1
|
Tsunekawa E, Fujita M, Sawada T. A Discrete Four-Stranded β-Sheet through Catenation of M 2L 2 Metal-Peptide Rings. Angew Chem Int Ed Engl 2024:e202416442. [PMID: 39439286 DOI: 10.1002/anie.202416442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Methods for precisely constructing a β-sheet assembly with number-defined strands in solution remains quite limited due to its intense aggregation property. Here, we report the precise construction of a four-stranded anti-parallel β-sheet by utilizing a non-covalent approach. This was achieved by folding and assembly of Ag+ and a pentapeptide (1) with the Ala-D3pa-Gly-3pa-Val (3pa: β-(3-pyridyl)-alanine) sequence, which was designed to form an interlocking Ag2(1)2 ring through metal cross-linking of the side chains. NMR analyses and X-ray crystallographic studies characterized the structure of the discrete β-sheet assembly as well as the remarkable structural selectivity in terms of strands' number, orientation and the sheet type.
Collapse
Affiliation(s)
- Eisuke Tsunekawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Makoto Fujita
- Tokyo College, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Division of Advanced Molecular Science Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Tomohisa Sawada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Present address: Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
2
|
Zhou Q, Dong X, Chi G, Cao XY, Zhang N, Wu S, Ma Y, Zhang ZH, Zhang L. Cinquefoil Knot Possessing Dynamic and Tunable Metal Coordination. J Am Chem Soc 2024; 146:22405-22412. [PMID: 39099103 DOI: 10.1021/jacs.4c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
While the majority of knots are made from the metal-template approach, the use of entangled, constrained knotted loops to modulate the coordination of the metal ions remains inadequately elucidated. Here, we report on the coordination chemistry of a 140-atom-long cinquefoil knotted strand comprising five tridentate and five bidentate chelating vacancies. The knotted loop is prepared through the self-assembly of asymmetric "3 + 2" dentate ligands with copper(II) ions that favor five-coordination geometry. The formation of the copper(II) pentameric helicate is confirmed by X-ray crystallography, while the corresponding copper(II) knot is characterized by XPS and LR-/HR ESI-MS. Upon removal of the original template, the knotted ligand facilitates zinc(II) ions, which typically form four- or six-coordination geometries, resulting in the formation of an otherwise inaccessible zinc(II) metallic knot with coordinatively unsaturated metal centers. The coordination numbers and geometries of the zinc(II) cations are undoubtedly determined by X-ray crystallography. Despite the kinetically labile nature and high reversibility of the zinc(II) complex preventing the detection of 5-to-6 coordination equilibrium in solution, the effects on metal-ion coordination induced by knotting hold promise for fine-tuning the coordination of metal complexes.
Collapse
Affiliation(s)
- Qi Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xue Dong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guanyu Chi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Yu Cao
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ningjin Zhang
- Instrumental Analytical Center of Shanghai Jiao Tong University, Shanghai 201100, P. R. China
| | - Shitao Wu
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
3
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
4
|
Jeong S, Lee K, Yoo SH, Lee HS, Kwon S. Crystalline Metal-Peptide Networks: Structures, Applications, and Future Outlook. Chembiochem 2023; 24:e202200448. [PMID: 36161687 DOI: 10.1002/cbic.202200448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Metal-peptide networks (MPNs), which are assembled from short peptides and metal ions, are considered one of the most fascinating metal-organic coordinated architectures because of their unique and complicated structures. Although MPNs have considerable potential for development into versatile materials, they have not been developed for practical applications because of several underlying limitations, such as designability, stability, and modifiability. In this review, we summarise several important milestones in the development of crystalline MPNs and thoroughly analyse their structural features, such as peptide sequence designs, coordination geometries, cross-linking types, and network topologies. In addition, potential applications such as gas adsorption, guest encapsulation, and chiral recognition are introduced. We believe that this review is a useful survey that can provide insights into the development of new MPNs with more sophisticated structures and novel functions.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Kwonjung Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Sung Hyun Yoo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| |
Collapse
|
5
|
Shrestha LK, Shrestha RG, Shahi S, Gnawali CL, Adhikari MP, Bhadra BN, Ariga K. Biomass Nanoarchitectonics for Supercapacitor Applications. J Oleo Sci 2023; 72:11-32. [PMID: 36624057 DOI: 10.5650/jos.ess22377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nanoarchitectonics integrates nanotechnology with numerous scientific disciplines to create innovative and novel functional materials from nano-units (atoms, molecules, and nanomaterials). The objective of nanoarchitectonics concept is to develop functional materials and systems with rationally architected functional units. This paper explores the progress and potential of this field using biomass nanoarchitectonics for supercapacitor applications as examples of energetic materials and devices. Strategic design of nanoporous carbons that exhibit ultra-high surface area and hierarchically pore architectures comprising micro- and mesopore structure and controlled pore size distributions are of great significance in energy-related applications, including in high-performance supercapacitors, lithium-ion batteries, and fuel cells. Agricultural wastes or natural biomass are lignocellulosic materials and are excellent carbon sources for the preparation of hierarchically porous carbons with an ultra-high surface area that are attractive materials in high-performance supercapacitor applications due to high electrical and ion conduction, extreme porosity, and exceptional chemical and thermal stability. In this review, we will focus on the latest advancements in the fabrication of hierarchical porous carbon materials from different biomass by chemical activation method. Particularly, the importance of biomass-derived ultra-high surface area porous carbons, hierarchical architectures with interconnected pores in high-energy storage, and high-performance supercapacitors applications will be discussed. Finally, the current challenges and outlook for the further improvement of carbon materials derived from biomass or agricultural wastes in the advancements of supercapacitor devices will be discussed.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU)
| | | | - Biswa Nath Bhadra
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
6
|
Kishida N, Tanaka Y, Yoshizawa M. CH-π Multi-Interaction-Driven Recognition and Isolation of Planar Compounds in a Spheroidal Polyaromatic Cavity. Chemistry 2022; 28:e202202075. [PMID: 36094055 PMCID: PMC10092702 DOI: 10.1002/chem.202202075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 12/14/2022]
Abstract
π-π Interactions are established as a powerful supramolecular tool, whereas the usability of CH-π interactions has been rather limited so far. Here we present (i) selective binding of planar polyaromatics and (ii) effective isolation of planar metal complexes by a polyaromatic capsule, utilizing multiple CH-π interactions. In the spheroidal cavity, one molecule of large and medium-sized polyaromatic molecules (i. e., coronene and pyrene) is exclusively bound from mixtures bearing the same number of aromatic CH groups. Theoretical studies reveal that multiple host-guest CH-π interactions (up to 32 interactions) are the predominant driving force for the observed selectivity. In addition, one molecule of planar metal complexes (i. e., porphine and bis(acetylacetonato) Cu(II) complexes) is quantitatively bound by the capsule through aromatic and aliphatic CH-π multi-interactions, respectively. The ESR and theoretical studies demonstrate the isolation capability of the capsular framework and an unusual polar environment in the polyaromatic cavity.
Collapse
Affiliation(s)
- Natsuki Kishida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
7
|
Serizawa T, Yamaguchi S, Amitani M, Ishii S, Tsuyuki H, Tanaka Y, Sawada T, Kawamura I, Watanabe G, Tanaka M. Alkyl chain length-dependent protein nonadsorption and adsorption properties of crystalline alkyl β-celluloside assemblies. Colloids Surf B Biointerfaces 2022; 220:112898. [DOI: 10.1016/j.colsurfb.2022.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
|
8
|
Zhang ZH, Zhou Q, Li Z, Zhang N, Zhang L. Completely stereospecific synthesis of a molecular cinquefoil (51) knot. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Feng HN, Sun Z, Chen S, Zhang ZH, Li Z, Zhong Z, Sun T, Ma Y, Zhang L. A Star of David [2]catenane of single handedness. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Moslabeh FGZ, Fouladgar F, Jafari A, Habibi N. Substrate-Free Self-Assembly of Peptides Nano-particles Through Acoustic Levitation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Ariga K. Liquid Interfacial Nanoarchitectonics: Molecular Machines, Organic Semiconductors, Nanocarbons, Stem Cells, and Others. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
13
|
Schiff base nanoarchitectonics for supramolecular assembly of dipeptide as drug carriers. J Colloid Interface Sci 2022; 630:161-169. [DOI: 10.1016/j.jcis.2022.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
|
14
|
Domoto Y, Fujita M. Self-assembly of nanostructures with high complexity based on metal⋯unsaturated-bond coordination. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
On the Classification of Polyhedral Links. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knots and links are ubiquitous in chemical systems. Their structure can be responsible for a variety of physical and chemical properties, making them very important in materials development. In this article, we analyze the topological structures of interlocking molecules composed of metal-peptide rings using the concept of polyhedral links. To that end, we discuss the topological classification of alternating polyhedral links.
Collapse
|
16
|
Zare D, Piguet C, Prescimone A, Housecroft CE, Constable EC. Positive Cooperativity Induced by Interstrand Interactions in Silver(I) Complexes with α,α'-Diimine Ligands. Chemistry 2022; 28:e202200912. [PMID: 35638573 PMCID: PMC9401079 DOI: 10.1002/chem.202200912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/10/2022]
Abstract
The allosteric positive cooperativity accompanying the formation of compact [CuI (α,α'-diimine)2 ]+ building blocks contributed to the historically efficient synthesis of metal-containing catenates and knotted assemblies. However, its limited magnitude can easily be overcome by the negative chelate cooperativity that controls the overall formation of related polymetallic multistranded helicates and grids. Despite the more abundant use of analogous dioxygen-resistant [AgI (α,α'-diimine)2 ]+ units in modern entangled metallo-supramolecular assemblies, a related thermodynamic justification was absent. Solid-state structural characterizations show the successive formation of [AgI (α,α'-diimine)(CH3 CN)][X] and [AgI (α,α'-diimine)2 ][X] upon the stepwise reactions of α,α'-diimine=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) derivatives with AgX (X=BF4 - , ClO4 - , PF6 - ). In room-temperature, 5-10 mM acetonitrile solutions, these cationic complexes exist as mixtures in fast exchange on the NMR timescale. Spectrophotometric titrations using the unsubstituted bpy and phen ligands point to the statistical (=non-cooperative) binding of two successive bidentate ligands around AgI , a mechanism probably driven by the formation of hydrophobic belts, that overcomes the unfavorable decrease in the positive charge borne by the metallic cation. Surprisingly, the addition of methyl groups adjacent to the nitrogen donors (6,6' positions in dmbpy; 2,9 positions in dmphen) induces positive cooperativity for the formation of [Ag(dmbpy)2 ]+ and [Ag(dmphen)2 ]+ , a trend assigned to additional stabilizing interligand interactions. Adding rigid and polarizable phenyl side arms in [Ag(Brdmbpy)2 ]+ further reinforces the positively cooperative process, while limiting the overall decrease in metal-ligand affinity.
Collapse
Affiliation(s)
- Davood Zare
- Department of ChemistryUniversity of BaselBPR 1096, Mattenstrasse 24a4058BaselSwitzerland
| | - Claude Piguet
- Department of Inorganic and Analytical ChemistryUniversity of Geneva30 quai E. Ansermet1211Geneva 4Switzerland
| | - Alessandro Prescimone
- Department of ChemistryUniversity of BaselBPR 1096, Mattenstrasse 24a4058BaselSwitzerland
| | | | - Edwin C. Constable
- Department of ChemistryUniversity of BaselBPR 1096, Mattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
17
|
Yoshimoto S, Ogata H. Molecular planting of a single organothiol into a "gap-site" of a 2D patterned adlayer in an electrochemical environment. Chem Sci 2022; 13:4999-5005. [PMID: 35655888 PMCID: PMC9067580 DOI: 10.1039/d1sc07227g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembled inclusion of molecules into two-dimensional (2D) porous networks on surfaces has been extensively studied because 2D functional materials consisting of organic molecules have become an important research topic. However, the isolation of a single molecular thiol remains a challenging goal. Here, we report a method of planting and isolating organothiols onto a 2D patterned organic adlayer at an electrochemical interface. In situ scanning tunneling microscopy revealed that the phase transition of an ovalene adlayer is electrochemically induced and that the gap site created by three ovalene molecules serves as a 2D molecular template to isolate thiol molecules and to standardize the distance between them via the formation of precise selective open spaces, suggesting that electrochemical "molecular planting" opens applications for 2D patterns of isolated single organothiol molecules.
Collapse
Affiliation(s)
- Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Hiroto Ogata
- Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
18
|
Domoto Y, Yamamoto K, Horie S, Yu Z, Fujita M. Amplification of weak chiral inductions for excellent control over the helical orientation of discrete topologically chiral (M 3L 2) n polyhedra. Chem Sci 2022; 13:4372-4376. [PMID: 35509455 PMCID: PMC9006968 DOI: 10.1039/d2sc00111j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Superb control over the helical chirality of discrete (M3L2)n polyhedra (n = 2,4,8, M = CuI or AgI) created from the self-assembly of propeller-shaped ligands (L) equipped with chiral side chains is demonstrated here. Almost perfect chiral induction (>99 : 1) of the helical orientation of the framework was achieved for the largest (M3L2)8 cube with 48 small chiral side chains (diameter: ∼5 nm), while no or moderate chiral induction was observed for smaller polyhedra (n = 2, 4). Thus, amplification of the weak chiral inductions of each ligand unit is an efficient way to control the chirality of large discrete nanostructures with high structural complexity. Superb control over the helical chirality of highly-entangled (M3L2)n polyhedra (M = Cu(i), Ag(i); n = 2,4,8) was achieved via multiplication of weak chiral inductions by side chains accumulated on the huge polyhedral surfaces.![]()
Collapse
Affiliation(s)
- Yuya Domoto
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kidai Yamamoto
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shumpei Horie
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Zhengsu Yu
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji-cho Okazaki-shi Aichi 444-8787 Japan
| |
Collapse
|
19
|
Ariga K. Biomimetic and Biological Nanoarchitectonics. Int J Mol Sci 2022; 23:3577. [PMID: 35408937 PMCID: PMC8998553 DOI: 10.3390/ijms23073577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
A post-nanotechnology concept has been assigned to an emerging concept, nanoarchitectonics. Nanoarchitectonics aims to establish a discipline in which functional materials are fabricated from nano-scale components such as atoms, molecules, and nanomaterials using various techniques. Nanoarchitectonics opens ways to form a more unified paradigm by integrating nanotechnology with organic chemistry, supramolecular chemistry, material chemistry, microfabrication technology, and biotechnology. On the other hand, biological systems consist of rational organization of constituent molecules. Their structures have highly asymmetric and hierarchical features that allow for chained functional coordination, signal amplification, and vector-like energy and signal flow. The process of nanoarchitectonics is based on the premise of combining several different processes, which makes it easier to obtain a hierarchical structure. Therefore, nanoarchitectonics is a more suitable methodology for creating highly functional systems based on structural asymmetry and hierarchy like biosystems. The creation of functional materials by nanoarchitectonics is somewhat similar to the creation of functional systems in biological systems. It can be said that the goal of nanoarchitectonics is to create highly functional systems similar to those found in biological systems. This review article summarizes the synthesis of biomimetic and biological molecules and their functional structure formation from various viewpoints, from the molecular level to the cellular level. Several recent examples are arranged and categorized to illustrate such a trend with sections of (i) synthetic nanoarchitectonics for bio-related units, (ii) self-assembly nanoarchitectonics with bio-related units, (iii) nanoarchitectonics with nucleic acids, (iv) nanoarchitectonics with peptides, (v) nanoarchitectonics with proteins, and (vi) bio-related nanoarchitectonics in conjugation with materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan
| |
Collapse
|
20
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
21
|
Abstract
Tangled tetrahedra, octahedra, cubes, icosahedra, and dodecahedra are generalizations of classical—untangled—Platonic polyhedra. Like the Platonic polyhedra, all vertices, edges, and faces are symmetrically equivalent. However, the edges of tangled polyhedra are curvilinear, or kinked, to allow entanglement, much like warps and wefts in woven fabrics. We construct the most symmetric entanglements of these polyhedra via assemblies of multistrand helices wound around edges of the conventional polyhedra; they are all necessarily chiral. The construction gives self-entangled chiral polyhedra and compound polyhedra containing catenated multiple tetrahedra or “generalized θ-polyhedra.” An unlimited variety of tangling is possible for any given topology. Related structures have been observed in synthetic materials and clathrin assemblies within cells. Conventional embeddings of the edge-graphs of Platonic polyhedra, {f, z}, where f, z denote the number of edges in each face and the edge-valence at each vertex, respectively, are untangled in that they can be placed on a sphere (S2) such that distinct edges do not intersect, analogous to unknotted loops, which allow crossing-free drawings of S1 on the sphere. The most symmetric (flag-transitive) realizations of those polyhedral graphs are those of the classical Platonic polyhedra, whose symmetries are *2fz, according to Conway’s two-dimensional (2D) orbifold notation (equivalent to Schönflies symbols Ih, Oh, and Td). Tangled Platonic {f, z} polyhedra—which cannot lie on the sphere without edge-crossings—are constructed as windings of helices with three, five, seven,… strands on multigenus surfaces formed by tubifying the edges of conventional Platonic polyhedra, have (chiral) symmetries 2fz (I, O, and T), whose vertices, edges, and faces are symmetrically identical, realized with two flags. The analysis extends to the “θz” polyhedra, {2,z}. The vertices of these symmetric tangled polyhedra overlap with those of the Platonic polyhedra; however, their helicity requires curvilinear (or kinked) edges in all but one case. We show that these 2fz polyhedral tangles are maximally symmetric; more symmetric embeddings are necessarily untangled. On one hand, their topologies are very constrained: They are either self-entangled graphs (analogous to knots) or mutually catenated entangled compound polyhedra (analogous to links). On the other hand, an endless variety of entanglements can be realized for each topology. Simpler examples resemble patterns observed in synthetic organometallic materials and clathrin coats in vivo.
Collapse
|
22
|
Dang LL, Zhang TT, Chen T, Zhao Y, Zhao CC, Aznarez F, Sun KX, Ma LF. Coordination assembly and NIR photothermal conversion of Cp*Rh-based supramolecular topologies based on distinct conjugated systems. Org Chem Front 2022. [DOI: 10.1039/d2qo01107g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The selective synthesis and transformation of Borromean rings and [2]catenane, are presented based on linear/aromatic conjugated ligands through different stacking interactions, promoting nonradiative transitions and trigger photothermal conversion.
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Chen-Chen Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Francisco Aznarez
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Kai-Xin Sun
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
23
|
Hu W, Shi J, Lv W, Jia X, Ariga K. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:393-412. [PMID: 35783540 PMCID: PMC9246028 DOI: 10.1080/14686996.2022.2082260] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoarchitectonics has emerged as a post-nanotechnology concept. As one of the applications of nanoarchitectonics, this review paper discusses the control of stem cell fate and function as an important issue. For hybrid nanoarchitectonics involving living cells, it is crucial to understand how biomaterials and their nanoarchitected structures regulate behaviours and fates of stem cells. In this review, biomaterials for the regulation of stem cell fate are firstly discussed. Besides multipotent differentiation, immunomodulation is an important biological function of mesenchymal stem cells (MSCs). MSCs can modulate immune cells to treat multiple immune- and inflammation-mediated diseases. The following sections summarize the recent advances of the regulation of the immunomodulatory functions of MSCs by biophysical signals. In the third part, we discussed how biomaterials direct the self-organization of pluripotent stem cells for organoid. Bioactive materials are constructed which mimic the biophysical cues of in vivo microenvironment such as elasticity, viscoelasticity, biodegradation, fluidity, topography, cell geometry, and etc. Stem cells interpret these biophysical cues by different cytoskeletal forces. The different cytoskeletal forces lead to substantial transcription and protein expression, which affect stem cell fate and function. Regulations of stem cells could not be utilized only for tissue repair and regenerative medicine but also potentially for production of advanced materials systems. Materials nanoarchitectonics with integration of stem cells and related biological substances would have high impacts in science and technology of advanced materials.
Collapse
Affiliation(s)
- Wei Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Jiaming Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Wenyan Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
| | - Xiaofang Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, ShenzhenP. R. China
- CONTACT Xiaofang Jia School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, P. R. China
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, the University of Tokyo, KashiwaJapan
- Katsuhiko Ariga International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki305-0044, Japan
| |
Collapse
|
24
|
Inomata Y, Sawada T, Fujita M. Metal-Peptide Nonafoil Knots and Decafoil Supercoils. J Am Chem Soc 2021; 143:16734-16739. [PMID: 34601872 DOI: 10.1021/jacs.1c08094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the frequent occurrence of knotted frameworks in protein structures, the latent potential of peptide strands to form entangled structures is rarely discussed in peptide chemistry. Here we report the construction of highly entangled molecular topologies from Ag(I) ions and tripeptide ligands. The efficient entanglement of metal-peptide strands and the wide scope for design of the amino acid side chains in these ligands enabled the construction of metal-peptide 91 torus knots and 1012 torus links. Moreover, steric control of the peptide side chain induced ring opening and twisting of the torus framework, which resulted in an infinite toroidal supercoil nanostructure.
Collapse
Affiliation(s)
- Yuuki Inomata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,JST PRESTO, https://www.jst.go.jp/kisoken/presto/en/index.html
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|