1
|
Ariga K. Liquid-Liquid Interfacial Nanoarchitectonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305636. [PMID: 37641176 DOI: 10.1002/smll.202305636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Science in the small world has become a crucial key that has the potential to revolutionize materials technology. This trend is embodied in the postnanotechnology concept of nanoarchitectonics. The goal of nanoarchitectonics is to create bio-like functional structures, in which self-organized and hierarchical structures are working efficiently. Liquid-liquid interface like environments such as cell membrane surface are indispensable for the expression of biological functions through the accumulation and organization of functional materials. From this viewpoint, it is necessary to reconsider the liquid-liquid interface as a medium where nanoarchitectonics can play an active role. In this review, liquid-liquid interfacial nanoarchitectonics is classified by component materials such as organic, inorganic, carbon, and bio, and recent research examples are discussed. Examples discussed in this paper include molecular aggregates, supramolecular polymers, conductive polymers film, crystal-like capsules, block copolymer assemblies, covalent organic framework (COF) films, complex crystals, inorganic nanosheets, colloidosomes, fullerene assemblies, all-carbon π-conjugated graphite nanosheets, carbon nanoskins and fullerphene thin films at liquid-liquid interfaces. Furthermore, at the liquid-liquid interface using perfluorocarbons and aqueous phases, cell differentiation controls are discussed with the self-assembled structure of biomaterials. The significance of liquid-liquid interfacial nanoarchitectonics in the future development of materials will then be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha Kashiwa, Tokyo, 277-8561, Japan
| |
Collapse
|
2
|
Ariga K. Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:434-453. [PMID: 37091285 PMCID: PMC10113519 DOI: 10.3762/bjnano.14.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The development of nanotechnology has provided an opportunity to integrate a wide range of phenomena and disciplines from the atomic scale, the molecular scale, and the nanoscale into materials. Nanoarchitectonics as a post-nanotechnology concept is a methodology for developing functional material systems using units such as atoms, molecules, and nanomaterials. Especially, molecular nanoarchitectonics has been strongly promoted recently by incorporating nanotechnological methods into organic synthesis. Examples of research that have attracted attention include the direct observation of organic synthesis processes at the molecular level with high resolution, and the control of organic syntheses with probe microscope tips. These can also be considered as starting points for nanoarchitectonics. In this review, these examples of molecular nanoarchitectonics are introduced, and future prospects of nanoarchitectonics are discussed. The fusion of basic science and the application of practical functional materials will complete materials chemistry for everything.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
3
|
Liu M, Higashi K, Ueda K, Moribe K. Supersaturation maintenance of carvedilol and chlorthalidone by cyclodextrin derivatives: Pronounced crystallization inhibition ability of methylated cyclodextrin. Int J Pharm 2023; 637:122876. [PMID: 36963642 DOI: 10.1016/j.ijpharm.2023.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Cyclodextrin (CD) is used to solubilize poorly water-soluble drugs by inclusion complex formation. In this study, we investigated the effect of CD derivatives on stabilizing the supersaturation by inhibiting the crystallization of two poorly water-soluble drugs, carvedilol (CVD) and chlorthalidone (CLT). The phase solubility test showed that β-CD and γ-CD derivatives enhanced the solubility of CVD to a greater extent, whereas the solubility of CLT was enhanced more by β-CD derivatives. The solubilization efficacy of CD derivatives was dependent on the size fitness between the drug molecule and the CD cavity. In the drug crystallization induction time measurement, the same initial drug supersaturation ratio (S) was employed in all the CD solutions, and the methylated CD derivatives greatly outperformed unmethylated CD derivatives in stabilizing the supersaturation of both CVD and CLT. The crystallization inhibition strength of CD derivatives was strongly affected by the CD derivative substituent. Moreover, the calculated logarithm of octanol/water partition coefficients (log P) of CD derivatives showed a good correlation with drug crystallization inhibition ability. Thus, the high hydrophobicity of methylated CD plays an essential role in inhibiting crystallization. These findings can provide a valuable guide for selecting appropriate stabilizing agents for drug-supersaturation formulations.
Collapse
Affiliation(s)
- Mengyao Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
4
|
Matsumoto M, Sutrisno L, Ariga K. Covalent nanoarchitectonics: Polymer synthesis with designer structures and sequences. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michio Matsumoto
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Linawati Sutrisno
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
- Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| |
Collapse
|
5
|
Shrestha LK, Shrestha RG, Shahi S, Gnawali CL, Adhikari MP, Bhadra BN, Ariga K. Biomass Nanoarchitectonics for Supercapacitor Applications. J Oleo Sci 2023; 72:11-32. [PMID: 36624057 DOI: 10.5650/jos.ess22377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nanoarchitectonics integrates nanotechnology with numerous scientific disciplines to create innovative and novel functional materials from nano-units (atoms, molecules, and nanomaterials). The objective of nanoarchitectonics concept is to develop functional materials and systems with rationally architected functional units. This paper explores the progress and potential of this field using biomass nanoarchitectonics for supercapacitor applications as examples of energetic materials and devices. Strategic design of nanoporous carbons that exhibit ultra-high surface area and hierarchically pore architectures comprising micro- and mesopore structure and controlled pore size distributions are of great significance in energy-related applications, including in high-performance supercapacitors, lithium-ion batteries, and fuel cells. Agricultural wastes or natural biomass are lignocellulosic materials and are excellent carbon sources for the preparation of hierarchically porous carbons with an ultra-high surface area that are attractive materials in high-performance supercapacitor applications due to high electrical and ion conduction, extreme porosity, and exceptional chemical and thermal stability. In this review, we will focus on the latest advancements in the fabrication of hierarchical porous carbon materials from different biomass by chemical activation method. Particularly, the importance of biomass-derived ultra-high surface area porous carbons, hierarchical architectures with interconnected pores in high-energy storage, and high-performance supercapacitors applications will be discussed. Finally, the current challenges and outlook for the further improvement of carbon materials derived from biomass or agricultural wastes in the advancements of supercapacitor devices will be discussed.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU)
| | | | - Biswa Nath Bhadra
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
6
|
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. MICROMACHINES 2022; 14:mi14010025. [PMID: 36677086 PMCID: PMC9860627 DOI: 10.3390/mi14010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
This review will focus on micromachines and microrobots, which are objects at the micro-level with similar machine functions, as well as nano-level objects such as molecular machines and nanomachines. The paper will initially review recent examples of molecular machines and microrobots that are not limited to interfaces, noting the diversity of their functions. Next, examples of molecular machines and micromachines/micro-robots functioning at the air-water interface will be discussed. The behaviors of molecular machines are influenced significantly by the specific characteristics of the air-water interface. By placing molecular machines at the air-water interface, the scientific horizon and depth of molecular machine research will increase dramatically. On the other hand, for microrobotics, more practical and advanced systems have been reported, such as the development of microrobots and microswimmers for environmental remediations and biomedical applications. The research currently being conducted on the surface of water may provide significant basic knowledge for future practical uses of molecular machines and microrobots.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
7
|
Shen X, Song J, Kawakami K, Ariga K. Molecule-to-Material-to-Bio Nanoarchitectonics with Biomedical Fullerene Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5404. [PMID: 35955337 PMCID: PMC9369991 DOI: 10.3390/ma15155404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics integrates nanotechnology with various other fields, with the goal of creating functional material systems from nanoscale units such as atoms, molecules, and nanomaterials. The concept bears strong similarities to the processes and functions seen in biological systems. Therefore, it is natural for materials designed through nanoarchitectonics to truly shine in bio-related applications. In this review, we present an overview of recent work exemplifying how nanoarchitectonics relates to biology and how it is being applied in biomedical research. First, we present nanoscale interactions being studied in basic biology and how they parallel nanoarchitectonics concepts. Then, we overview the state-of-the-art in biomedical applications pursuant to the nanoarchitectonics framework. On this basis, we take a deep dive into a particular building-block material frequently seen in nanoarchitectonics approaches: fullerene. We take a closer look at recent research on fullerene nanoparticles, paying special attention to biomedical applications in biosensing, gene delivery, and radical scavenging. With these subjects, we aim to illustrate the power of nanomaterials and biomimetic nanoarchitectonics when applied to bio-related applications, and we offer some considerations for future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| |
Collapse
|
8
|
Shimizu T, Lungerich D, Harano K, Nakamura E. Time-Resolved Imaging of Stochastic Cascade Reactions over a Submillisecond to Second Time Range at the Angstrom Level. J Am Chem Soc 2022; 144:9797-9805. [PMID: 35609254 DOI: 10.1021/jacs.2c02297] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many chemical reactions, such as multistep catalytic cycles, are cascade reactions in which a series of transient intermediates appear and disappear stochastically over an extended period. The mechanisms of such reactions are challenging to study, even in ultrafast pump-probe experiments. The dimerization of a van der Waals dimer of [60]fullerene producing a short carbon nanotube is a typical cascade reaction and is probably the most frequently studied in carbon materials chemistry. As many as 23 intermediates were predicted by theory, but only the first stable one has been verified experimentally. With the aid of fast electron microscopy, we obtained cinematographic recordings of individual molecules at a maximum frame rate of 1600 frames per second. Using Chambolle total variation algorithm processing and automated cross-correlation image matching analysis, we report on the identification of several metastable intermediates by their shape and size. Although the reaction events occurred stochastically, varying the lifetime of each intermediate accordingly, the average lifetime for each intermediate structure could be obtained from statistical analysis of many cinematographic images for the cascade reaction. Among the shortest-living intermediates, we detected one that lasted less than 3 ms in three independent cascade reactions. We anticipate that the rapid technological development of microscopy and image processing will soon initiate an era of cinematographic studies of chemical reactions and cinematic chemistry.
Collapse
Affiliation(s)
- Toshiki Shimizu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dominik Lungerich
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Center for Nanomedicine (CNM), Institute for Basic Science (IBS), IBS Hall, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Ariga K. Mechano-Nanoarchitectonics: Design and Function. SMALL METHODS 2022; 6:e2101577. [PMID: 35352500 DOI: 10.1002/smtd.202101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Indexed: 05/27/2023]
Abstract
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
10
|
Atomic-number ( Z)-correlated atomic sizes for deciphering electron microscopic molecular images. Proc Natl Acad Sci U S A 2022; 119:e2114432119. [PMID: 35349339 PMCID: PMC9168473 DOI: 10.1073/pnas.2114432119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Atomic resolution transmission electron microscopy (TEM) has opened up a new era of molecular science by providing atomic video images of dynamic motions of single organic and inorganic molecules. However, the images often look different from the images of molecular models, because these models are designed to visualize the electronic properties of the molecule instead of nuclear electrostatic potentials that are felt by the e-beam in TEM imaging. Here, we propose a molecular model that reproduces TEM images using atomic radii correlated to atomic number (Z). The model serves to provide a priori a useful idea of how a single molecule, molecular assemblies, and thin crystals of organic or inorganic materials look in TEM. With the advent of atomic resolution transmission electron microscopy (AR-TEM) achieving sub-Ångstrom image resolution and submillisecond time resolution, an era of cinematic molecular science where chemists can visually study the time evolution of molecular motions and reactions at atomistic precision has arrived. However, the appearance of experimental TEM images often differs greatly from that of conventional molecular models, and the images are difficult to decipher unless we know in advance the structure of the specimen molecules. The difference arises from the fundamental design of the molecular models that represent atomic connectivity and/or the electronic properties of molecules rather than the nuclear charge of atoms and electrostatic potentials that are felt by the e-beam in TEM imaging. We found a good correlation between the atomic number (Z) and the atomic size seen in TEM images when we consider shot noise in digital images. We propose Z-correlated (ZC) atomic radii for modeling AR-TEM images of single molecules and ultrathin crystals with which we can develop a good estimate of the molecular structure from the TEM image much more easily than with conventional molecular models. Two parameter sets were developed for TEM images recorded under high-noise (ZCHN) and low-noise (ZCLN) conditions. The molecular models will stimulate the imaginations of chemists planning to use AR-TEM for their research.
Collapse
|
11
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
12
|
Chaikittisilp W, Yamauchi Y, Ariga K. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107212. [PMID: 34637159 DOI: 10.1002/adma.202107212] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Materials science and chemistry have played a central and significant role in advancing society. With the shift toward sustainable living, it is anticipated that the development of functional materials will continue to be vital for sustaining life on our planet. In the recent decades, rapid progress has been made in materials science and chemistry owing to the advances in experimental, analytical, and computational methods, thereby producing several novel and useful materials. However, most problems in material development are highly complex. Here, the best strategy for the development of functional materials via the implementation of three key concepts is discussed: nanotechnology as a game changer, nanoarchitectonics as an integrator, and materials informatics as a super-accelerator. Discussions from conceptual viewpoints and example recent developments, chiefly focused on nanoporous materials, are presented. It is anticipated that coupling these three strategies together will open advanced routes for the swift design and exploratory search of functional materials truly useful for solving real-world problems. These novel strategies will result in the evolution of nanoporous functional materials.
Collapse
Affiliation(s)
- Watcharop Chaikittisilp
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katsuhiko Ariga
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
13
|
Bhadra BN, Shrestha LK, Ariga K. Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00872f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a post-nanotechnology concept, nanoarchitectonics has emerged from the 20th century to the 21st century. This review summarizes the recent progress in the field of metal-free porous carbon nanoarchitectonics.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
14
|
Hu W, Shi J, Lv W, Jia X, Ariga K. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:393-412. [PMID: 35783540 PMCID: PMC9246028 DOI: 10.1080/14686996.2022.2082260] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoarchitectonics has emerged as a post-nanotechnology concept. As one of the applications of nanoarchitectonics, this review paper discusses the control of stem cell fate and function as an important issue. For hybrid nanoarchitectonics involving living cells, it is crucial to understand how biomaterials and their nanoarchitected structures regulate behaviours and fates of stem cells. In this review, biomaterials for the regulation of stem cell fate are firstly discussed. Besides multipotent differentiation, immunomodulation is an important biological function of mesenchymal stem cells (MSCs). MSCs can modulate immune cells to treat multiple immune- and inflammation-mediated diseases. The following sections summarize the recent advances of the regulation of the immunomodulatory functions of MSCs by biophysical signals. In the third part, we discussed how biomaterials direct the self-organization of pluripotent stem cells for organoid. Bioactive materials are constructed which mimic the biophysical cues of in vivo microenvironment such as elasticity, viscoelasticity, biodegradation, fluidity, topography, cell geometry, and etc. Stem cells interpret these biophysical cues by different cytoskeletal forces. The different cytoskeletal forces lead to substantial transcription and protein expression, which affect stem cell fate and function. Regulations of stem cells could not be utilized only for tissue repair and regenerative medicine but also potentially for production of advanced materials systems. Materials nanoarchitectonics with integration of stem cells and related biological substances would have high impacts in science and technology of advanced materials.
Collapse
Affiliation(s)
- Wei Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Jiaming Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Wenyan Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Xiaofang Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
- CONTACT Xiaofang Jia School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, P. R. China
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, the University of Tokyo, KashiwaJapan
- Katsuhiko Ariga International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki305-0044, Japan
| |
Collapse
|
15
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2146. [PMID: 34443975 PMCID: PMC8400563 DOI: 10.3390/nano11082146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchitectonics is a universal concept to fabricate functional materials from nanoscale building units. Based on this concept, fabrications of functional materials with hierarchical structural motifs from simple nano units of fullerenes (C60 and C70 molecules) are described in this review article. Because fullerenes can be regarded as simple and fundamental building blocks with mono-elemental and zero-dimensional natures, these demonstrations for hierarchical functional structures impress the high capability of the nanoarchitectonics approaches. In fact, various hierarchical structures such as cubes with nanorods, hole-in-cube assemblies, face-selectively etched assemblies, and microstructures with mesoporous frameworks are fabricated by easy fabrication protocols. The fabricated fullerene assemblies have been used for various applications including volatile organic compound sensing, microparticle catching, supercapacitors, and photoluminescence systems.
Collapse
Affiliation(s)
- Subrata Maji
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
16
|
Hanayama H, Yamada J, Tomotsuka I, Harano K, Nakamura E. Rim Binding of Cyclodextrins in Size-Sensitive Guest Recognition. J Am Chem Soc 2021; 143:5786-5792. [PMID: 33826331 DOI: 10.1021/jacs.1c00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclodextrins (CDs) are doughnut-shaped cyclic oligosaccharides having a cavity and two rims. Inclusion binding in the cavity has long served as a classic model of molecular recognition, and rim binding has been neglected. We found that CDs recognize guests by size-sensitive binding using the two rims in addition to the cavity, using single-molecule electron microscopy and a library of graphitic cones as a solid-state substrate for complexation. For example, with its cavity and rim binding ability combined, γ-CD can recognize a guest of radius between 4 and 9 Å with a size-recognition precision of better than 1 Å, as shown by structural analysis of thousands of individual specimens and statistical analysis of the data thereof. A 2.5 ms resolution electron microscopic video provided direct evidence of the process of size recognition. The data suggest the occurrence of the rim binding mode for guests larger than the size of the CD cavity and illustrate a unique application of dynamic molecular electron microscopy for deciphering the spatiotemporal details of supramolecular events.
Collapse
Affiliation(s)
- Hiroki Hanayama
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junya Yamada
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Issei Tomotsuka
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Ariga K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules 2021; 26:1621. [PMID: 33804013 PMCID: PMC7998694 DOI: 10.3390/molecules26061621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
18
|
Sekine R, Ravat P, Yanagisawa H, Liu C, Kikkawa M, Harano K, Nakamura E. Nano- and Microspheres Containing Inorganic and Biological Nanoparticles: Self-Assembly and Electron Tomographic Analysis. J Am Chem Soc 2021; 143:2822-2828. [PMID: 33535757 DOI: 10.1021/jacs.0c11944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organofullerene amphiphiles show diverse behaviors in water, forming vesicles, micelles, Langmuir-Blodgett films, and anisotropic nanostructures. We found that gradual in situ protonation of an organic solution of (4-heptylphenyl)5C60-K+ by water or buffer generates the corresponding protonated molecule, (4-heptylphenyl)5C60H, which self-assembles to form nano- and microspheres of organofullerene (fullerspheres) with uniform diameters ranging from 30 nm to 2.5 μm that are controlled by the preparation or pH of the buffer. By using an aqueous solution of an organic dye, inorganic nanoparticle, protein, and virus, we encapsulated these entities in the fullersphere. This approach via self-assembly is distinct from other preparations of organic core-shell particles that generally require polymerization for the construction of a robust shell. The sphere is entirely amorphous, thermally stable up to 300 °C under vacuum, and resistant to electron irradiation, and we found the unconventional utility of the sphere for electron tomographic imaging of nanoparticles and biomaterials.
Collapse
Affiliation(s)
- Ryosuke Sekine
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Prince Ravat
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chao Liu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|