1
|
Ikai T, Okuda S, Yashima E. Macromolecular helicity induction and static helicity memory of poly(biphenylylacetylene)s bearing aromatic pendant groups and their use as chiral stationary phases for high-performance liquid chromatography. Chirality 2021; 34:306-316. [PMID: 34839544 DOI: 10.1002/chir.23399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Two novel poly(biphenylylacetylene)s (PBPAs) bearing achiral alkylphenyl groups at the 4'-position of the biphenyl pendant through ester linkers with different sequences were synthesized by the rhodium-catalyzed polymerization of the corresponding monomers. The influence of the alkylphenyl pendants and the ester sequences on the macromolecular helicity induction and subsequent static helicity memory was investigated. In addition, the chiral recognition ability as chiral stationary phases for high-performance liquid chromatography of the helicity-memorized PBPAs was also examined. Both polymers formed almost perfect right- and left-handed helical conformations through noncovalent chiral interactions with enantiomeric alcohols, and their induced macromolecular helicities were completely retained ("memorized") after removal of the helix inducer. A PBPA bearing a 4-n-butylphenoxycarbonyl pendant group with a static helicity memory showed a remarkably high chiral recognition ability toward a wide variety of chiral aromatics, including simple point chiral compounds, axially chiral biaryls, a chiral spiro compound, helicenes, and planar chiral cyclophanes, particularly under the reversed-phase conditions.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shogo Okuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Zou H, Liang WQ, Wu QL, Zhou L, Hou XH, Liu N, Wu ZQ. Inducing enantioselective crystallization with and self-assembly of star-shaped hybrid polymers prepared via "grafting to" strategy. Chirality 2021; 34:61-69. [PMID: 34749440 DOI: 10.1002/chir.23387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
Helical polymers present some interesting and distinctive properties, and one of the most distinguished applications of them is the chiral recognition and resolution of enantiomers. In this work, star-shaped hybrid helical poly (phenyl isocyanide) (PPI) with polyhedral oligomeric silsesquioxanes (POSS) as the core was designed and synthesized by "grafting to" strategy. The homoarm star-shaped hybrid POSS-(PPI)8 was first obtained by the click reaction between azide-modified POSS (POSS-(N3 )8 ) and alkynyl-modified PPI (PPI-Alkynyl). The hybrid POSS-(PPI)8 was with predominated left-handed helical conformation and exhibited excellent ability in the enantioselective crystallization of racemic compounds. In the meantime, heteroarm star-shaped hybrid (PEG)4 -POSS-(PPI)4 was prepared by the click reaction of POSS-(N3 )8 with PPI-Alkynyl and alkynyl-modified poly (ethylene glycol) (PEG-Alkynyl). The hybrid (PEG)4 -POSS-(PPI)4 was amphiphilic, and it could self-assemble to form spherical micelles in aqueous solutions.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Wen-Quan Liang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Qi-Liang Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| |
Collapse
|
3
|
Ikai T, Awata S, Kudo T, Ishidate R, Maeda K, Kanoh S. Chiral stationary phases consisting of π-conjugated polymers bearing glucose-linked biphenyl units: reversible switching of resolution abilities based on a coil-to-helix transition. Polym Chem 2017. [DOI: 10.1039/c7py00804j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have succeeded in developing a novel chiral stationary phase that can reversibly switch resolution abilities based on a coil-to-helix transition in a column.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Seiya Awata
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Tomoya Kudo
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Ryoma Ishidate
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Shigeyoshi Kanoh
- Graduate School of Natural Science and Technology
- Kanazawa University
- Kanazawa 920-1192
- Japan
| |
Collapse
|
4
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Synthesis and Properties of Optically Active Helical Polyethers Bearing Indole or Carbazole Derivatives. Macromol Res 2016. [DOI: 10.1007/s13233-016-4057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Shen J, Okamoto Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chem Rev 2015; 116:1094-138. [DOI: 10.1021/acs.chemrev.5b00317] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Shen
- Polymer
Materials Research Center, Key Laboratory of Superlight Materials
and Surface Technology, Ministry of Education, College of Materials
Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China
| | - Yoshio Okamoto
- Polymer
Materials Research Center, Key Laboratory of Superlight Materials
and Surface Technology, Ministry of Education, College of Materials
Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Izawa K, Akiyama K, Abe H, Togashi Y, Hasegawa T. Inulin-based glycopolymer: Its preparation, lectin-affinity and gellation property. Bioorg Med Chem 2013; 21:2895-902. [DOI: 10.1016/j.bmc.2013.03.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/24/2022]
|
8
|
Yashima E, Iida H, Okamoto Y. Enantiomeric Differentiation by Synthetic Helical Polymers. Top Curr Chem (Cham) 2013; 340:41-72. [DOI: 10.1007/128_2013_439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Miyabe T, Iida H, Ohnishi A, Yashima E. Enantioseparation on poly(phenyl isocyanide)s with macromolecular helicity memory as chiral stationary phases for HPLC. Chem Sci 2012. [DOI: 10.1039/c1sc00708d] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Maeda K, Kuroyanagi K, Sakurai SI, Yamanaka T, Yashima E. Enantioselective Adsorption of Chiral Amines on an Induced Helical Poly(bis(4-carboxyphenoxy)phosphazene): Chiral Filter Effect. Macromolecules 2011. [DOI: 10.1021/ma200411g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Katsuhiro Maeda
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kenji Kuroyanagi
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shin-ichiro Sakurai
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Toshio Yamanaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Tamura K, Miyabe T, Iida H, Yashima E. Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide)s bearing l-alanine pendants immobilized on silica gel by HPLC. Polym Chem 2011. [DOI: 10.1039/c0py00164c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical Polymers: Synthesis, Structures, and Functions. Chem Rev 2009; 109:6102-211. [PMID: 19905011 DOI: 10.1021/cr900162q] [Citation(s) in RCA: 1271] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan, and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan, and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroki Iida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan, and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshio Furusho
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan, and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kanji Nagai
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan, and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
13
|
Kajitani T, Okoshi K, Yashima E. Helix-Sense-Controlled Polymerization of Optically Active Phenyl Isocyanides. Macromolecules 2008. [DOI: 10.1021/ma7022952] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Kajitani
- Yashima Super-structured Helix Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 101 Creation Core Nagoya, 2266-22 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, and Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kento Okoshi
- Yashima Super-structured Helix Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 101 Creation Core Nagoya, 2266-22 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, and Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Yashima Super-structured Helix Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 101 Creation Core Nagoya, 2266-22 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan, and Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Tian G, Lu Y, Novak BM. Helix-Sense Selective Polymerization of Carbodiimides: Building Permanently Optically Active Polymers from Achiral Monomers. J Am Chem Soc 2004; 126:4082-3. [PMID: 15053578 DOI: 10.1021/ja049548m] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The helix-sense selective polymerization of achiral monomers by homochiral catalysts was investigated. Polymerization of chiral carbodiimides (N-(R)-2,6-(dimethylheptyl)-N'-phenylcarbodiimide) by achiral catalysts yields polymers that undergo mutorotation at elevated temperatures, thus illustrating that these chains are formed under kinetic rather than thermodynamic control. Building on this observation, the polymerization of achiral carbodiimides by (S-BINOL)Ti(OiPr)2, I, was studied. Monomers (N-hexyl-N'-(X)carbodiimide, where X = isopropyl (3), hexyl (4) or phenyl (5)), N-methyl-N'-(2-methyl-6-isopropylphenyl)carbodiimide, 6, and N-dodecyl-N'-(1-naphthyl)carbodiimide, 7, were all polymerized with I in good yields (86-95%), and all showed varying degrees of asymmetric induction. Poly-3, -4, and -5 racemized upon heating at elevated temperatures, but poly-6 and poly-7, bearing nonsymmetric phenyl groups, yielded optically active polymers that could not be racemized even at elevated temperatures. Thin films of poly-7 were found to be highly opalescent.
Collapse
Affiliation(s)
- Gonglu Tian
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | | |
Collapse
|
15
|
Yamamoto C, Okamoto Y. Optically Active Polymers for Chiral Separation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2004. [DOI: 10.1246/bcsj.77.227] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|