1
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
2
|
Wong YH, Lee SH. Short Fragmented Peptides from Pardachirus Marmoratus Exhibit Stronger Anticancer Activities in In Silico Residue Replacement and Analyses. Curr Drug Discov Technol 2024; 21:e220224227304. [PMID: 38409702 DOI: 10.2174/0115701638290855240207114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Cancer is a worldwide issue. It has been observed that conventional therapies face many problems, such as side effects and drug resistance. Recent research reportedly used marine-derived products to treat various diseases and explored their potential in treating cancers. OBJECTIVE This study aims to discover short-length anticancer peptides derived from pardaxin 6 through an in silico approach. METHODS Fragmented peptides ranging from 5 to 15 amino acids were derived from the pardaxin 6 parental peptide. These peptides were further replaced with one residue and, along with the original fragmented peptides, were predicted for their SVM scores and physicochemical properties. The top 5 derivative peptides were further examined for their toxicity, hemolytic probability, peptide structures, docking models, and energy scores using various web servers. The trend of in silico analysis outputs across 5 to 15 amino acid fragments was further analyzed. RESULTS Results showed that when the amino acids were increased, SVM scores of the original fragmented peptides were also increased. Designed peptides had increased SVM scores, which was aligned with previous studies where the single residue replacement transformed the non-anticancer peptide into an anticancer agent. Moreover, in vitro studies validated that the designed peptides retained or enhanced anticancer effects against different cancer cell lines. Interestingly, a decreasing trend was observed in those fragmented derivative peptides. CONCLUSION Single residue replacement in fragmented pardaxin 6 was found to produce stronger anticancer agents through in silico predictions. Through bioinformatics tools, fragmented peptides improved the efficiency of marine-derived drugs with higher efficacy and lower hemolytic effects in treating cancers.
Collapse
Affiliation(s)
- Yong Hui Wong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya, 47500, Malaysia
| |
Collapse
|
3
|
Evolving and assembling to pierce through: Evolutionary and structural aspects of antimicrobial peptides. Comput Struct Biotechnol J 2022; 20:2247-2258. [PMID: 35615024 PMCID: PMC9117813 DOI: 10.1016/j.csbj.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The burgeoning menace of antimicrobial resistance across the globe has necessitated investigations into other chemotherapeutic strategies to combat infections. Antimicrobial peptides, or host defense peptides, are a set of promising therapeutic candidates in this regard. Most of them cause membrane permeabilization and are a key component of the innate immune response to pathogenic invasion. It has also been reported that peptide self-assembly is a driving factor governing the microbicidal activity of these peptide candidates. While efforts have been made to develop novel synthetic peptides against various microbes, many clinical trials of such peptides have failed due to toxicity and hemolytic activity to the host. A function-guided rational peptide engineering, based on evolutionary principles, physicochemical properties and activity determinants of AMP activity, is expected to help in targeting specific microbes. Furthermore, it is important to develop a unified understanding of the evolution of AMPs in order to fully appreciate their importance in host defense. This review seeks to explore the evolution of AMPs and the physicochemical determinants of AMP activity. The specific interactions driving AMP self-assembly have also been reviewed, emphasizing implications of this self-assembly on microbicidal and immunomodulatory activity.
Collapse
|
4
|
Miyagawa A, Ohno S, Hattori T, Yamamura H. Antimicrobial activities of amphiphilic cationic polymers and their efficacy of combination with novobiocin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:299-312. [PMID: 34559588 DOI: 10.1080/09205063.2021.1985243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Today, drug-resistant bacteria represent a significant problem worldwide. In fact, bacteria are becoming resistant even to newly developed antibiotics. Therefore, there is an urgent need to develop antibiotics to which bacteria cannot become resistant. In this study, antimicrobial polymers to which bacteria cannot develop resistance were prepared from 6-aminohexyl methacrylamide and N-isopropyl acrylamide. The polymers with molecular weights of the order of 105 showed little antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as low toxicity. On the other hand, polymers with lower molecular weights (of the order of 104) did show antimicrobial activity against S. aureus and E. coli. These polymers were combined with novobiocin to investigate the combined usage effects against E. coli. The combined usage of novobiocin and the low-molecular-weight polymers reduced the minimum inhibitory concentration, which was less than 0.0625 μg/mL against E. coli. This result indicates that the combination is useful for increasing the efficacy of antibiotics and broadening their antimicrobial spectrum. Furthermore, the results showed the possibility that the antimicrobial polymers serve not only as antibiotics to which bacteria have not developed resistance but also as adjuvants for other antibiotics.
Collapse
Affiliation(s)
- Atsushi Miyagawa
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Shinya Ohno
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Tomohiko Hattori
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Hatsuo Yamamura
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| |
Collapse
|
5
|
Dong N, Chou S, Li J, Xue C, Li X, Cheng B, Shan A, Xu L. Short Symmetric-End Antimicrobial Peptides Centered on β-Turn Amino Acids Unit Improve Selectivity and Stability. Front Microbiol 2018; 9:2832. [PMID: 30538681 PMCID: PMC6277555 DOI: 10.3389/fmicb.2018.02832] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are excellent candidates to combat the increasing number of multi- or pan-resistant pathogens worldwide based on their mechanism of action, which is different from that of antibiotics. In this study, we designed short peptides by fusing an α-helix and β-turn sequence-motif in a symmetric-end template to promote the higher cell selectivity, antibacterial activity and salt-resistance of these structures. The results showed that the designed peptides PQ and PP tended to form an α-helical structure upon interacting with a membrane-mimicking environment. They displayed high cell selectivity toward bacterial cells over eukaryotic cells. Their activities were mostly maintained in the presence of different conditions (salts, serum, heat, and pH), which indicated their stability in vivo. Fluorescence spectroscopy and electron microscopy analyses indicated that PP and PQ killed bacterial cells through membrane pore formation, thereby damaging membrane integrity. This study revealed the potential application of these designed peptides as new candidate antimicrobial agents.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xinran Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baojing Cheng
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Li Xu
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
7
|
Xu L, Chou S, Wang J, Shao C, Li W, Zhu X, Shan A. Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides. Amino Acids 2015; 47:2385-97. [PMID: 26088720 DOI: 10.1007/s00726-015-2029-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022]
Abstract
Antimicrobial peptides (AMPs) with amphipathic β-hairpin structures have been demonstrated to possess potent antimicrobial activities and great cell selectivities. However, our understanding of β-hairpin antimicrobial peptides lags behind that of α-helices, mainly because it is difficult for short peptides to form robust β-hairpin structures. Tryptophan zipper (trpzip) peptides are among the most stable β-hairpin peptides known to fold spontaneously without requiring covalent disulfide constraint or metal binding. To develop model β-hairpin AMPs with small size and remarkable stability, a series of amphiphilic linear peptides were designed based on the trpzip motif. The sequence of designed peptides is (WK) n (D) PG(KW) n -NH2 (n = 1, 2, 3, 4, 5), and the antimicrobial activity and membrane interaction mechanism of the peptides were evaluated. The results showed that these peptides readily fold into β-hairpin structures in aqueous and membrane-mimicking environments and exhibit broad-spectrum antimicrobial activities against both gram-positive and gram-negative bacteria. The antibacterial potency of the peptides initially increased and then decreased with increasing chain length. WK3, a 14-residue peptide, displayed excellent antimicrobial activity with minimal hemolytic activity and cytotoxicity, suggesting that it possesses great cell selectivity. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), fluorescence spectroscopy, and flow cytometry indicated that representative peptides WK3 and WK4 exert their activities by permeabilizing the microbial membrane and damaging cell membrane integrity. This study reveals the application potential of the designed peptides as promising antimicrobial agents for the control of infectious diseases, and it also provides new insights into the design and optimization of highly stable β-hairpin AMPs with great antimicrobial activities and cell selectivities.
Collapse
Affiliation(s)
- Lin Xu
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.,Heilongjiang Polytechnic, 5 Xuefu Road, Harbin, 150080, China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Weizhong Li
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xin Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
8
|
Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Sci Rep 2015; 5:9388. [PMID: 25807192 PMCID: PMC5224518 DOI: 10.1038/srep09388] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/20/2015] [Indexed: 11/16/2022] Open
Abstract
Hydrophobic mismatch is a well-recognized principle in the interaction of transmembrane proteins with lipid bilayers. This concept was extended here to amphipathic membranolytic α-helices. Nine peptides with lengths between 14 and 28 amino acids were designed from repeated KIAGKIA motifs, and their helical nature was confirmed by circular dichroism spectroscopy. Biological assays for antimicrobial activity and hemolysis, as well as fluorescence vesicle leakage and solid-state NMR spectroscopy, were used to correlate peptide length with membranolytic activity. These data show that the formation of transmembrane pores is only possible under the condition of hydrophobic matching: the peptides have to be long enough to span the hydrophobic bilayer core to be able to induce vesicle leakage, kill bacteria, and cause hemolysis. By correlating the threshold lengths for biological activity with the biophysical results on model vesicles, the peptides could be utilized as molecular rulers to measure the membrane thickness in different cells.
Collapse
|
9
|
Dong N, Zhu X, Lv YF, Ma QQ, Jiang JG, Shan AS. Cell specificity and molecular mechanism of antibacterial and antitumor activities of carboxyl-terminal RWL-tagged antimicrobial peptides. Amino Acids 2014; 46:2137-54. [DOI: 10.1007/s00726-014-1761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
10
|
Gopal R, Seo CH, Song PI, Park Y. Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino Acids 2012; 44:645-60. [PMID: 22914980 PMCID: PMC3549253 DOI: 10.1007/s00726-012-1388-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/07/2012] [Indexed: 12/19/2022]
Abstract
Previous studies identified lysine- and tryptophan-rich sequences within various cationic antimicrobial peptides. In the present study, we synthesized a series of peptides composed of lysine (K)-tryptophan (W) repeats (KW)n (where n equals 2, 3, 4 or 5) with amidation of the C-terminal to increase cationicity. We found that increases in chain length up to (KW)4 enhanced the peptides’ antibacterial activity; (KW)5 exhibited somewhat less bactericidal activity than (KW)4. Cytotoxicity, measured as lysis of human red blood cells, also increased with increasing chain length. With (KW)5, reduced antibacterial activity and increased cytotoxicity correlated with greater hydrophobicity and self-aggregation in the aqueous environment. The peptides acted by inducing rapid collapse of the bacterial transmembrane potential and induction of membrane permeability. The mode of interaction of the peptides and the phosphate groups of lipopolysaccharide was dependent upon the peptides’ ability to permeate the membrane. Longer peptides [(KW)4 and (KW)5] but not shorter peptides [(KW)2 and (KW)3] strongly bound and partially inserted into negatively charged, anionic lipid bilayers. These longer peptides also induced membrane permeabilization and aggregation of lipid vesicles. The peptides had a disordered structure in aqueous solution, and only (KW)4 and (KW)5 displayed a folded conformation on lipid membranes. Moreover, (KW)4 destroyed and agglutinated bacterial cells, demonstrating its potential as an antimicrobial agent. Collectively, the results show (KW)4 to be the most efficacious peptide in the (KW)n series, exhibiting strong antibacterial activity with little cytotoxicity.
Collapse
Affiliation(s)
- Ramamourthy Gopal
- Research Center for Proteineous Materials, Chosun University, Kwangju, South Korea
| | | | | | | |
Collapse
|
11
|
Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids 2012; 43:2527-36. [PMID: 22699557 DOI: 10.1007/s00726-012-1334-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Typical peptides composed of Phe, Ile, and Arg residues have not been reported, and the effect of the helix-forming unit (HFU) composed of the tripeptide core on biological activity remains unclear. In this study, multimers of the 3-residue HFU were designed to investigate the structure-function relationships. The in vitro biological activities of the peptides were determined. We used synthetic lipid vesicles and intact bacteria to assess the interactions of the peptides with cell membranes. The well-studied peptide melittin was chosen as a control peptide. The results showed that the antimicrobial and hemolytic activities of the peptides increased with the number of HFUs. HFU3 had optimal cell selectivity as determined by the therapeutic index. HFU3 and HFU4 exhibited strong resistance to salts, pH, and heat. CD spectra revealed that the peptides except HFU2 displayed α-helix-rich secondary structures in the presence of SDS or trifluoroethanol (TFE). The peptides interacted weakly with zwitterionic phospholipids (mimicking mammalian membranes) but strongly with negatively charged phospholipids (mimicking bacterial membranes), which corresponds well with the data for the biological activities. There was a correlation between the cell selectivity of the peptides and their high binding affinity with negatively charged phospholipids. Cell membrane permeability experiments suggest that the peptides targeted the cell membrane, and HFU3 showed higher permeabilization of the inner membrane but lower permeabilization of the outer membrane than melittin. These findings provide the new insights to design antimicrobial peptides with antimicrobial potency by trimers.
Collapse
|
12
|
Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich β-hairpin-like antimicrobial peptides. Antimicrob Agents Chemother 2012; 56:2994-3003. [PMID: 22391533 DOI: 10.1128/aac.06327-11] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides with amphipathic β-hairpin-like structures have potent antimicrobial properties and low cytotoxicity. The effect of VR or RV motifs on β-hairpin-like antimicrobial peptides has not been investigated. In this study, a series of β-hairpin-like peptides, Ac-C(VR)(n)(D)PG (RV)(n)C-NH(2) (n = 1, 2, 3, 4, or 5), were synthesized, and the effect of chain length on antimicrobial activity was evaluated. The antimicrobial activity of the peptides initially increased and then decreased with chain length. Longer peptides stimulated the toxicity to mammalian cells. VR3, a 16-mer peptide with seven amino acids in the strand, displayed the highest therapeutic index and represents the optimal chain length. VR3 reduced bacterial counts in the mouse peritoneum and increased the survival rate of mice at 7 days after Salmonella enterica serovar Typhimurium infection in vivo. The circular dichroism (CD) spectra demonstrated that the secondary structure of the peptides was a β-hairpin or β-sheet in the presence of an aqueous and membrane-mimicking environment. VR3 had the same degree of penetration into the outer and inner membranes as melittin. Experiments simulating the membrane environment showed that Trp-containing VRW3 (a VR3 analog) tends to interact preferentially with negatively charged vesicles in comparison to zwitterionic vesicles, which supports the biological activity data. Additionally, VR3 resulted in greater membrane damage than melittin as determined using a flow cytometry-based membrane integrity assay. Collectively, the data for synthetic lipid vesicles and whole bacteria demonstrated that the VR3 peptide killed bacteria via targeting the cell membrane. This assay could be an effective pathway to screen novel candidates for antibiotic development.
Collapse
|
13
|
Polycations. 17. Synthesis and properties of polycationic derivatives of carbohydrates. Carbohydr Res 2009; 344:1620-7. [PMID: 19467534 DOI: 10.1016/j.carres.2009.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/15/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
In our continuing investigation of polycationic salts for purposes of antimicrobial action, ion-channel blocking, and construction of ionic liquids, we have prepared several series of polycationic salts derived from carbohydrate precursors. These salts are currently being investigated for optimal efficacy as antibacterials and antifungals, as well as for other applications. The syntheses of such series of salts are described here along with preliminary antibacterial testing results and a discussion of their properties indicating their potential utility for several purposes.
Collapse
|
14
|
Taira J, Furukawa S, Hatakeyama T, Aoyagi H, Kodama H. Modifications of Hydrophobic Value and Hydrophobic Moment Value of Cationic Model Peptides for Conversion of Peptide–Membrane Interactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Seto GWJ, Marwaha S, Kobewka DM, Lewis RNAH, Separovic F, McElhaney RN. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2787-800. [PMID: 17825246 DOI: 10.1016/j.bbamem.2007.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/06/2007] [Accepted: 07/16/2007] [Indexed: 01/09/2023]
Abstract
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into alpha-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D(2)O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1>aurein 1.2>citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1>aurein 1.2 congruent with citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.
Collapse
Affiliation(s)
- Gordon W J Seto
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 2006; 51:597-603. [PMID: 17145799 PMCID: PMC1797765 DOI: 10.1128/aac.00828-06] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A class of antimicrobial peptides involved in host defense consists of sequences rich in Arg and Trp-R and -W. Analysis of the pharmacophore in these peptides revealed that chains as short as trimers of sequences such as WRW and RWR have antimicrobial activity (M. B. Strom, B. E. Haug, M. L. Skar, W. Stensen, T. Stiberg, and J. S. Svendsen, J. Med. Chem. 46:1567-1570, 2003). To evaluate the effect of chain length on antimicrobial activity, we synthesized a series of peptides containing simple sequence repeats, (RW)n-NH2 (where n equals 1, 2, 3, 4, or 5), and determined their antimicrobial and hemolytic activity. The antimicrobial activity of the peptides increases with chain length, as does the hemolysis of red blood cells. Within the experimental error, longer peptides (n equals 3, 4, or 5) show similar values for the ratio of hemolytic activity to antibacterial activity, or the hemolytic index. The (RW)3 represents the optimal chain length in terms of the efficacy of synthesis and selectivity as evaluated by the hemolytic index. Circular dichroism spectroscopy indicates that these short peptides appear to be unfolded in aqueous solution but acquire structure in the presence of phospholipids. Interaction of the peptides with model lipid vesicles was examined using tryptophan fluorescence. The (RW)n peptides preferentially interact with bilayers containing the negatively charged headgroup phosphatidylglycerol relative to those containing a zwitterionic headgroup, phosphatidylcholine.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|