver-VOI. Comparing the VOIs, pre-contrast Tumor and Margin-VOI had similar entropy and energy (0.85/0.18 for both), while Liver-VOI had lower values (0.76/0.21, p < 0.001). In the portal phase, a gradient was observed (entropy: Tumor > Margin > Liver; energy: Tumor < Margin < Liver, p < 0.001). Contrast enhancement affected TFs of CLM, while it did not modify entropy and energy of parenchyma. TFs of the peritumoral tissue had modifications similar to the Tumor-VOI despite its radiological aspect being equal to non-tumoral parenchyma.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (M.S.); (A.C.)
- Correspondence: (F.F.); (L.V.); Tel.: +39-02-8224-7361 (L.V.)
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (G.C.); (G.T.)
| | - Nicolò Gennaro
- Department of Diagnostic Imaging, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (N.G.); (L.S.P.); (L.B.)
| | - Ludovico la Bella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy; (L.l.B.); (A.B.)
| | - Alexandra Boichuk
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy; (L.l.B.); (A.B.)
| | - Martina Sollini
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy; (L.l.B.); (A.B.)
| | - Letterio S. Politi
- Department of Diagnostic Imaging, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (N.G.); (L.S.P.); (L.B.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy; (L.l.B.); (A.B.)
| | - Luca Balzarini
- Department of Diagnostic Imaging, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (N.G.); (L.S.P.); (L.B.)
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (G.C.); (G.T.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy; (L.l.B.); (A.B.)
| | - Arturo Chiti
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy; (L.l.B.); (A.B.)
| | - Luca Viganò
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy; (G.C.); (G.T.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy; (L.l.B.); (A.B.)
- Correspondence: (F.F.); (L.V.); Tel.: +39-02-8224-7361 (L.V.)
| |
Collapse
|