1
|
Sunayama H, Cheubong C, Takano E, Takeuchi T. Facile biotic/abiotic sandwich detection system for the highly sensitive detection of human serum albumin and glycated albumin. Anal Bioanal Chem 2024; 416:7337-7345. [PMID: 39008069 PMCID: PMC11584489 DOI: 10.1007/s00216-024-05403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Quantifying glycated albumin (GA) levels in the blood is crucial for diagnosing diabetes because they strongly correlate with blood glucose concentration. In this study, a biotic/abiotic sandwich assay was developed for the facile, rapid, and susceptible detection of human serum albumin (HSA) and GA. The proposed sandwich detection system was assembled using a combination of two synthetic polymer receptors and natural antibodies. Molecularly imprinted polymer nanogels (MIP-NGs) for HSA (HSA-MIP-NGs) were used to mimic capture antibodies, whereas antibodies for HSA or GA were used as primary antibodies and fluorescent signaling MIP-NGs for the Fc domain of IgG (F-Fc-MIP-NGs) were used as a secondary antibody mimic to indicate the binding events. The HSA/anti-HSA/F-Fc-MIP-NGs complex, formed by incubating HSA and anti-HSA antibodies with F-Fc-MIP-NGs, was captured by HSA-MIP-NGs immobilized on the chips for fluorescence measurements. The analysis time was less than 30 min, and the limit of detection was 15 pM. After changing the anti-HSA to anti-GA (monoclonal antibody), the fluorescence response toward GA exceeded that of HSA, indicating successful GA detection using the proposed sandwich detection system. Therefore, the proposed system could change the detection property by changing a primary antibody, indicating that this system can be applied to various target proteins and, especially, be a powerful approach for facile and rapid analysis methods for proteins with structural similarity.
Collapse
Affiliation(s)
- Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
| | - Chehasan Cheubong
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Klong Luang, Khlong Hok, 12110, Pathum Thani, Thailand
| | - Eri Takano
- TearExo Inc., 1-1, Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Toshifumi Takeuchi
- Innovation and Commercialization Division, Kobe University, 1-1, Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, 1-5-1, Minatojima-minamimachi, Chuo-Ku, Kobe, 650-0047, Japan.
| |
Collapse
|
2
|
Song J, Jancik-Prochazkova A, Kawakami K, Ariga K. Lateral nanoarchitectonics from nano to life: ongoing challenges in interfacial chemical science. Chem Sci 2024; 15:18715-18750. [PMID: 39568623 PMCID: PMC11575615 DOI: 10.1039/d4sc05575f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Lateral nanoarchitectonics is a method of precisely designing functional materials from atoms, molecules, and nanomaterials (so-called nanounits) in two-dimensional (2D) space using knowledge of nanotechnology. Similar strategies can be seen in biological systems; in particular, biological membranes ingeniously arrange and organise functional units within a single layer of units to create powerful systems for photosynthesis or signal transduction and others. When our major lateral nanoarchitectural approaches such as layer-by-layer (LbL) assembly and Langmuir-Blodgett (LB) films are compared with biological membranes, one finds that lateral nanoarchitectonics has potential to become a powerful tool for designing advanced functional nanoscale systems; however, it is still rather not well-developed with a great deal of unexplored possibilities. Based on such a discussion, this review article examines the current status of lateral nanoarchitectonics from the perspective of in-plane functional structure organisation at different scales. These include the extension of functions at the molecular level by on-surface synthesis, monolayers at the air-water interface, 2D molecular patterning, supramolecular polymers, macroscopic manipulation and functionality of molecular machines, among others. In many systems, we have found that while the targets are very attractive, the research is still in its infancy, and many challenges remain. Therefore, it is important to look at the big picture from different perspectives in such a comprehensive review. This review article will provide such an opportunity and help us set a direction for lateral nanotechnology toward more advanced functional organization.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
| | - Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwa-no-ha Kashiwa 277-8561 Japan
| |
Collapse
|
3
|
Ariga K. Interface-Interactive Nanoarchitectonics: Solid and/or Liquid. Chemphyschem 2024; 25:e202400596. [PMID: 38965042 DOI: 10.1002/cphc.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The methodology of nanoarchitectonics is to construct functional materials using nanounits such as atoms, molecules, and nanoobjects, just like architecting buildings. Nanoarchitectonics pursues the ultimate concept of materials science through the integration of related fields. In this review paper, under the title of interface-interactive nanoarchitectonics, several examples of structure fabrication and function development at interfaces will be discussed, highlighting the importance of architecting materials with nanoscale considerations. Two sections provide some examples at the solid and liquid surfaces. In solid interfacial environments, molecular structures can be precisely observed and analyzed with theoretical calculations. Solid surfaces are a prime site for nanoarchitectonics at the molecular level. Nanoarchitectonics of solid surfaces has the potential to pave the way for cutting-edge functionality and science based on advanced observation and analysis. Liquid surfaces are more kinetic and dynamic than solid interfaces, and their high fluidity offers many possibilities for structure fabrications by nanoarchitectonics. The latter feature has advantages in terms of freedom of interaction and diversity of components, therefore, liquid surfaces may be more suitable environments for the development of functionalities. The final section then discusses what is needed for the future of material creation in nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, 277-8561, Japan
| |
Collapse
|
4
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
7
|
Ariga K, Song J, Kawakami K. Layer-by-layer designer nanoarchitectonics for physical and chemical communications in functional materials. Chem Commun (Camb) 2024; 60:2152-2167. [PMID: 38291864 DOI: 10.1039/d3cc04952c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nanoarchitectonics, as a post-nanotechnology concept, constructs functional materials and structures using nanounits of atoms, molecules, and nanomaterials as materials. With the concept of nanoarchitectonics, asymmetric structures, and hierarchical organization, rather than mere assembly and organization of structures, can be produced, where rational physical and chemical communications will lead to the development of more advanced functional materials. Layer-by-layer assembly can be a powerful tool for this purpose, as exemplified in this feature paper. This feature article explores the possibility of constructing advanced functional systems based on recent examples of layer-by-layer assembly. We will illustrate both the development of more basic methods and more advanced nanoarchitectonics systems aiming towards practical applications. Specifically, the following sections will provide examples of (i) advancement in basics and methods, (ii) physico-chemical aspects and applications, (iii) bio-chemical aspects and applications, and (iv) bio-medical applications. It can be concluded that materials nanoarchitectonics based on layer-by-layer assembly is a useful method for assembling asymmetric structures and hierarchical organization, and is a powerful technique for developing functions through physical and chemical communication.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
8
|
Ariga K. Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines. MICROMACHINES 2024; 15:282. [PMID: 38399010 PMCID: PMC10892885 DOI: 10.3390/mi15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
9
|
Ariga K. 2D Materials Nanoarchitectonics for 3D Structures/Functions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:936. [PMID: 38399187 PMCID: PMC10890396 DOI: 10.3390/ma17040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
10
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
11
|
Cheubong C, Sunayama H, Takano E, Kitayama Y, Minami H, Takeuchi T. A rapid abiotic/biotic hybrid sandwich detection for trace pork adulteration in halal meat extract. NANOSCALE 2023; 15:15171-15178. [PMID: 37641944 DOI: 10.1039/d3nr02863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this study, we prepared molecularly imprinted polymer nanogels with good affinity for the Fc domain of immunoglobulin G (IgG) using 4-(2-methacrylamidoethylaminomethyl) phenylboronic acid as a modifiable functional monomer for post-imprinting in-cavity modification of a fluorescent dye (F-Fc-MIP-NGs). A novel nanogel-based biotic/abiotic hybrid sandwich detection system for porcine serum albumin (PSA) was developed using F-Fc-MIP-NGs as an alternative to a secondary antibody for fluorescence detection and another molecularly imprinted polymer nanogel capable of recognizing PSA (PSA-MIP-NGs) as a capturing artificial antibody, along with a natural antibody toward PSA (Anti-PSA) that was used as a primary antibody. After incubation of PSA and Anti-PSA with F-Fc-MIP-NGs, the PSA/Anti-PSA/F-Fc-MIP-NGs complex was captured by immobilized PSA-MIP-NGs for fluorescence measurements. The analysis time was less than 30 min for detecting pork adulteration of 0.01 wt% in halal beef and lamb meats. The detection limit was comparable to that of frequently used immunoassays. Therefore, we believe that this method is a promising, sensitive, and rapid detection method for impurities in real samples and could be a simple, inexpensive, and rapid alternative to conventional methods that have cumbersome procedures of 4 hours or more.
Collapse
Affiliation(s)
- Chehasan Cheubong
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani 12110, Thailand
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Eri Takano
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Yukiya Kitayama
- Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideto Minami
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, 1-5-1, Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
- Innovation Commercialization Division, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
12
|
Li J, Wang Y, Liu A, Liu S. Sensitive detection of synthetic cannabinoids in human blood using magnetic polydopamine molecularly imprinted polymer nanocomposites. Analyst 2023; 148:4850-4856. [PMID: 37622412 DOI: 10.1039/d3an01135f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Synthetic cannabinoids (SCs) are a series of artificial chemical substances with pharmacological properties similar to those of natural cannabinoids and their abuse poses a great risk to social security and human health. However, the highly sensitive detection of low concentrations of SCs in human serum remains a great challenge. In this work, we developed a highly sensitive, rapid and highly selective method for the detection of SCs in human serum. Magnetic molecularly imprinted polymer (MIP) nanocomposites were prepared through self-polymerization of dopamine and template molecules on the surfaces of magnetic beads. 9H-Carbazole-9-hexanol (9CH) was used as a template molecule because of its long chain structure shared with six synthetic cannabinoids and its ability to provide specific recognition sites. With these magnetic MIP nanoparticles, six SCs could be rapidly and effectively extracted from human blood. The concentrations of six SCs could be accurately determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. The limits of detection were in the range of 0.1-0.3 ng mL-1. The proposed method is characterized by high sensitivity and selectivity, and has great potential for application in the analysis of practical samples.
Collapse
Affiliation(s)
- Jiajia Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Yong Wang
- Institute of Forensic Science and Technology of Nanjing Public Security Bureau, Nanjing, 210012, P. R. China
| | - Anran Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
13
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Huang Y, Xu Y, Wang M, Fu X, Chen Y, Hu T, Feng G, Yu C, Xia Z. Strategy of Choosing Templates in Molecular Imprinting to Expand the Recognition Width for Family-Selectivity. Anal Chem 2023. [PMID: 37428886 DOI: 10.1021/acs.analchem.3c01487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The class-selective molecular-imprinted polymers (MIPs) have shown the recognition ability to multiple targeted molecules through using one or multiple templates. However, choosing the right templates, the core problem, still lacks a systemic guide and decision-making. In this work, we propose a strategy of selecting templates through expanding the recognition width for the improvement of class-selectivity. First, three families of genotoxic impurity (GTI) were selected as model objects, and the spatial size and binding energy of each GTI-monomer complexes were obtained and compared by computational simulation. The two indexes of energy width (WE) and size width (WL) were introduced to compare the similarity and differences on the two recognition factors, binding strength and spatial size, among these GTIs in each family. Through shortening the width to increase similarity on binding energy and size, the dual templates in the aromatic amines (AI) family and sulfonic acid esters (SI) family were successfully selected. Correspondingly, the prepared dual-template MIPs in the two GTI families can simultaneously recognize all the GTIs comparing with that of single template MIP, respectively. Meanwhile, through comparing the adsorption capacity of the selected template and its analogues in one GTI family, the recognition efficiency of the dual-template MIPs was higher than that of the single-template MIP. This indicates that though using the selected right templates, the higher class-selectivity and the larger recognition width can be realized. Thus, this work can solve the problem of blind template selection, and provide the useful theoretical guidance for designing family-selective molecular imprinting.
Collapse
Affiliation(s)
- Yike Huang
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yugao Xu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoya Fu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ya Chen
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ting Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Chao Yu
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
15
|
Ma Y, Chen J, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Efficient removal of polybrominated diphenyl ethers from soil washing effluent by dummy molecular imprinted adsorbents: Selectivity and mechanisms. J Environ Sci (China) 2023; 129:45-57. [PMID: 36804241 DOI: 10.1016/j.jes.2022.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/18/2023]
Abstract
Surfactant enhanced elution is an effective method for removing hydrophobic organic pollutants from soils. The key to the development of leaching technology is selective removal of targeted pollutants in soil washing effluent and recycling of surfactant solutions. In this study, a molecular imprinting technique was applied to selectively sorb polybrominated diphenyl ethers (PBDEs) in soil washing effluent. The novel molecular imprinted polymers (MIPs) using different template molecules were synthesized by precipitation polymerization. Adsorption behaviors and mechanisms of MIPs were studied through experiments and theoretical calculations. The results show that 4-bromo-4'-hydroxybiphenyl and toluene can be effective imprinting molecule for MIPs synthesis. The maximal adsorption capacity of selected dummy molecular imprinted polymer (D1-MIP) was 1032.36 µmol/g, and that of part molecular imprinted polymer (P-MIP) was 981.13 µmol/g. Their imprinting factors in 5 PBDEs adsorption ranged from 2.13 to 5.88, the recovery percentage of Triton X-100 can reach 99.09%, confirming the feasibility of reusing surfactant. Various PBDEs could be removed by MIPs, and Quantitative Structure Property Relationship analysis revealed that PBDEs' molecular volume, planarity, polarity, and hydrophobicity have major influences on their adsorption performance. DFT calculation revealed that Van der Waals force and hydrogen bonding played important roles during selective adsorption. These results can provide effective theoretical guidance for surfactant enhanced soil elution in practical engineering applications.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinfan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
16
|
Kanao E, Osaki H, Tanigawa T, Takaya H, Sano T, Adachi J, Otsuka K, Ishihama Y, Kubo T. Rational Supramolecular Strategy via Halogen Bonding for Effective Halogen Recognition in Molecular Imprinting. Anal Chem 2023. [PMID: 37230938 DOI: 10.1021/acs.analchem.3c01311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Halogen bonding is a highly directional interaction and a potential tool in functional material design through self-assembly. Herein, we describe two fundamental supramolecular strategies to synthesize molecularly imprinted polymers (MIPs) with halogen bonding-based molecular recognition sites. In the first method, the size of the σ-hole was increased by aromatic fluorine substitution of the template molecule, enhancing the halogen bonding in the supramolecule. The second method involved sandwiching hydrogen atoms of a template molecule between iodo substituents, which suppressed competing hydrogen bonding and enabled multiple recognition patterns, improving the selectivity. The interaction mode between the functional monomer and the templates was elucidated by 1H NMR, 13C NMR, X-ray absorption spectroscopy, and computational simulation. Finally, we succeeded in the effective chromatographic separation of diiodobenzene isomers on the uniformly sized MIPs prepared by multi-step swelling and polymerization. The MIPs selectively recognized halogenated thyroid hormones via halogen bonding and could be applied to screening endocrine disruptors.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Hayato Osaki
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hikaru Takaya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Tabaei SR, Fernandez-Villamarin M, Vafaei S, Rooney L, Mendes PM. Recapitulating the Lateral Organization of Membrane Receptors at the Nanoscale. ACS NANO 2023. [PMID: 37200265 DOI: 10.1021/acsnano.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many cell membrane functions emerge from the lateral presentation of membrane receptors. The link between the nanoscale organization of the receptors and ligand binding remains, however, mostly unclear. In this work, we applied surface molecular imprinting and utilized the phase behavior of lipid bilayers to create platforms that recapitulate the lateral organization of membrane receptors at the nanoscale. We used liposomes decorated with amphiphilic boronic acids that commonly serve as synthetic saccharide receptors and generated three lateral modes of receptor presentation─random distribution, nanoclustering, and receptor crowding─and studied their interaction with saccharides. In comparison to liposomes with randomly dispersed receptors, surface-imprinted liposomes resulted in more than a 5-fold increase in avidity. Quantifying the binding affinity and cooperativity proved that the boost was mediated by the formation of the nanoclusters rather than a local increase in the receptor concentration. In contrast, receptor crowding, despite the presence of increased local receptor concentrations, prevented multivalent oligosaccharide binding due to steric effects. The findings demonstrate the significance of nanometric aspects of receptor presentation and generation of multivalent ligands including artificial lectins for the sensitive and specific detection of glycans.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, U.K
| | | | - Setareh Vafaei
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Lorcan Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, U.K
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| |
Collapse
|
18
|
Gu Z, Guo Z, Gao S, Huang L, Liu Z. Hierarchically Structured Molecularly Imprinted Nanotransducers for Truncated HER2-Targeted Photodynamic Therapy of Therapeutic Antibody-Resistant Breast Cancer. ACS NANO 2023. [PMID: 37183805 DOI: 10.1021/acsnano.3c00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibodies have been a mainstream class of therapeutics for clinical treatment of various diseases, especially cancers. However, mutation in cancer cells leads to resistance to therapeutic antibodies, hyperactivity of proliferation of cancer cells, and difficulty in the development of therapeutic antibodies. Herein, we present a strategy termed molecularly imprinted nanotransducer (MINT) for targeted photodynamic therapy (PDT) of mutated cancers. The MINT is a rationally engineered nanocomposite featuring a core of an upconversion nanoparticle, a shell of a thin layer of molecularly imprinted polymer, and a photosensitizer modified on the surface. As a proof-of-principle, truncated HER2 (P95HER2) overexpressed breast cancer, a challenging cancer lacking effective targeted therapeutics, was used as the cancer model. The designed structure, properties, functions, and anticancer efficacy of MINT were systematically investigated and experimentally confirmed. The MINT could not only specifically target P95HER2+ cancer cells in vitro and in vivo but also efficiently transfer the irradiated light and generate excited-state oxygen, resulting in efficient targeted cancer killing. Therefore, the MINT strategy provides a promising therapeutic for targeted PDT of drug-resistant cancers caused by target mutation.
Collapse
Affiliation(s)
- Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lingrui Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
19
|
Mo H, Li X, Zhou X, Jia X, Wang H, Xu Z, Wei X. Preparation of bifunctional monomer molecularly imprinted polymer filled solid-phase extraction for sensitivity improvement of quantitative analysis of sulfonamide in milk. J Chromatogr A 2023; 1700:464046. [PMID: 37167804 DOI: 10.1016/j.chroma.2023.464046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
To solve the problems of unstable adsorption performance and high organic solvent consumption of traditional molecular imprinting materials, we developed a water-resistant and highly adsorptive molecularly imprinted sulfamethazine polymer (MIP) through a novel synthetic strategy consisting of the application of mixed functional monomers combined with hydrophobic crosslinkers. The results showed that the imprinting factor of the prepared MIP was increased from 0.93 to 4.38, and that the relative selection coefficient k' was 5.59. With the application of the material to be developed as a solid-phase extraction (SPE) filler for sulfonamides (SAs) in milk combined with UPLC-MS/MS, the validated method showed a sensitive quantification limit (0.89 µg/kg), a steady recovery (95.55%-97.97%) and an excellent precision (0.08%-2.92% RSD). Moreover, after 5 times usage, the recovery rate of MIP-SPE was still above 90%. Therefore, the prepared materials showed high performance of molecular adsorption and were water-resistant, which was also considered an excellent filler of SPE for SAs extraction in food or other fields.
Collapse
Affiliation(s)
- Huixin Mo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuying Zhou
- Zhongshan agricultural product quality and Safety Inspection Institute, Zhongshan, 528403, China
| | - Xiaofei Jia
- Zhongshan agricultural product quality and Safety Inspection Institute, Zhongshan, 528403, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Application of Molecular Imprinting for Creation of Highly Selective Sorbents for Extraction and Separation of Rare-Earth Elements. Polymers (Basel) 2023; 15:polym15040846. [PMID: 36850129 PMCID: PMC9961745 DOI: 10.3390/polym15040846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The aim of the work is to study the effectiveness of a molecular imprinting technique application for the creation of highly selective macromolecular sorbents for selective sorption of light and heavy rare-earth metals (for example, samarium and gadolinium, respectively) with subsequent separation from each other. These sorbents seem to be promising due to the fact that only the target rare-earth metal will be sorbed owing to the fact that complementary cavities are formed during the synthesis of molecularly imprinted polymers. In other words, the advantage of the proposed macromolecules is the absence of accompanying sorption of metals with close chemical properties. Two types of molecularly imprinted polymers (MIP) were synthetized based on methacrylic acid (MAA) and 4-vinylpyridine (4VP) functional monomers. The sorption properties (extraction degree, exchange capacity) of the MIPs were studied. The impact of template removal cycle count (from 20 to 35) on the sorption effectivity was studied. Laboratory experiments on selective sorption and separation of samarium and gadolinium from a model solution were carried out.
Collapse
|
21
|
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. MICROMACHINES 2022; 14:mi14010025. [PMID: 36677086 PMCID: PMC9860627 DOI: 10.3390/mi14010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
This review will focus on micromachines and microrobots, which are objects at the micro-level with similar machine functions, as well as nano-level objects such as molecular machines and nanomachines. The paper will initially review recent examples of molecular machines and microrobots that are not limited to interfaces, noting the diversity of their functions. Next, examples of molecular machines and micromachines/micro-robots functioning at the air-water interface will be discussed. The behaviors of molecular machines are influenced significantly by the specific characteristics of the air-water interface. By placing molecular machines at the air-water interface, the scientific horizon and depth of molecular machine research will increase dramatically. On the other hand, for microrobotics, more practical and advanced systems have been reported, such as the development of microrobots and microswimmers for environmental remediations and biomedical applications. The research currently being conducted on the surface of water may provide significant basic knowledge for future practical uses of molecular machines and microrobots.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
22
|
Molecularly imprinted colloidal array for the high-throughput screening of explosives. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wang M, Zhang G, Liu Q, Wei M, Ren Y, Fa S, Zhang Q. Ring -opening of polythiolactones to construct protein-imprinted nanospheres with high recognition and regulation capabilities. NANOSCALE 2022; 14:16865-16873. [PMID: 36281642 DOI: 10.1039/d2nr03715g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing and preparing novel protein-imprinted nanomaterials with high recognition ability remains challenging because it is difficult to controllably and orderly design and arrange functional groups on the imprinted polymer layers of protein-imprinted nanomaterials to improve their protein identification. Herein, we present a new technology using rationally designed polythiolactone-decorated magnetic nanospheres as the precursor of multifunctionalized imprinted materials. Moreover, the strategy of ring-opening the polythiolactione layers using primary amines with terminal alcohols, acids and pyrrolidines introduces abundant recognition sites, which enhance the recognition for template proteins through multiple hydrogen-bonding and hydrophobic interactions. Thiols generated in situ by the ring-opening reaction provide sufficient crosslinking sites proximate to each recognition site for the formation of imprinting cavities, endowing the imprinted nanospheres with promising regulation capabilities. Based on the rational design, the imprinted nanospheres can be prepared conveniently and present tunable rebinding capacity and specificity for bovine serum albumin (BSA). The maximum saturated rebinding capacity of imprinted materials for BSA is up to 285 ± 15 mg g-1 and the highest imprinting factor reaches 5.79. The simple and versatile strategy demonstrated in this study shows promise for the design of other protein-imprinted materials with high recognition ability.
Collapse
Affiliation(s)
- Mingqi Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Qing Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Mengmeng Wei
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Yafeng Ren
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Shixin Fa
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
24
|
Feng JC, Xia H. Application of nanoarchitectonics in moist-electric generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1185-1200. [PMID: 36348936 PMCID: PMC9623139 DOI: 10.3762/bjnano.13.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/30/2022] [Indexed: 05/09/2023]
Abstract
The consumption of energy is an important resource that cannot be ignored in modern society. Non-renewable forms of energy, such as coal, natural gas, and oil, have always been important strategic resources and are always facing a crisis of shortage. Therefore, there is an urgent need for green renewable forms of energy. As an emerging green energy source, the moist-electric generator (MEG) has been studied in recent years and may become an energy source that can be utilized in daily life. Along with the advancement of technological means, nanoarchitectonics play an important role in MEG devices. This review aims to provide a comprehensive summary of the fundamentals of the MEG from the perspective of different material classifications and to provide guidance for future work in the field of MEGs. The effects of various parameters and structural designs on the output power, recent important literature and works, the mechanism of liquid-solid interactions at the nanoscale, and the application status and further potential of MEG devices are discussed in this review. It is expected that this review may provide valuable knowledge for future MEG research.
Collapse
Affiliation(s)
- Jia-Cheng Feng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| |
Collapse
|
25
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
26
|
De Carvalho Gomes P, Hardy M, Tagger Y, Rickard JJ, Mendes P, Oppenheimer PG. Optimization of Nanosubstrates toward Molecularly Surface-Functionalized Raman Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:13774-13784. [PMID: 36017358 PMCID: PMC9393890 DOI: 10.1021/acs.jpcc.2c03524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Diagnostic advancements require continuous developments of reliable analytical sensors, which can simultaneously fulfill many criteria, including high sensitivity and specificity for a broad range of target analytes. Incorporating the highly sensitive attributes of surface-enhanced Raman spectroscopy (SERS) combined with highly specific analyte recognition capabilities via molecular surface functionalization could address major challenges in molecular diagnostics and analytical spectroscopy fields. Herein, we have established a controllable molecular surface functionalization process for a series of textured gold surfaces. To create the molecularly surface-functionalized SERS platforms, self-assembled benzyl-terminated and benzoboroxole-terminated monolayers were used to compare which thicknesses and root-mean-square (RMS) roughness of planar gold produced the most sensitive and specific surfaces. Optimal functionalization was identified at 80 ± 8 nm thickness and 7.2 ± 1.0 nm RMS. These exhibited a considerably higher SERS signal (70-fold) and improved sensitivity for polysaccharides when analyzed using principal component analysis (PCA) and self-organizing maps (SOM). These findings lay the procedure for establishing the optimal substrate specifications as an essential prerequisite for future studies aiming at developing the feasibility of molecular imprinting for SERS diagnostic applications and the subsequent delivery of advanced, highly selective, and sensitive sensing devices and analytical platforms.
Collapse
Affiliation(s)
- Paulo De Carvalho Gomes
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Mike Hardy
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Yazmin Tagger
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Paula Mendes
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical
Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- Healthcare
Technologies Institute, Translational Medicine, Mindelsohn Way, Birmingham B15 2TH, U.K.
| |
Collapse
|
27
|
The Separation of Chlorobenzene Compounds from Environmental Water Using a Magnetic Molecularly Imprinted Chitosan Membrane. Polymers (Basel) 2022; 14:polym14153221. [PMID: 35956733 PMCID: PMC9371115 DOI: 10.3390/polym14153221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, a magnetic molecularly imprinted chitosan membrane (MMICM) was synthesized for the extraction of chlorobenzene compounds in environmental water using the membrane separation method. The optimal extraction amount for chlorobenzene (9.64 mg·L−1) was found to be a 1:2 solid to liquid ratio, with a 20 min extraction time and 35 °C extraction temperature. This method proved to be successfully applied for the separation and trace quantification of chlorobenzene compounds in environmental water, with the limit of detection (LOD) (0.0016–0.057 ng·L−1), limit of quantification (LOQ) (0.0026–0.098 ng·L−1), and the recoveries ranging (89.02–106.97%).
Collapse
|
28
|
Shen X, Song J, Kawakami K, Ariga K. Molecule-to-Material-to-Bio Nanoarchitectonics with Biomedical Fullerene Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5404. [PMID: 35955337 PMCID: PMC9369991 DOI: 10.3390/ma15155404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics integrates nanotechnology with various other fields, with the goal of creating functional material systems from nanoscale units such as atoms, molecules, and nanomaterials. The concept bears strong similarities to the processes and functions seen in biological systems. Therefore, it is natural for materials designed through nanoarchitectonics to truly shine in bio-related applications. In this review, we present an overview of recent work exemplifying how nanoarchitectonics relates to biology and how it is being applied in biomedical research. First, we present nanoscale interactions being studied in basic biology and how they parallel nanoarchitectonics concepts. Then, we overview the state-of-the-art in biomedical applications pursuant to the nanoarchitectonics framework. On this basis, we take a deep dive into a particular building-block material frequently seen in nanoarchitectonics approaches: fullerene. We take a closer look at recent research on fullerene nanoparticles, paying special attention to biomedical applications in biosensing, gene delivery, and radical scavenging. With these subjects, we aim to illustrate the power of nanomaterials and biomimetic nanoarchitectonics when applied to bio-related applications, and we offer some considerations for future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| |
Collapse
|
29
|
Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. NANOSCALE 2022; 14:10610-10629. [PMID: 35838591 DOI: 10.1039/d2nr02513b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Promoted understanding of nanotechnology has enabled the construction of functional materials with nanoscale-regulated structures. Accordingly, materials science requires one-step further innovation by coupling nanotechnology with the other materials sciences. As a post-nanotechnology concept, nanoarchitectonics has recently been proposed. It is a methodology to architect functional material systems using atomic, molecular, and nanomaterial unit-components. One of the attractive methodologies would be to develop nanoarchitectonics in a defined dimensional environment with certain dynamism, such as liquid interfaces. However, nanoarchitectonics at liquid interfaces has not been fully explored because of difficulties in direct observations and evaluations with high-resolutions. This unsatisfied situation in the nanoscale understanding of liquid interfaces may keep liquid interfaces as unexplored and attractive frontiers in nanotechnology and nanoarchitectonics. Research efforts related to materials nanoarchitectonics on liquid interfaces have been continuously made. As exemplified in this review paper, a wide range of materials can be organized and functionalized on liquid interfaces, including organic molecules, inorganic nanomaterials, hybrids, organic semiconductor thin films, proteins, and stem cells. Two-dimensional nanocarbon sheets have been fabricated by molecular reactions at dynamically moving interfaces, and metal-organic frameworks and covalent organic frameworks have been fabricated by specific interactions and reactions at liquid interfaces. Therefore, functions such as sensors, devices, energy-related applications, and cell control are being explored. In fact, the potential for the nanoarchitectonics of functional materials in two-dimensional nanospaces at liquid surfaces is sufficiently high. On the basis of these backgrounds, this short review article describes recent approaches to materials nanoarchitectonics in a liquid-based two-dimensional world, i.e., interfacial regions within a nanoscale distance from the liquid phase.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
30
|
Komiyama M. Molecular Mechanisms of the Medicines for COVID-19. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
31
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
32
|
Oshita A, Sunayama H, Takeuchi T. A molecularly imprinted nanocavity with transformable domains that fluorescently indicate the presence of antibiotics in meat extract samples. J Mater Chem B 2022; 10:6682-6687. [PMID: 35543362 DOI: 10.1039/d2tb00145d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we aimed to create synthetic polymer receptors with the fluorescence signalling ability, using molecular imprinting, precisely designed template molecules, and site-specific post-imprinting modifications, which can mimic conjugated proteins and are capable of specific molecular recognition, and wherein successful binding can be indicated by a change in fluorescence. A molecularly imprinted APO-type nanocavity with a reconstructable domain was prepared by co-polymerisation of a template molecule containing cephalexin conjugated to polymerisable groups via a Schiff base, a disulphide bond, and a cross-linker, followed by hydrolysis of the Schiff base and a disulphide exchange reaction. Fluorescence-based indication of binding was devised by the Schiff base formation reaction with 4-formylsalicylic acid, and the interacting site was introduced via a disulphide exchange reaction with 4-mercaptobenzoic acid, yielding a multifunctional mature (HOLO)-type molecularly imprinted nanocavity. The ability to indicate binding events using changes in the fluorescence of the HOLO polymer was investigated, and it was revealed that the target antibiotic cephalexin can be selectively detected in aqueous media with high affinity (Ka = 1.1 × 104 M-1). Furthermore, the proposed sensor exhibited the potential to detect spiked cephalexin in chicken extracts with a limit of detection of 18 μM (1.3 ppm). The proposed fluorescence-sensing system based on molecular imprinting and post-imprinting modification is expected to enable the development of advanced materials for the specific detection of trace antibiotics in complex samples.
Collapse
Affiliation(s)
- Azusa Oshita
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan. .,Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, 1-5-1 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
33
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
34
|
Ariga K. Mechano-Nanoarchitectonics: Design and Function. SMALL METHODS 2022; 6:e2101577. [PMID: 35352500 DOI: 10.1002/smtd.202101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Indexed: 05/27/2023]
Abstract
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
35
|
Dose-Dependent Efficacy of Umbelliferone and Gelatin-Coated ZnO/ZnS Core-Shell Nanoparticles: A Novel Arthritis Agent for Severe Knee Arthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7795602. [PMID: 35432722 PMCID: PMC9007693 DOI: 10.1155/2022/7795602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 12/05/2022]
Abstract
Rheumatoid arthritis (RA) is a well-known autoimmune disorder that affects 1% of the global population. Zinc (Zn) is crucial for bone homeostasis, when compared with normal human bone, Zn level found to be decreased in RA patients and collagen-induced arthritis (CIA) rats. Notably, Zn-based medicinal products play a prominent role in reducing disease symptoms and acute side effects of patients with bone-related diseases. In this study, we report the clinical efficiency of gelatin- (Gel-) coated ZnO-ZnS core-shell nanoparticles (CSNPs) with umbelliferon (Uf) drug (Uf-Gel-ZnO-ZnS CSNPs) on the normal and CIA-induced Wistar rats. The formed ZnO-ZnS CSNPs are spherical in shape, with an average particle diameter of 150 ± 7 nm. It showed strong cytocompatibility when tested on L929 and foreskin fibroblasts (BJ) cells by MTT assay. While comparing with free Uf, various doses (2.5 and 5 mg) of Uf-Gel-ZnO-ZnS CSNPs showed strong inhibition of CIA by attenuated proinflammatory cytokines such as interleukin-1β, IL-6, PEG2, and IL-17. The Uf-Gel-ZnO-ZnS CSNPs show more effectiveness in reducing joint swelling and also increase the level of antioxidant enzymes. In addition, CSNPs significantly reduced the infiltration of inflammatory cells in the knee joint. Thus, the current study concludes that Uf-Gel-ZnO-ZnS CSNPs feasibly reduce the incidence of arthritis in a dose-dependent manner by attenuation of inflammation.
Collapse
|
36
|
Ariga K. Biomimetic and Biological Nanoarchitectonics. Int J Mol Sci 2022; 23:3577. [PMID: 35408937 PMCID: PMC8998553 DOI: 10.3390/ijms23073577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
A post-nanotechnology concept has been assigned to an emerging concept, nanoarchitectonics. Nanoarchitectonics aims to establish a discipline in which functional materials are fabricated from nano-scale components such as atoms, molecules, and nanomaterials using various techniques. Nanoarchitectonics opens ways to form a more unified paradigm by integrating nanotechnology with organic chemistry, supramolecular chemistry, material chemistry, microfabrication technology, and biotechnology. On the other hand, biological systems consist of rational organization of constituent molecules. Their structures have highly asymmetric and hierarchical features that allow for chained functional coordination, signal amplification, and vector-like energy and signal flow. The process of nanoarchitectonics is based on the premise of combining several different processes, which makes it easier to obtain a hierarchical structure. Therefore, nanoarchitectonics is a more suitable methodology for creating highly functional systems based on structural asymmetry and hierarchy like biosystems. The creation of functional materials by nanoarchitectonics is somewhat similar to the creation of functional systems in biological systems. It can be said that the goal of nanoarchitectonics is to create highly functional systems similar to those found in biological systems. This review article summarizes the synthesis of biomimetic and biological molecules and their functional structure formation from various viewpoints, from the molecular level to the cellular level. Several recent examples are arranged and categorized to illustrate such a trend with sections of (i) synthetic nanoarchitectonics for bio-related units, (ii) self-assembly nanoarchitectonics with bio-related units, (iii) nanoarchitectonics with nucleic acids, (iv) nanoarchitectonics with peptides, (v) nanoarchitectonics with proteins, and (vi) bio-related nanoarchitectonics in conjugation with materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| |
Collapse
|
37
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
38
|
Morsi SMM, Abd El-Aziz ME, Mohamed HA. Smart polymers as molecular imprinted polymers for recognition of target molecules. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samir M. M. Morsi
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| | | | - Heba A. Mohamed
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
39
|
Gheybalizadeh H, Hejazi P. Influence of hydrophilic and hydrophobic functional monomers on the performance of magnetic molecularly imprinted polymers for selective recognition of human insulin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Jumadilov T, Kondaurov R, Imangazy A. Application of the Remote Interaction Effect and Molecular Imprinting in Sorption of Target Ions of Rare Earth Metals. Polymers (Basel) 2022; 14:polym14020321. [PMID: 35054727 PMCID: PMC8778400 DOI: 10.3390/polym14020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
The goal of the present work is a comparative study of the effectiveness of the application of intergel systems and molecularly imprinted polymers for the selective sorption and separation of neodymium and scandium ions. The following physico-chemical methods of analysis were used in this study: colorimetry and atomic-emission spectroscopy. The functional polymers of polyacrylic acid (hPAA) and poly-4-vinylpyridine (hP4VP) in the intergel system undergo significant changes in the initial sorption properties. The remote interaction of the polymers in the intergel system hPAA–hP4VP provides mutual activation of these macromolecules, with subsequent transfer into a highly ionized state. The maximum sorption of neodymium and scandium ions is observed at molar ratios of 83%hPAA:17%hP4VP and 50%hPAA:50%hP4VP. Molecularly imprinted polymers MIP(Nd) and MIP(Sc) show good results in the sorption of Nd and Sc ions. Based on both these types of these macromolecular structures, principally new sorption methods have been developed. The method based on the application of the intergel system is cheaper and easier in application, but there is some accompanying sorption (about 10%) of another metal from the model solution during selective sorption and separation. Another method, based on the application of molecularly imprinted polymers, is more expensive and the sorption properties are higher, with the simultaneous sorption of the accompanying metal from the model solution.
Collapse
Affiliation(s)
- Talkybek Jumadilov
- Laboratory of Synthesis and Physicochemistry of Polymers, JSC “Institute of Chemical Sciences after A.B. Bekturov”, Sh. Valikhanov St. 106, Almaty 050010, Kazakhstan; (T.J.); (A.I.)
| | - Ruslan Kondaurov
- Laboratory of Synthesis and Physicochemistry of Polymers, JSC “Institute of Chemical Sciences after A.B. Bekturov”, Sh. Valikhanov St. 106, Almaty 050010, Kazakhstan; (T.J.); (A.I.)
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Correspondence:
| | - Aldan Imangazy
- Laboratory of Synthesis and Physicochemistry of Polymers, JSC “Institute of Chemical Sciences after A.B. Bekturov”, Sh. Valikhanov St. 106, Almaty 050010, Kazakhstan; (T.J.); (A.I.)
| |
Collapse
|
41
|
Bhadra BN, Shrestha LK, Ariga K. Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00872f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a post-nanotechnology concept, nanoarchitectonics has emerged from the 20th century to the 21st century. This review summarizes the recent progress in the field of metal-free porous carbon nanoarchitectonics.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
42
|
Toyoshima Y, Kawamura A, Takashima Y, Miyata T. Design of Molecularly Imprinted Hydrogels with Thermoresponsive Drug Binding Sites. J Mater Chem B 2022; 10:6644-6654. [DOI: 10.1039/d2tb00325b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug delivery systems (DDS) regulate the spatiotemporal distribution of drugs in vivo to maximize efficacy and minimize side effects. Stimuli-responsive hydrogels, which exhibit a drastic change in volume in response...
Collapse
|
43
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
44
|
Tian R, Li Y, Xu J, Hou C, Luo Q, Liu J. Recent development in the design of artificial enzymes through molecular imprinting technology. J Mater Chem B 2022; 10:6590-6606. [DOI: 10.1039/d2tb00276k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes, a class of proteins or RNA with high catalytic efficiency and specificity, have inspired generations of scientists to develop enzyme mimics with similar capabilities. Many enzyme mimics have been...
Collapse
|
45
|
Mustafa YL, Keirouz A, Leese HS. Molecularly Imprinted Polymers in Diagnostics: Accessing Analytes in Biofluids. J Mater Chem B 2022; 10:7418-7449. [DOI: 10.1039/d2tb00703g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-applied molecularly imprinted polymers (MIPs) are biomimetic materials with tailor-made synthetic recognition sites, mimicking biological counterparts known for their sensitive and selective analyte detection. MIPs, specifically designed for biomarker analysis...
Collapse
|
46
|
Hu W, Shi J, Lv W, Jia X, Ariga K. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:393-412. [PMID: 35783540 PMCID: PMC9246028 DOI: 10.1080/14686996.2022.2082260] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoarchitectonics has emerged as a post-nanotechnology concept. As one of the applications of nanoarchitectonics, this review paper discusses the control of stem cell fate and function as an important issue. For hybrid nanoarchitectonics involving living cells, it is crucial to understand how biomaterials and their nanoarchitected structures regulate behaviours and fates of stem cells. In this review, biomaterials for the regulation of stem cell fate are firstly discussed. Besides multipotent differentiation, immunomodulation is an important biological function of mesenchymal stem cells (MSCs). MSCs can modulate immune cells to treat multiple immune- and inflammation-mediated diseases. The following sections summarize the recent advances of the regulation of the immunomodulatory functions of MSCs by biophysical signals. In the third part, we discussed how biomaterials direct the self-organization of pluripotent stem cells for organoid. Bioactive materials are constructed which mimic the biophysical cues of in vivo microenvironment such as elasticity, viscoelasticity, biodegradation, fluidity, topography, cell geometry, and etc. Stem cells interpret these biophysical cues by different cytoskeletal forces. The different cytoskeletal forces lead to substantial transcription and protein expression, which affect stem cell fate and function. Regulations of stem cells could not be utilized only for tissue repair and regenerative medicine but also potentially for production of advanced materials systems. Materials nanoarchitectonics with integration of stem cells and related biological substances would have high impacts in science and technology of advanced materials.
Collapse
Affiliation(s)
- Wei Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Jiaming Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Wenyan Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Xiaofang Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
- CONTACT Xiaofang Jia School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, P. R. China
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, the University of Tokyo, KashiwaJapan
- Katsuhiko Ariga International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki305-0044, Japan
| |
Collapse
|
47
|
Ariga K, Lvov Y, Decher G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys Chem Chem Phys 2021; 24:4097-4115. [PMID: 34942636 DOI: 10.1039/d1cp04669a] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoarchitectonics approaches can produce functional materials from tiny units through combination of various processes including atom/molecular manipulation, chemical conversion, self-assembly/self-organization, microfabrication, and bio-inspired procedures. Existing fabrication approaches can be regarded as fitting into the same concept. In particular, the so-called layer-by-layer (LbL) assembly method has huge potential for preparing applicable materials with a great variety of assembling mechanisms. LbL assembly is a multistep process where different components can be organized in planned sequences while simple alignment options provide access to superstructures, for example helical structures, and anisotropies which are important aspects of nanoarchitectonics. In this article, newly-featured examples are extracted from the literature on LbL assembly discussing trends for composite functional materials according to (i) principles and techniques, (ii) composite materials, and (iii) applications. We present our opinion on the present trends, and the prospects of LbL assembly. While this method has already reached a certain maturity, there is still plenty of room for expanding its usefulness for the fabrication of nanoarchitectonics-based materials and devices.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Gero Decher
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Université de Strasbourg, Faculté de Chimie and CNRS Institut Charles Sadron, F-67000 Strasbourg, France.,International Center for Frontier Research in Chemistry, F-67083 Strasbourg, France
| |
Collapse
|
48
|
Song W, Qian L, Yang Y, Zhao Y, Miao Z, Zhang Q. Constructing High-Recognition Protein-Imprinted Materials Using "Specially Designed" Block Macromolecular Chains as Functional Monomers and Crosslinkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54428-54438. [PMID: 34734527 DOI: 10.1021/acsami.1c18296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of a macromolecularly functional monomer and crosslinker (MFM) to stabilize and imprint a template protein is a new method to construct high-recognition protein-imprinted materials. In this study, for the first time, a "specially designed" block MFM with both "functional capability" and "crosslinking capability" segments was synthesized via reversible addition-fragmentation chain-transfer polymerization and used to fabricate bovine serum albumin (BSA)-imprinted microspheres (SiO2@MPS@MIPs-MFM) by the surface imprinting strategy. Results from circular dichroic spectrum experiments reflected that the block MFM could maintain the natural form of BSA, whereas its corresponding and equivalent micromolecularly functional monomer (MIM) seriously destroyed the secondary structure of proteins. Batch rebinding experiments showed that the maximum adsorption capacity and imprinting factor of SiO2@MPS@MIPs-MFM reached 314.9 mg g-1 and 4.02, which were significantly superior to that of MIM-based imprinted materials. In addition, since the crosslinking capability segments in block MFM involved zwitterionic functional groups with a protein-repelling effect, SiO2@MPS@MIPs-MFM showed better specific rebinding ability than the imprinted material prepared by MFM without this component. Besides, scanning electron microscopy and transmission electron microscopy images showed that the shell thickness of SiO2@MPS@MIPs-MFM was approximately 15 nm, and such a thin imprinted layer ensured its rapid adsorption equilibrium (120 min). As a result, SiO2@MPS@MIPs-MFM revealed fantastic selectivity and recognition ability in a mixed protein solution and could efficiently extract BSA from biological samples of bovine calf serum. The proposal of block MFM enriched the options and designability of monomers in protein imprinting technology, thereby laying a foundation for developing high-performance protein-imprinted materials.
Collapse
Affiliation(s)
- Wenqi Song
- Xi' an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an 710123, PR China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yuxuan Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuzhen Zhao
- Xi' an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an 710123, PR China
| | - Zongcheng Miao
- Xi' an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an 710123, PR China
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qiuyu Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
49
|
Zhang Q, Fang L, Jia B, Long N, Shi L, Zhou L, Zhao H, Kong W. Optical lateral flow test strip biosensors for pesticides: Recent advances and future trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Sarkhosh T, Mayerberger E, Jellison K, Jedlicka S. Development of cell-imprinted polymer surfaces for Cryptosporidium capture and detection. WATER RESEARCH 2021; 205:117675. [PMID: 34600226 DOI: 10.1016/j.watres.2021.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Cryptosporidium parvum is waterborne parasite that can cause potentially life-threatening gastrointestinal disease and is resistant to conventional water treatment processes, including chlorine disinfection. The current Environmental Protection Agency-approved method for oocyst detection and quantification is expensive, limiting the ability of water utilities to monitor complex watersheds thoroughly to understand the fate and transport of C. parvum oocysts. In this work, whole cell imprinting was used to create selective and sensitive surfaces for the capture of C. parvum oocysts in water. Cell-imprinted Polydimethylsiloxane (PDMS) was manufactured using a modified stamping approach, and sensitivity and selectivity were analyzed using different water chemistries and different surrogate biological and non-biological particles. The overall binding affinity was determined to be less than that of highly specific antibodies, but on par with standard antibodies and immune-enabled technologies. These initial results demonstrate the potential for developing devices using cell-imprinting for use in waterborne pathogen analysis.
Collapse
Affiliation(s)
- Tooba Sarkhosh
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | - Elisa Mayerberger
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, USA
| | - Kristen Jellison
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, USA
| | - Sabrina Jedlicka
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA; Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|