1
|
Ousaka N, MacLachlan MJ, Akine S, Fujikawa S. Stabilization of optically inactive α-helices of peptidic foldamers through sequence control and i, i + 4 stapling. Org Biomol Chem 2025; 23:3366-3371. [PMID: 40062967 DOI: 10.1039/d5ob00244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
We report the effect of a minimal (i, i + 4) staple on the dynamic interconversion between right-handed (P) and left-handed (M) forms of an optically inactive α-helical peptide composed only of helicogenic achiral amino acids, such as 1-amino-cyclohexanecarboxylic acid (Ac6c) and 4-aminopiperidine-4-carboxylic acid (Api) residues. The P/M interconversion rate of the peptide with a flexible hydrocarbon-based staple was estimated to be 0.41 s-1 at 298 K through variable temperature 1H NMR measurements in 1,1,2,2-tetrachloroethane-d2. A combined analysis using 1H NMR spectroscopy, single-crystal X-ray crystallography, and density functional theory (DFT) calculations revealed that the present flexible stapling does not effectively constrain the conformational freedom of the helical peptide. DFT calculations revealed that Ac6c residues exhibit a stronger propensity for α-helical conformation over the 310-helix than α-aminoisobutyric acid (Aib) residues, with their influence being highly dependent on position and sequence within the oligopeptides.
Collapse
Affiliation(s)
- Naoki Ousaka
- Research Center for Negative Emissions Technologies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mark J MacLachlan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Shigenori Fujikawa
- Research Center for Negative Emissions Technologies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Jikuhara K, Inoue R, Morisaki Y. Aggregation-induced emission from optically active X-shaped molecules based on planar chiral [2.2]paracyclophane. Sci Rep 2023; 13:22647. [PMID: 38114515 PMCID: PMC10730888 DOI: 10.1038/s41598-023-49120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
An optically active π-stacked molecule was synthesized incorporating planar chiral [2.2]paracyclophane and o-carborane units to impart circularly polarized luminescence and aggregation-induced emission properties to the molecule. The molecule exhibited a strong emission from the aggregated state in a mixed solvent system (H2O/THF) and the solid state in the PMMA matrix. In the aggregated state, weak circularly polarized luminescence was observed owing to the random intermolecular orientation. On the other hand, the circularly polarized luminescence was clearly observed in the PMMA film containing 1 wt% molecule. Theoretical studies using time-dependent density functional theory reproduced the molecule's circular dichroism and circularly polarized luminescence properties.
Collapse
Affiliation(s)
- Keishi Jikuhara
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ryo Inoue
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Yasuhiro Morisaki
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
3
|
Matsumura K, Inoue R, Morisaki Y. Synthesis of two optically active V-shaped molecules: Investigating the correlation between the stacking angle and chiroptical properties. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Morisaki A, Inoue R, Morisaki Y. Synthesis of Two Novel Optically Active #-Shaped Cyclic Tetramers Based on Planar Chiral [2.2]Paracyclophanes. Chemistry 2022; 29:e202203533. [PMID: 36585383 DOI: 10.1002/chem.202203533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
This study reports the synthesis of optically active cyclic tetramers comprising four stacked π-electron systems from two enantiomerically pure [2.2]paracyclophane compounds (bis-(para)-pseudo-ortho- and bis-(para)-pseudo-meta-tetrasubstituted [2.2]paracyclophane compounds). Depending on the combination of the absolute configurations of the planar chiral pseudo-ortho- and pseudo-meta-[2.2]paracyclophane units, the cyclic tetramers formed either parallel-#- or weave-#-structures. The optical and chiroptical properties of both structures were investigated experimentally and theoretically. In particular, the weave-#-shaped cyclic tetramer exhibited good chiroptical properties and emitted circularly polarized luminescence (CPL) with a high anisotropy factor (|glum | value of the order of 10-3 ) and a CPL brightness (BCPL ) higher than 100.
Collapse
Affiliation(s)
- Aoi Morisaki
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ryo Inoue
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Yasuhiro Morisaki
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
5
|
Ikeshita M, He H, Kitahara M, Imai Y, Tsuno T. External environment sensitive circularly polarized luminescence properties of a chiral boron difluoride complex. RSC Adv 2022; 12:34790-34796. [PMID: 36540273 PMCID: PMC9724127 DOI: 10.1039/d2ra07386b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 08/23/2024] Open
Abstract
A chiral Schiff-base boron difluoride complex bearing a diethylamino group was synthesized. Its photophysical properties were investigated and compared with those of its non-substituted analogue. The complex was found to exhibit solvatofluorochromism with bluish-white emission in moderately polar solvents and intense blue emission in nonpolar solvent. Circularly polarized luminescence (CPL) properties were also examined and it was found that the absolute value of the luminescence dissymmetry factor (g lum) increases significantly in the KBr-dispersed pellet state compared to the solution state. Notably, CPL intensity of the complex enhanced approximately three times upon addition of CH3SO3H in CH2Cl2. Density functional theory (DFT) calculations were conducted to further understand the photophysical properties.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Hongxi He
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| |
Collapse
|
6
|
Tsuchiya M, Inoue R, Tanaka K, Morisaki Y. Synthesis of Twisted Anthracenes: Induction of Twist Chirality by the Planar Chiral [2.2]Paracyclophane. Chem Asian J 2022; 17:e202200418. [PMID: 35603977 DOI: 10.1002/asia.202200418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Indexed: 11/10/2022]
Abstract
Planar chiral [2.2]paracyclophane was employed as chiral scaffolds to twist an anthracene ring by tethering at its 1- and 8positions; thus, twist chirality was induced in the anthracene moiety. The chiroptical properties of the resulting molecule, including circular dichroism (CD) and circularly polarized luminescence (CPL), were found to be derived from the twist chirality. An analogous molecule bearing long alkyl chains was a viscous liquid, and its liquid film exhibited good CD and CPL profiles. The theoretical studies are carried out to determine the origin of these properties in the ground and excited states, which reproduced well the experimental results.
Collapse
Affiliation(s)
- Motoki Tsuchiya
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Ryo Inoue
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Kentaro Tanaka
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Yasuhiro Morisaki
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, Department of Applied Chemistry for Environment, 1 Gakuen Uegahara, 669-1330, Sanda, JAPAN
| |
Collapse
|