1
|
Shimizu M, Shirota H. Femtosecond Raman-induced Kerr effect spectroscopic study of the intermolecular dynamics in aqueous solutions of imidazolium hydrochloride, imidazole, sodium triazolide, and triazole: concentration dependence. ANAL SCI 2024:10.1007/s44211-024-00692-7. [PMID: 39565567 DOI: 10.1007/s44211-024-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
In this study, we employed femtosecond Raman-induced Kerr effect spectroscopy to analyze the concentration-dependent intermolecular dynamics in positively or negatively charged aromatics and their neutral analogous aromatics (imidazolium hydrochloride (ImHCl), imidazole (Im), sodium triazolide (NaTr), and triazole (Tr)) in aqueous solutions at 293 K. We also measured their liquid properties, such as density, viscosity, and surface tension, at 293 K, and compared them with their dynamic properties. Furthermore, we performed the quantum chemistry calculations of the target aromatics and some clusters to elucidate their optimized structures, interaction energies, charge populations, and Raman-active normal modes. We characterized the Kerr transients over 2 ps using a triexponential function. The results revealed that the aqueous solutions' intermediate and slow relaxation time constants were linearly proportional to the viscosities. The slopes of the time constants to the viscosity of the aqueous ImHCl solutions were steeper than those of the aqueous Im solutions, whereas the slopes of the aqueous NaTr solutions were milder than those of the aqueous Tr solutions. These findings indicated that the charge of the aromatics in the aqueous solutions affected the coupling parameter between the solute and solvent in the orientational dynamics with different ways. The first moment (M1) of the low-frequency band (< 200 cm-1), coming from the intermolecular vibrations, in the difference spectra between the aqueous aromatic solutions and neat water shifted to the high-frequency region as the concentration increased. The M1 slope to the concentration for the aqueous ImHCl solutions was steeper than that for the aqueous Im solutions. Conversely, the concentration dependence of M1 for the aqueous NaTr solutions was similar to that for the aqueous Tr solutions. We used the local structures of the target aromatics based on the quantum chemistry calculations to rationally clarify their concentration-dependent intermolecular dynamics in the aqueous solutions.
Collapse
Affiliation(s)
- Masako Shimizu
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-Ku, Chiba, 263-8522, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-Ku, Chiba, 263-8522, Japan.
| |
Collapse
|
2
|
Meng D, Sagala SL, Quitevis EL. Low-frequency (0-450 cm -1) dynamics of n-alkyl cyanide liquids studied by optical Kerr effect spectroscopy and density functional theory. Phys Chem Chem Phys 2024. [PMID: 39503630 DOI: 10.1039/d4cp03376k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
This article presents a study of the dynamics of n-alkyl cyanides (CnH2n+1CN with n = 1-5) in the 0-450 cm-1 spectral region as a function of alkyl chain length. The spectra were measured using femtosecond optical Kerr effect (OKE) spectroscopy. The OKE spectra are characterized by a broad band in the 0-150 cm-1 region arising mainly from intermolecular modes and by narrow bands in the 150-450 cm-1 region arising from intramolecular modes. The intramolecular bands in the OKE spectra are in good agreement with the bands in simulated spectra obtained from density functional theory calculations. For cyanide molecules with long alkyl chains (n = 3-5), a low frequency intramolecular band associated with a torsional vibrational mode overlaps with the intermolecular band. Applying multicomponent line-shape analysis to the broad low-frequency band allowed us to obtain the intermolecular component of the band. We find the frequency and amplitude of the intermolecular band decrease with increasing chain length. Based on previous theoretical studies of the OKE spectrum of methyl cyanide and OKE reorientational studies of n-alkyl cyanides, we show that the dependence of the frequency of the intermolecular band on alkyl chain length is consistent with the band being primarily due to the hindered rotational motion of the molecules in the extended configuration about an axis perpendicular to the long axis of the molecule. The dependence of the amplitude of the intermolecular band on alkyl chain length is a mass effect associated with suppression of the collision-induced contribution to the intermolecular band.
Collapse
Affiliation(s)
- Dujuan Meng
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Sophia L Sagala
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Edward L Quitevis
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Shirota H, Liu X, Peng Y, Hossain F, Falcone RD. Comparison between Phosphonium Docusate Ionic Liquids and Their Equimolar Mixtures with Alkanes: Temperature-Dependent Viscosity, Glass Transition, and Fragility. ACS OMEGA 2024; 9:38769-38777. [PMID: 39310201 PMCID: PMC11411650 DOI: 10.1021/acsomega.4c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
In this study, we determined the temperature-dependent viscosities, glass transition temperatures, and fragilities of tetraalkylphosphonium docusate ionic liquids (ILs) and their equimolar mixtures with alkanes to elucidate the effects of the alkyl groups on the phosphonium cation. The target ILs were the docusate salts with tributylheptylphosphonium ([P4447][doc]), tributyltetradecylphosphonium ([P444,14][doc]), butyltrihexylphosphonium ([P4666][doc]), trihexylheptylphosphonium ([P6667][doc]), and trihexyltetradecylphosphonium cations ([P666,14][doc]). The comparable IL/alkane mixtures were equimolar mixtures of IL and alkane with the same carbon numbers of the target ILs: [P4447][doc]/hexane to [P6667][doc]; [P4447][doc]/heptane to [P444,14][doc]; [P444,14][doc]/hexane to [P666,14][doc]; [P4666][doc]/decane to [P666,14][doc]; and [P6667][doc]/heptane to [P666,14][doc]. The viscosities and glass transition temperatures of the neat ILs were higher than those of their respective IL/alkane mixtures. Based on the analysis of temperature-dependent viscosities, including a viscosity value of 1013 mPa·s at the glass transition temperature using the Vogel-Fulcher-Tammann equation, the neat ILs were stronger liquids than the corresponding IL/alkane mixtures. By comparing several combinations of the neat ILs and IL/alkane mixtures, we found that the larger the alkane, the more fragile the mixture.
Collapse
Affiliation(s)
- Hideaki Shirota
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Xeuchen Liu
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Yue Peng
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Faruk Hossain
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - R. Dario Falcone
- Department
of Chemistry, National University of Rio
Cuarto, Ruta 36 Km 601, Rio Cuarto X5804BYA, Argentina
| |
Collapse
|
4
|
Koyakkat M, Ishida T, Fujita K, Shirota H. Low-Frequency Spectra of Hydrated Ionic Liquids with Kosmotropic and Chaotropic Anions. J Phys Chem B 2024; 128:4171-4182. [PMID: 38640467 DOI: 10.1021/acs.jpcb.4c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
In this study, we investigated the water concentration dependence of the intermolecular vibrations of two hydrated ionic liquids (ILs), cholinium dihydrogen phosphate ([ch][dhp]) and cholinium bromide ([ch]Br), using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES). The anions of the former and latter hydrated ILs are kosmotropic and chaotropic, respectively. We found that the spectral peak of ∼50 cm-1 shifted to the low-frequency side in hydrated [ch][dhp], indicating the weakening of its intermolecular interactions. In contrast, no change in the peak frequency of the low-frequency band at ∼50 cm-1 was observed with increasing water concentration in hydrated [ch]Br. The vibrational density of states (VDOS) spectra generated from molecular dynamics (MD) simulations were in qualitative agreement with the experimental results. Decomposition analysis of the VDOS spectra for each component revealed that the red shift of the low-frequency band in the hydrated [ch][dhp] upon water addition was essentially due to the contributions of anions and water rather than that of the cholinium cation. We also found from the low-frequency spectra of the two hydrated ILs that they differed in the concentration dependence of the 180 cm-1 band, which is assigned as a hindered translational motion of water molecules combined to form O···O stretching motions. From the relationship between the peak frequency of the low-frequency band and the bulk parameter, which is the square root of the surface tension divided by the density, we found that the peak frequency in the hydrated IL with kosmotropic [dhp]- depends on the bulk parameter, similar to the case for an aqueous solution of the typical deep eutectic solvent reline. However, the peak frequency of the hydrated IL with chaotropic Br- is constant with the bulk parameter.
Collapse
Affiliation(s)
- Maharoof Koyakkat
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Tateki Ishida
- Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Kyoko Fujita
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
5
|
Maity N, Polok K, Piatkowski P, Smortsova Y, Miannay FA, Gadomski W, Idrissi A. Effect of Mixture Composition on the Photophysics of Indoline Dyes in Imidazolium Ionic Liquid-Molecular Solvent Mixtures: A Femtosecond Transient Absorption Study. J Phys Chem B 2024. [PMID: 38687688 DOI: 10.1021/acs.jpcb.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We conducted a study on the photophysics of three indoline dyes, D102, D149, and D205, in binary mixtures of ionic liquids (IL) and polar aprotic molecular solvents (MS). Specifically, we examined the behavior of these dyes in IL-MS mixtures containing four different imidazolium-based ILs and three different polar aprotic MSs. Our investigation involved several techniques, including stationary absorption and emission measurements, as well as femtosecond transient absorption (TA) spectroscopy. Through our analysis, we discovered a peculiar behavior of several photophysical properties at low IL mole fractions (0 < XIL < 0.2). Indeed, in this range of mixture composition, the absorption maximum wavelength decreases noticeably, while the emission maximum wavelength and the Stokes shift, expressed in wavenumbers, reach a maximum. while a minimum occurs in the relative quantum yield and the excited state lifetime. These results indicate that the solvation of dye undergoes a large change in this range of mixture composition. We found that, at high ionic liquid content, the excited relaxation times are correlated with the high viscosity, while at low content, it is the polarity of the solvent that influences the behavior of the excited relaxation times. At a mixture composition of around 0.10, the behavior of the photophysical properties of the studied IL-MS mixtures indicates a crossover between situations where the solvation is dominated by that of ions and that dominated by the solvent.
Collapse
Affiliation(s)
- Nishith Maity
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Kamil Polok
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | - Piotr Piatkowski
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | | | - François-Alexandre Miannay
- CNRS, UMR 8516-LASIRe, Laboratoire Avancé de Spectroscopie pour les Interactions, la réactivité et l'Environement, Universiy of Lille, Lille F-59000, France
| | - Wojciech Gadomski
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | - Abdenacer Idrissi
- CNRS, UMR 8516-LASIRe, Laboratoire Avancé de Spectroscopie pour les Interactions, la réactivité et l'Environement, Universiy of Lille, Lille F-59000, France
| |
Collapse
|
6
|
Ando M, Koyakkat M, Ueda T, Minato T, Shirota H. Wettability and Surface Tension of Imidazolium, Ammonium, and Phosphonium Bis(fluorosulfonyl)amide Ionic Liquids: Comparison between Pentyl, Ethoxyethyl, and Ethylthioethyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12090-12098. [PMID: 37578197 DOI: 10.1021/acs.langmuir.3c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
This study particularly compares the surface tensions and contact angles for molten bis(fluorosulfonyl)amide salts of imidazolium, ammonium, and phosphonium cations with the pentyl, ethoxyethyl, or ethylthioethyl group. The examined substrate plates for contact angle measurements include silicate glass, platinum, copper, graphene, and polytetrafluoroethylene (PTFE). In addition, quantum chemistry calculations were performed to obtain the optimized structures of the cations and anions of the ionic liquids (ILs) that were studied here along with some typical anions and their dipole moments, mean polarizabilities, and charge distributions. All ILs showed the same order of contact angles with respect to the substrates: PTFE > graphene ≈ copper ≈ platinum > silicate glass. By comparing the three functional groups, i.e., pentyl, ethoxyethyl, and ethylthioethyl, the ILs with the ethylthioethyl group featured a higher work of adhesion than the respective ILs with the pentyl or ethoxyethyl group. The values of the surface tensions of the ILs followed the same trend for the three functional groups. Based on the Fowkes theory, it was found that the larger surface tensions of the ILs with the ethylthioethyl group compared with pentyl and ethoxyethyl groups were because of the increase in both dispersive and nondispersive components. The quantum chemistry calculations of the ions showed a larger dipole moment and mean polarizability for the cations with the ethylthioethyl group as compared with the pentyl and ethoxyethyl groups. This is consistent with the analysis results of the surface tensions based on the Fowkes theory. By comparing other anions, the dispersive component of the surface tension of the ILs with bis(fluorosulfonyl)amide was large, which is attributed to the small dipole moment of the anion.
Collapse
Affiliation(s)
- Masatoshi Ando
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Maharoof Koyakkat
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Tadashi Ueda
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Taketoshi Minato
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Ando M, Tashiro A, Kawano M, Peng Y, Takamuku T, Shirota H. Exploring the Microscopic Aspects of 1-Methyl-3-octylimidazolium Tetrafluoroborate Mixtures with Formamide, N-Methylformamide, and N, N-Dimethylformamide by Multiple Spectroscopic Techniques and Computations. J Phys Chem B 2023; 127:3870-3887. [PMID: 37093658 DOI: 10.1021/acs.jpcb.2c09102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The microscopic aspects of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4]) mixtures with formamide (FA), N-methylformamide (NMF), and N,N-dimethylformamide (DMF) were investigated using spectroscopic techniques of femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), FT-IR, and NMR. Molecular dynamics simulations and quantum chemistry calculations were also performed. According to fs-RIKES, the first moment of the low-frequency spectrum bands mainly originating from the intermolecular vibrations in the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems changed gradually with the molecular liquid mole fraction XML but that in the [MOIm][BF4]/NMF system was constant up to XNMF = 0.7 and then gradually increased in the range of XNMF ≥ 0.7. Excluding the contribution of the 2D hydrogen-bonding network due to the presence of FA in the low-frequency spectrum band, the XML dependence of the normalized first moment of the low-frequency band in the [MOIm][BF4]/FA and [MOIm][BF4]/NMF systems revealed that the normalized first moment did not remarkably change in the range of XML < 0.7 but drastically increased in XML ≥ 0.7. FT-IR results indicated that the amide C═O band shifted to the low-frequency side with increasing XML for the three mixtures due to the hydrogen bonds. The imidazolium ring C-H band also showed a similar tendency to the amide C═O band. 19F NMR probed the microenvironment of [BF4]- in the mixtures. The [MOIm][BF4]/NMF and [MOIm][BF4]/DMF systems showed an up-field shift of the F atoms of the anion with increasing XML, and the [MOIm][BF4]/FA system exhibited a down-field shift. Steep changes in the chemical shifts were confirmed in the region of XML > 0.8. On the basis of the quantum chemistry calculations, the observed chemical shifts with increasing XML were mainly attributed to the many-body interactions of ions and amides for the [MOIm][BF4]/FA and [MOIm][BF4]/DMF systems. Meanwhile, the long distance between the cation and the anion was due to the high dielectric medium for the [MOIm][BF4]/NMF system, which led to an up-field shift.
Collapse
Affiliation(s)
- Masatoshi Ando
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Atsuya Tashiro
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Masahiro Kawano
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Yue Peng
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Toshiyuki Takamuku
- Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Hideaki Shirota
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
8
|
Shirota H, Rajbangshi J, Koyakkat M, Baksi A, Cao M, Biswas R. Low-frequency spectra of reline and its mixtures with water: A comparative study based on femtosecond Raman-induced Kerr effect spectroscopy and molecular dynamics simulations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Ando M, Ohta K, Ishida T, Koido R, Shirota H. Physical Properties and Low-Frequency Polarizability Anisotropy and Dipole Responses of Phosphonium Bis(fluorosulfonyl)amide Ionic Liquids with Pentyl, Ethoxyethyl, or 2-(Ethylthio)ethyl Group. J Phys Chem B 2023; 127:542-556. [PMID: 36602430 DOI: 10.1021/acs.jpcb.2c07466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study compared the physical properties, e.g., glass transition temperature, melting point, viscosity, density, surface tension, and electrical conductivity, and the low-frequency spectra under 200 cm-1 of three synthesized ionic liquids (ILs), triethylpentylphosphonium bis(fluorosulfonyl)amide ([P2225][NF2]), ethoxyethyltriethylphosphonium bis(fluorosulfonyl)amide ([P222(2O2)][NF2]), and triethyl[2-(ethylthio)ethyl]phosphonium bis(fluorosulfonyl)amide ([P222(2S2)][NF2]), at various temperatures using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES) and terahertz time-domain spectroscopy (THz-TDS). The [P222(2S2)][NF2] had the highest viscosity and glass transition temperature, whereas the [P222(2O2)][NF2] had the lowest. Among the three ILs, the [P222(2S2)][NF2] had the highest density and surface tension, and the [P222(2O2)][NF2] had the highest electrical conductivity. The RIKES and THz-TDS spectral line shapes for the three ILs varied significantly. For the [P2225][NF2], molecular dynamics simulations successfully reproduced the line shapes of the experimental spectra and indicated that the RIKES spectrum was mainly due to the cation and cross-term and their rotational motions, whereas the THz-TDS spectrum was mainly due to the anion and its translational motion. This shows that it is desirable to utilize both fs-RIKES and THz-TDS methods to reveal molecular motions at the low-frequency domain. The [P222(2S2)][NF2] had higher frequency peaks and broader bands in the low-frequency spectra via fs-RIKES and THz-TDS than those for the [P2225][NF2] and [P222(2O2)][NF2].
Collapse
Affiliation(s)
- Masatoshi Ando
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Kaoru Ohta
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tateki Ishida
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science and Research Center for Computational Science, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Ryohei Koido
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
10
|
Shirota H, Koyakkat M, Cao M, Shimizu M, Asakura S, Kawamoto H, Moriyama K. Facile Preparation of Deep Eutectic Solvents Having High Electrical Conductivities. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Shimizu M, Shirota H. Intermolecular Dynamics of Positively and Negatively Charged Aromatics and Their Isoelectronic Neutral Analogs in Aqueous Solutions. J Phys Chem B 2022; 126:4309-4323. [PMID: 35658126 DOI: 10.1021/acs.jpcb.2c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we investigated the temperature dependence of intermolecular vibrations and orientational dynamics in the aqueous solutions of imidazole hydrochloride, imidazole, sodium triazolide, and triazole using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES) and steady-state Raman spectroscopy. The difference low-frequency Raman spectra under 250 cm-1 of the aqueous solutions relative to the neat water showed that the spectral shoulder in the high-frequency region at 60-100 cm-1, assigned to the libration of an aromatic ring, was higher in frequency for the imidazolium cation but lower for the triazolide anion than those of the respective neutral aromatics. The results of the ab initio quantum chemistry calculations of the clusters of the aromatics and water molecule(s) were consistent with the experimental spectra of the aqueous solutions. Further, the results of the temperature-dependent experiments showed that the signal intensity in the low-frequency region below 50 cm-1 increased for all solutions with an increase in temperature. In contrast, the spectral density in the high-frequency region above 80 cm-1 exhibited almost no shift for the 1.0 M solutions, while a significant red shift was observed for the 5.0 M solutions. In addition, the temperature-dependent densities, viscosities, and surface tensions were characterized for the aqueous aromatic solutions from 293 to 353 K.
Collapse
Affiliation(s)
- Masako Shimizu
- Department of Chemistry, Chiba University 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Shirota H, Yanase K, Ogura T, Sato T. Intermolecular Dynamics and Structure in Aqueous Lidocaine Hydrochloride Solutions. J Phys Chem B 2022; 126:1787-1798. [PMID: 35170970 DOI: 10.1021/acs.jpcb.1c10504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the intermolecular dynamics and static structure in the aqueous solutions of lidocaine hydrochloride (LDHCl) in the concentration range of [LDHCl] = 0-2.00 M using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), small- and wide-angle X-ray scattering (SWAXS), and dynamic light scattering (DLS). For the fs-RIKES experiments, the concentration dependence of the difference low-frequency spectra of the aqueous LDHCl solutions relative to the neat water, which was mainly due to the intermolecular vibrations, was characterized using an exponential function with a characteristic concentration of ∼1 M. For the SWAXS experiments, we observed a manifestation of an excess scattering component centered within a range of 8-10 nm-1 in the aqueous LDHCl solutions. The results of Fourier inversion and further deconvolution analyses unambiguously demonstrated that lidocaines assemble into a nanometer-sized micelle-like structure with the innermost core (∼0.3 nm) and outer shell (∼0.5 nm), respectively. The DLS experiments also found nanometer-sized aggregates and further indicated evidence of the clusters of the aggregates. The results of viscosities, densities, and surface tensions of the solutions and the quantum chemistry calculations supported the unique features of the microscopic intermolecular interaction and the micelle-like aggregation.
Collapse
Affiliation(s)
- Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Keiichi Yanase
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Taiki Ogura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takaaki Sato
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
13
|
Polok K, Subba N, Gadomski W, Sen P. Search for the origin of synergistic solvation in methanol/chloroform mixture using optical Kerr effect spectroscopy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Ando M, Shirota H. Low-Frequency Spectra of 1-Methyl-3-octylimidazolium Tetrafluoroborate Mixtures with Poly(ethylene glycol) by Femtosecond Raman-Induced Kerr Effect Spectroscopy. J Phys Chem B 2021; 125:12006-12019. [PMID: 34694116 DOI: 10.1021/acs.jpcb.1c07079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This is the first report on low-frequency spectra of ionic liquid (IL)/polymer mixtures using femtosecond Raman-induced Kerr effect spectroscopy. We studied mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4]) and poly(ethylene glycol) (PEG) with Mn = 400 (PEG400) at various concentrations. To elucidate the unique features of the IL/polymer mixture system, mixtures of PEG400 with a molecular liquid, 1-octhylimidazole (OIm), which is a neutral analog of the cation, were also studied. In addition, mixtures of [MOIm][BF4] with ethylene glycol (EG) and poly(ethylene glycol) with Mn = 4000 (PEG4000) were also investigated. The first moments of broad low-frequency spectra, mainly due to intermolecular vibrations for the [MOIm][BF4]/PEG400 and OIm/PEG400, increased slightly with increasing concentration of PEG400, indicating that microscopic intermolecular interactions, in general, are slightly enhanced. We also compared the [MOIm][BF4] mixtures with EG, PEG400, and PEG4000 at concentrations of 5 and 10 wt % PEG or EG. The low-frequency spectra of samples with the same concentrations were quite similar, but a comparison of the normalized spectra showed that the spectral intensity in the low-frequency region below ∼50 cm-1 of the [MOIm][BF4] mixtures with PEG400 and PEG4000 is somewhat lower than that of the [MOIm][BF4] mixtures with EG. Although the effect of the polymer is small compared to other polymer solution systems, this feature is attributed to a suppression of translational motion in the mixtures of [MOIm][BF4] with PEG compared to the mixtures of [MOIm][BF4] with EG due to the greater mass of PEG than EG. Density, surface tension, viscosity, and electrical conductivity were also estimated. From Walden plots, it was found that the [MOIm][BF4]/PEG4000 system showed more ideal electrical conductive behavior than the [MOIm][BF4]/PEG400 and [MOIm][BF4]/EG systems.
Collapse
Affiliation(s)
- Masatoshi Ando
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
15
|
Meng D, Sagala S, Aquino AJ, Quitevis EL. Orientational and low-frequency (0–450 cm−1) dynamics of methyl methacrylate: OHD-RIKES measurements and DFT calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Shirota H, Ando M, Kakinuma S, Takahashi K. Ultrafast Dynamics in Nonaromatic Cation Based Ionic Liquids: A Femtosecond Raman-Induced Kerr Effect Spectroscopic Study. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Masatoshi Ando
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Shohei Kakinuma
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Kotaro Takahashi
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Polok K, Beisert M, Swiątek A, Maity N, Piatkowski P, Gadomski W, Miannay FA, Idrissi A. Dynamics in the BMIM PF 6/acetonitrile mixtures observed by femtosecond optical Kerr effect and molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:24544-24554. [PMID: 33094298 DOI: 10.1039/d0cp03847d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have performed the measurements of the optical Kerr effect signal time evolution up to 4 ns for a mixture of 1-alkyl-3-methyl-imidazolium hexafluorophosphate (BMIM PF6) ionic liquid and acetonitrile in the whole mole fractions range. The long delay line in our experimental setup allowed us to capture the complete reorientational dynamics of the ionic liquid. We have analysed the optical Kerr effect signal in the time and frequency domains with help of molecular dynamics simulations. In our approximation of the slow picosecond dynamics with a multi-exponential decay, we distinguish three relaxation times. The highest two are assigned to the reorientation of the cation and acetonitrile molecules that are in the vicinity of the imidazolium ring. The third one is recognized as originating from cation rotations and reorientation of acetonitrile molecules in the bulk or in the vicinity of the aliphatic chains of the cation. With help of the simulation we interpret the intermolecular band in the reduced spectral density, obtained from Kerr signal, as follows: its low-frequency side results from oscillations of one of the components in the cage formed by its neighbors, while the high-frequency side is attributed to the librations of the cation and acetonitrile molecule as well as the intermolecular oscillations of system components involved in specific interactions. We use this assignment and concentration dependence of the spectra obtained from velocity and angular velocity correlations to explain the mole fraction dependence of Kerr reduced spectral density.
Collapse
Affiliation(s)
- Kamil Polok
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ando M, Kawano M, Tashiro A, Takamuku T, Shirota H. Low-Frequency Spectra of 1-Methyl-3-octylimidazolium Tetrafluoroborate Mixtures with Methanol, Acetonitrile, and Dimethyl Sulfoxide: A Combined Study of Femtosecond Raman-Induced Kerr Effect Spectroscopy and Molecular Dynamics Simulations. J Phys Chem B 2020; 124:7857-7871. [DOI: 10.1021/acs.jpcb.0c04870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masatoshi Ando
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Masahiro Kawano
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Atsuya Tashiro
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Toshiyuki Takamuku
- Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Hideaki Shirota
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
19
|
Chen Z, Morales-Collazo O, Brennecke JF. Protic Imidazolium Cation-Based Ionic Liquids Show Unexpected Interfacial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8904-8913. [PMID: 32623898 DOI: 10.1021/acs.langmuir.0c01257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Virtually, every investigation and application of ionic liquids (ILs) involves gas-liquid, liquid-liquid, and liquid-solid interactions. Therefore, understanding the behavior of ILs at those interfaces is critical. In this work, we studied the interfacial properties of protic and aprotic ILs with N-alkylimidazolium and 1-alkyl-3-methylimidazolium as cations and bis(trifluoromethylsulfonyl)imide, methanesulfonate, and trifluoromethanesulfonate as anions. The surface tension of these ILs is measured with the pendant drop method in a temperature range of 293.15-343.15 K and at atmospheric pressure. The contact angle measurements are performed at 293.15 K on three solid substrates: polytetrafluoroethylene, glassy carbon, and platinum. Dispersive and nondispersive components of the IL surface energy are determined from the experimental data using Fowkes theory. The most interesting result is that the protic ILs have lower surface tension and smaller contact angles than the equivalent aprotic ILs, despite the presence of high charge density on the proton associated with one of the nitrogens of the cation. Higher charge density on the anion results in a higher surface tension, and decreasing surface tension and contact angles are observed for increasing alkyl chain length on the cation.
Collapse
Affiliation(s)
- Zhichao Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Oscar Morales-Collazo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Shirota H, Moriyama K. Low-Frequency Vibrational Motions of Polystyrene in Carbon Tetrachloride: Comparison with Model Monomer and Dependence on Concentration and Molecular Weight. J Phys Chem B 2020; 124:2006-2016. [PMID: 32073847 DOI: 10.1021/acs.jpcb.9b10672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the low-frequency vibrational dynamics of polystyrene (PS) in CCl4 was investigated by femtosecond Raman-induced Kerr effect spectroscopy. Ethylbenzene (EBz) was also investigated as a model monomer of the polymer to elucidate the unique dynamical features of PS in solution. The broadened low-frequency spectrum of the PS/CCl4 in the frequency region below 150 cm-1 is significantly different from that of the EBz/CCl4. Difference spectra between the PS or EBz solutions and neat CCl4, normalized to an internal vibrational mode of CCl4, clearly show a much lower spectral intensity for the PS/CCl4 than the EBz/CCl4 in the low-frequency region below ca. 20 cm-1. This indicates that translational motions are suppressed in the PS/CCl4 compared to the EBz/CCl4. Moreover, the high-frequency motion at ca. 70 cm-1, mainly due to phenyl ring librations, occurs at higher frequency in PS (78 cm-1) than EBz (65 cm-1). In addition, the results of concentration-dependent experiments show that the first moment (M1) of the low-frequency difference spectra of both PS/CCl4 and EBz/CCl4 is almost independent of the concentration. The molecular weight dependence of the low-frequency spectrum in the PS/CCl4 shows that the M1 value of the low-frequency spectral band of PS shifts to higher frequencies when the molecular weight of PS increases up to Mw = ∼1000, which corresponds approximately to the decamer, and then remains constant upon further increasing the molecular weight.
Collapse
Affiliation(s)
- Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Katsuhiko Moriyama
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
21
|
Affiliation(s)
- Nikolai V. Ignat'ev
- Institut für Anorganische Chemie; Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Consultant, Merck KGaA; 64293 Darmstadt Germany
| | - Maik Finze
- Institut für Anorganische Chemie; Institut für nachhaltige Chemie & Katalyse mit Bor (ICB); Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
22
|
Kakinuma S, Shirota H. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Pyrrolidinium-Based Ionic Liquids: Effects of Anion Species. J Phys Chem B 2019; 123:1307-1323. [DOI: 10.1021/acs.jpcb.8b10269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Gurung E, Meng D, Xue L, Tamas G, Lynden-Bell RM, Quitevis EL. Optical Kerr effect spectroscopy of CS 2 in monocationic and dicationic ionic liquids: insights into the intermolecular interactions in ionic liquids. Phys Chem Chem Phys 2018; 20:26558-26569. [PMID: 30306995 DOI: 10.1039/c8cp04503h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparative study of the intermolecular dynamics of CS2 in monocationic and dicationic ionic liquids (ILs) was performed using optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The reduced spectral densities (RSDs) of mixtures of CS2 in 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([CnC1im][NTf2] for n = 3-5) and 1,2n-bis(3-methylimidazolium-1-yl) alkane bis[(trifluoromethane)sulfonyl]amide ([(C1im)2C2n][NTf2]2 for n = 3-5) were investigated as a function of concentration at 295 K. An additivity model was used to obtain the CS2 contribution to the RSD of a mixture in the 0-200 cm-1 region. One of the aims of this study is to show how CS2 can be used as a probe of intermolecular/interionic interactions in ILs. The concentrations were chosen such that the CS2-to-imidazolium ring mole fraction of a mixture with [(C1im)2C2n][NTf2]2 (DIL(2n)) is the same as that of a mixture with [CnC1im][NTf2] (MIL(n)). As found previously for CS2 in monocationic ILs, the intermolecular spectrum of CS2 in dicationic ILs is lower in frequency and narrower than that of neat CS2. The new result is that the intermolecular spectrum of CS2 is higher in frequency in DIL(2n) than in the corresponding MIL(n), indicating that CS2 molecules experience a stiffer potential in dicationic ILs than in monocationic ILs. The intermolecular dynamics of CS2 being higher in frequency in DIL(2n) than in MIL(n) is consistent with recent molecular dynamics simulations (Lynden-Bell and Quitevis, J. Chem. Phys., 2018, 148, 193844) that show the stiffer potential is the result of greater confinement of CS2 in DIL(2n) than in MIL(n). We also show in this study how effects due to dilution and the intermolecular potential seen by a solute molecule in solution are unraveled.
Collapse
Affiliation(s)
- Eshan Gurung
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Dujuan Meng
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Lianjie Xue
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - George Tamas
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ruth M Lynden-Bell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Edward L Quitevis
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
24
|
Kakinuma S, Ramati S, Wishart JF, Shirota H. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum. J Chem Phys 2018; 148:193805. [DOI: 10.1063/1.5010066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shohei Kakinuma
- Department of Nanomaterial Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Sharon Ramati
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - James F. Wishart
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
25
|
Kakinuma S, Shirota H. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Molten Bis(trifluoromethylsulfonyl)amide Salts: Effects of Cation Species. J Phys Chem B 2018; 122:6033-6047. [DOI: 10.1021/acs.jpcb.8b03302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Xue L, Bardak F, Tamas G, Quitevis EL. Comparative study of the intermolecular dynamics of imidazolium-based ionic liquids with linear and branched alkyl chains: OHD-RIKES measurements. Phys Chem Chem Phys 2017; 19:4661-4672. [PMID: 28124692 DOI: 10.1039/c6cp08263g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article describes a comparative study of the low-frequency (0-450 cm-1) Kerr spectra of the branched 1-(iso-alkyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([(N - 2)mCN-1C1im][NTf2] with N = 3-7) ionic liquids (ILs) and that of the linear 1-(n-alkyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([CNC1im][NTf2] with N = 2-7) ILs. The spectra were obtained by use of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The intermolecular spectrum of a branched IL is similar to that of a linear IL that is of the same alkyl chain length rather than of the same number of carbon atoms in the alkyl chain. This similarity and the lack of a correlation of the first spectral moments and widths of the intermolecular spectra with chain length is mainly attributed to the increase in the dispersion contribution to the total molar cohesive energy being compensated by stretching of the ionic network due to the increasing size of the nonpolar domains, which is dependent only on the length of the alkyl chain.
Collapse
Affiliation(s)
- Lianjie Xue
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Fehmi Bardak
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - George Tamas
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Edward L Quitevis
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
27
|
Kakinuma S, Ishida T, Shirota H. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Imidazolium-Based Ionic Liquids: Effects of Anion Species and Cation Alkyl Groups. J Phys Chem B 2017; 121:250-264. [DOI: 10.1021/acs.jpcb.6b11009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Tateki Ishida
- Department
of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | | |
Collapse
|