1
|
Scholes AM, Kershaw Cook LJ, Szczypiński FT, Luzyanin KV, Egleston BD, Greenaway RL, Slater AG. Dynamic and solid-state behaviour of bromoisotrianglimine. Chem Sci 2024; 15:d4sc04207g. [PMID: 39149217 PMCID: PMC11320023 DOI: 10.1039/d4sc04207g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024] Open
Abstract
Solid-state materials formed from discrete imine macrocycles have potential in industrial separations, but dynamic behaviour during both synthesis and crystallisation makes them challenging to exploit. Here, we explore opportunities for structural control by investigating the dynamic nature of a C-5 brominated isotrianglimine in solution and under crystallisation conditions. In solution, the equilibrium between the [3 + 3] and the less reported [2 + 2] macrocycle was investigated, and both macrocycles were fully characterised. Solvent templating during crystallisation was used to form new packing motifs for the [3 + 3] macrocycle and a previously unreported [4 + 4] macrocycle. Finally, chiral self-sorting was used to demonstrate how crystallisation conditions can not only influence packing arrangements but also shift the macrocycle equilibrium to yield new structures. This work thus exemplifies three strategies for exploiting dynamic behaviour to form isotrianglimine materials, and highlights the importance of understanding the dynamic behaviour of a system when designing and crystallising functional materials formed using dynamic covalent chemistry.
Collapse
Affiliation(s)
- Abbie M Scholes
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Laurence J Kershaw Cook
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Filip T Szczypiński
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Konstantin V Luzyanin
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| | - Benjamin D Egleston
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London London UK
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub Imperial College London London UK
| | - Anna G Slater
- Department of Chemistry and Materials Innovation Factory, School of Physical Sciences, University of Liverpool UK
| |
Collapse
|
2
|
Kong Q, Liu LL, Li Z. Synthesis of Calix[4]arene-Based Porous Organic Cages and Their Gas Adsorption. Chemistry 2024; 30:e202400947. [PMID: 38622630 DOI: 10.1002/chem.202400947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Two crystalline large-sized porous organic cages (POCs) based on conical calix[4]arene (C4A) were designed and synthesized. The four-jaw C4A unit tends to follow the face-directed self-assembly law with the planar triangular building blocks such as tris(4-aminophenyl)amine (TAPA) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) to generate a predictable cage with a stoichiometry of [6+8]. The formation of the large cages is confirmed through their relative molecular mass measured using MALDI-TOF/TOF spectra. The protonated molecular ion peaks of C4A-TAPA and C4A-TAPB were observed at m/z 5109.0 (calculated for C336H240O24N32: m/z 5109.7) and m/z 5594.2 (calculated for C384H264O24N24: m/z 5598.4). C4A-POCs exhibit I-type N2 adsorption-desorption isotherms with the BET surface areas of 1444.9 m2 ⋅ g-1 and 1014.6 m2 ⋅ g-1. The CO2 uptakes at 273 K are 62.1 cm3 ⋅ g-1 and 52.4 cm3 ⋅ g-1 at a pressure of 100 KPa. The saturated iodine vapor static uptakes at 348 K are 3.9 g ⋅ g-1 and 3.5 g ⋅ g-1. The adsorption capacity of C4A-TAPA for SO2 reaches to 124.4 cm3 ⋅ g-1 at 298 K and 1.3 bar. Additionally, the adsorption capacities of C4A-TAPA for C2H2, C2H4, and C2H6 were evaluated.
Collapse
Affiliation(s)
- Qidi Kong
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Zhongyue Li
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
3
|
De La Torre P, An L, Chang CJ. Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302122. [PMID: 37144618 DOI: 10.1002/adma.202302122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Indexed: 05/06/2023]
Abstract
The catalytic reduction of carbon dioxide (CO2 ) using sustainable energy inputs is a promising strategy for upcycling of atmospheric carbon into value-added chemical products. This goal has inspired the development of catalysts for selective and efficient CO2 conversion using electrochemical and photochemical methods. Among the diverse array of catalyst systems designed for this purpose, 2D and 3D platforms that feature porosity offer the potential to combine carbon capture and conversion. Included are covalent organic frameworks (COFs), metal-organic frameworks (MOFs), porous molecular cages, and other hybrid molecular materials developed to increase active site exposure, stability, and water compatibility while maintaining precise molecular tunability. This mini-review showcases catalysts for the CO2 reduction reaction (CO2 RR) that incorporate well-defined molecular elements integrated into porous materials structures. Selected examples provide insights into how different approaches to this overall design strategy can augment their electrocatalytic and/or photocatalytic CO2 reduction activity.
Collapse
Affiliation(s)
- Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
| |
Collapse
|
4
|
Kearsey RJ, Tarzia A, Little MA, Brand MC, Clowes R, Jelfs KE, Cooper AI, Greenaway RL. Competitive aminal formation during the synthesis of a highly soluble, isopropyl-decorated imine porous organic cage. Chem Commun (Camb) 2023; 59:3731-3734. [PMID: 36896582 PMCID: PMC10035065 DOI: 10.1039/d3cc00072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The synthesis of a new porous organic cage decorated with isopropyl moieties (CC21) was achieved from the reaction of triformylbenzene and an isopropyl functionalised diamine. Unlike structurally analogous porous organic cages, its synthesis proved challenging due to competitive aminal formation, rationalised using control experiments and computational modelling. The use of an additional amine was found to increase conversion to the desired cage.
Collapse
Affiliation(s)
- Rachel J Kearsey
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK.
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - Michael C Brand
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - Rob Clowes
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK.
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
5
|
Rimsza J, Nenoff TM. Design of Enhanced Porous Organic Cage Solubility in Type 2 Porous Liquids. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202209396. [PMID: 36538739 PMCID: PMC9868116 DOI: 10.1002/anie.202209396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 12/24/2022]
Abstract
We present a supramolecular approach to catalyzing photochemical CO2 reduction through second-sphere porosity and charge effects. An iron porphyrin box (PB) bearing 24 cationic groups, FePB-2(P), was made via post-synthetic modification of an alkyne-functionalized supramolecular synthon. FePB-2(P) promotes the photochemical CO2 reduction reaction (CO2 RR) with 97 % selectivity for CO product, achieving turnover numbers (TON) exceeding 7000 and initial turnover frequencies (TOFmax ) reaching 1400 min-1 . The cooperativity between porosity and charge results in a 41-fold increase in activity relative to the parent Fe tetraphenylporphyrin (FeTPP) catalyst, which is far greater than analogs that augment catalysis through porosity (FePB-3(N), 4-fold increase) or charge (Fe p-tetramethylanilinium porphyrin (Fe-p-TMA), 6-fold increase) alone. This work establishes that synergistic pendants in the secondary coordination sphere can be leveraged as a design element to augment catalysis at primary active sites within confined spaces.
Collapse
Affiliation(s)
- Lun An
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Peter T Smith
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Mina R Narouz
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
| |
Collapse
|
7
|
Brand MC, Rankin N, Cooper AI, Greenaway RL. Photoresponsive Type III Porous Liquids. Chemistry 2023; 29:e202202848. [PMID: 36250279 PMCID: PMC10108065 DOI: 10.1002/chem.202202848] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Porous materials are the subject of extensive research because of potential applications in areas such as gas adsorption and molecular separations. Until recently, most porous materials were solids, but there is now an emerging class of materials known as porous liquids. The incorporation of intrinsic porosity or cavities in a liquid can result in free-flowing materials that are capable of gas uptakes that are significantly higher than conventional non-porous liquids. A handful of porous liquids have also been investigated for gas separations. Until now, the release of gas from porous liquids has relied on molecular displacement (e.g., by adding small solvent molecules), pressure or temperature swings, or sonication. Here, we explore a new method of gas release which involves photoisomerisable porous liquids comprising a photoresponsive MOF dispersed in an ionic liquid. This results in the selective uptake of CO2 over CH4 and allows gas release to be controlled by using UV light.
Collapse
Affiliation(s)
- Michael C. Brand
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Nicola Rankin
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Andrew I. Cooper
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Rebecca L. Greenaway
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
8
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO
2
Reduction**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lun An
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Patricia De La Torre
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Peter T. Smith
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Mina R. Narouz
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
- Department of Molecular and Cell Biology University of California, Berkeley 94720-1460 Berkeley, CA USA
| |
Collapse
|
9
|
Li A, Bueno-Perez R, Fairen-Jimenez D. Identifying porous cage subsets in the Cambridge Structural Database using topological data analysis. Chem Sci 2022; 13:13507-13523. [PMID: 36507160 PMCID: PMC9682994 DOI: 10.1039/d2sc03171j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
Abstract
As rationally designable materials, the variety and number of synthesised metal-organic cages (MOCs) and organic cages (OCs) are expected to grow in the Cambridge Structural Database (CSD). In this regard, two of the most important questions are, which structures are already present in the CSD and how can they be identified? Here, we present a cage mining methodology based on topological data analysis and a combination of supervised and unsupervised learning that led to the derivation of - to the best of our knowledge - the first and only MOC dataset of 1839 structures and the largest experimental OC dataset of 7736 cages, as of March 2022. We illustrate the use of such datasets with a high-throughput screening of MOCs and OCs for xenon/krypton separation, important gases in multiple industries, including healthcare.
Collapse
Affiliation(s)
- Aurelia Li
- The Adsorption & Advanced Materials Laboratory (AML), Department of Chemical Engineering & Biotechnology, University of CambridgePhilippa Fawcett DriveCambridge CB3 0ASUK
| | - Rocio Bueno-Perez
- The Adsorption & Advanced Materials Laboratory (AML), Department of Chemical Engineering & Biotechnology, University of CambridgePhilippa Fawcett DriveCambridge CB3 0ASUK
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (AML), Department of Chemical Engineering & Biotechnology, University of CambridgePhilippa Fawcett DriveCambridge CB3 0ASUK
| |
Collapse
|
10
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
11
|
Mahdavi H, Smith SJD, Mulet X, Hill MR. Practical considerations in the design and use of porous liquids. MATERIALS HORIZONS 2022; 9:1577-1601. [PMID: 35373794 DOI: 10.1039/d1mh01616d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The possibility of creating well-controlled empty space within liquids is conceptually intriguing, and from an application perspective, full of potential. Since the concept of porous liquids (PLs) arose several years ago, research efforts in this field have intensified. This review highlights the design, synthesis, and applicability of PLs through a thorough examination of the current state-of-the-art. Following a detailed examination of the fundamentals of PLs, we examine the different synthetic approaches proposed to date, discuss the nature of PLs, and their pathway from the laboratory to practical application. Finally, possible challenges and opportunities are outlined.
Collapse
Affiliation(s)
| | - Stefan J D Smith
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Xavier Mulet
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
12
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
13
|
Hu D, Zhang J, Liu M. Recent advances in the applications of porous organic cages. Chem Commun (Camb) 2022; 58:11333-11346. [DOI: 10.1039/d2cc03692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous organic cages (POCs) have emerged as a new sub-class of porous materials that stand out by virtue of their tunability, modularity, and processibility. Similar to other porous materials such...
Collapse
|
14
|
Borne I, He D, DeWitt SJA, Liu M, Cooper AI, Jones CW, Lively RP. Polymeric Fiber Sorbents Embedded with Porous Organic Cages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47118-47126. [PMID: 34570486 DOI: 10.1021/acsami.1c12002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synthesis and functionalization of porous organic cages (POCs) for separation have attracted growing interest over the past decade. However, the potential of solid-phase POCs for practical, large-scale separations will require incorporation into appropriate gas-solid or liquid-solid contactors. Contactors with more effective mass transfer properties and lower pressure drops than pelletized systems are preferred. Here, we prepared and characterized fiber sorbents with POCs throughout a cellulose acetate (CA) polymer matrix, which were then deployed in model separations. The POC CC3 was shown to be stable after exposure to spinning solvents, as confirmed by NMR, powder X-ray diffraction, and gas sorption experiments. CC3-CA fibers were spun using the dry-jet wet-quench spinning method. Spun fibers retained the adsorptive properties of CC3 powders, as confirmed by CO2 and N2 physisorption and TGA, reaching upward of 60 wt % adsorbent loading, whereas the pelletized CC3 counterparts suffered significant losses in textural properties. The separation capabilities of the CC3-CA fibers are tested with both simulated postcombustion flue gas and with Xe/Kr mixtures. Fixed bed breakthrough experiments performed on fibers samples show that CC3 embedded in polymeric fibers can effectively perform these proof-of-concept gas separations. The development of fiber sorbents embedded with POCs provides an alternative to traditional pelletization for the incorporation of these materials into adsorptive separation systems.
Collapse
Affiliation(s)
- Isaiah Borne
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Donglin He
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Stephen J A DeWitt
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Liu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Christopher W Jones
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P Lively
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Akine S, Miyashita M, Nabeshima T. Enhancement of Alkali Metal Ion Recognition by Metalation of a Tris(saloph) Cryptand Having Benzene Rings at the Bridgeheads. Inorg Chem 2021; 60:12961-12971. [PMID: 34310880 DOI: 10.1021/acs.inorgchem.1c01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cryptand derivative, H6L, which has three H2saloph arms connected by two benzene ring bridgeheads, was synthesized and converted into the trinuclear metallocryptand, LNi3. The nonmetalated host, H6L, was found to bind to alkali metal ions (Na+, K+, Rb+, Cs+; logKa = 3.37-6.67) in its well-defined cavity in DMSO/chloroform (1:9). The binding affinity was enhanced by 1-2 orders of magnitude upon the conversion into the metallocryptand, LNi3, which can be explained by the more polarized phenoxo groups in the [Ni(saloph)] arms. The guest binding affinity of Na+ < K+ < Rb+ ≈ Cs+ was clearly demonstrated by the 1H NMR competition experiments. The DFT calculations suggested that the Rb+ ion most suitably fit into the benzene-benzene spacing with a cation-π interaction and that only the largest Cs+ ion can almost equally interact with all six phenoxo oxygen donor atoms. The metallocryptand, LNi3, also showed a strong binding affinity to Ag+ by taking advantage of cation-π interactions, which was confirmed by spectroscopic titrations and crystallographic analysis as well as DFT calculations. Thus, the well-defined three-dimensional cavity of LNi3 was found to be suitable for strong binding with alkali metal ions as well as Ag+.
Collapse
Affiliation(s)
- Shigehisa Akine
- Graduate School of Natural Science and Technology/Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masato Miyashita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
16
|
Zou YQ, Zhang D, Ronson TK, Tarzia A, Lu Z, Jelfs KE, Nitschke JR. Sterics and Hydrogen Bonding Control Stereochemistry and Self-Sorting in BINOL-Based Assemblies. J Am Chem Soc 2021; 143:9009-9015. [PMID: 34124891 PMCID: PMC8227477 DOI: 10.1021/jacs.1c05172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we demonstrate how the hydrogen-bonding ability of a BINOL-based dialdehyde subcomponent dictated the stereochemical outcome of its subsequent self-assembly into one diastereomeric helicate form when bearing free hydroxy groups, and another in the case of its methylated congener. The presence of methyl groups also altered the self-sorting behavior when mixed with another, short linear dialdehyde subcomponent, switching the outcome of the system from narcissistic to integrative self-sorting. In all cases, the axial chirality of the BINOL building block also dictated helicate metal center handedness during stereospecific self-assembly. A new family of stereochemically pure heteroleptic helicates were thus prepared using the new knowledge gained. We also found that switching from FeII to ZnII, or the incorporation of a longer linear ligand, favored heteroleptic structure formation.
Collapse
Affiliation(s)
- You-Quan Zou
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dawei Zhang
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, United Kingdom
| | - Zifei Lu
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Basavarajappa A, Ambhore MD, Anand VG. Three dimensional isophlorinoid tetrapodal molecular cage. Chem Commun (Camb) 2021; 57:4299-4302. [PMID: 33913986 DOI: 10.1039/d1cc01002f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Steric hindrance induced by thiophene molecules in predesigned precursors favors the exclusive formation of a three dimensional (3D) π-conjugated cage and quasi-cage like molecules instead of a porphyrinoid macrocycle. Herein we report the synthesis of a tetrapod 3D fully π-conjugated molecular cage using a simple acid catalysed reaction. The X-Ray crystallography analysis confirmed the tetrapod cage structure and intermediates, which resemble three-fourths or half of the cage structures.
Collapse
Affiliation(s)
- Ashokkumar Basavarajappa
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India.
| | - Madan D Ambhore
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India.
| | - Venkataramanarao G Anand
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India.
| |
Collapse
|
18
|
The Ionic Organic Cage: An Effective and Recyclable Testbed for Catalytic CO2 Transformation. Catalysts 2021. [DOI: 10.3390/catal11030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porous organic cages (POC) are a class of relatively new molecular porous materials, whose concept was raised in 2009 by Cooper’s group and has rarely been directly used in the area of organic catalysis. In this contribution, a novel ionic quasi-porous organic cage (denoted as Iq-POC), a quaternary phosphonium salt, was easily synthesized through dynamic covalent chemistry and a subsequent nucleophilic addition reaction. Iq-POC was applied as an effective nucleophilic catalyst for the cycloaddition reaction of CO2 and epoxides. Owing to the combined effect of the relatively large molecular weight (compared with PPh3+I−) and the strong polarity of Iq-POC, the molecular catalyst Iq-POC displayed favorable heterogeneous nature (i.e., insolubility) in this catalytic system. Therefore, the Iq-POC catalyst could be easily separated and recycled by simple centrifugation method, and the catalyst could be reused five times without obvious loss of activity. The molecular weight augmentation route in this study (from PPh3+I− to Iq-POC) provided us a “cage strategy” of designing separable and recyclable molecular catalysts.
Collapse
|
19
|
Wang Z, Reddy CB, Zhou X, Ibrahim JJ, Yang Y. Phosphine-Built-in Porous Organic Cage for Stabilization and Boosting the Catalytic Performance of Palladium Nanoparticles in Cross-Coupling of Aryl Halides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53141-53149. [PMID: 33175493 DOI: 10.1021/acsami.0c16765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Herein, we report first a novel phosphine-containing porous organic cage (PPOC) from a [2 + 3] self-assembly of triphenyl phosphine-based trialdehyde and (S,S)-1,2-diaminocyclohexane via dynamic imine chemistry, which was employed as a porous material for the controlled growth of palladium nanoparticles (NPs) due to the strong affinity of Pd to the phosphine ligand based on the principle of hard and soft acids and bases. Comprehensive characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, NMR, and X-ray absorption spectroscopy reveal that ultrafine Pd NPs with narrow size distribution (1.7 ± 0.3 nm) and enhanced surface electronic density via a strong interaction between NPs and phosphine were homogeneously dispersed in the PPOC. The resultant catalyst Pd@PPOC exhibits remarkably superior catalytic activities for various cross-coupling reactions of aryl halides, for example, Sonogashira, Suzuki, Heck, and carbonylation. The catalytic activity of Pd@PPOC outperforms the state-of-the-art Pd complexes and other Pd NPs supported on N-containing porous cages under identical conditions, owing to the enhanced surface electronic density of Pd NPs and their high stability and dispersibility in solution. More importantly, Pd@PPOC is highly stable and easily recycled and reused without loss of their catalytic activity. This work provides a new functional POC with extended potentials in catalysis and material science.
Collapse
Affiliation(s)
- Zhaozhan Wang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - C Bal Reddy
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xin Zhou
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jessica Juweriah Ibrahim
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
20
|
Affiliation(s)
- Chuanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yong Zuo
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yu-Quan Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
21
|
Simple synthesis of magnetic porous organic cages for adsorption of triphenylmethane dyes in aquatic products. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Egleston BD, Brand MC, Greenwell F, Briggs ME, James SL, Cooper AI, Crawford DE, Greenaway RL. Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE). Chem Sci 2020; 11:6582-6589. [PMID: 32874520 PMCID: PMC7448373 DOI: 10.1039/d0sc01858a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/10/2020] [Indexed: 11/21/2022] Open
Abstract
The continuous and scalable synthesis of a porous organic cage (CC3), obtained through a 10-component imine polycondensation between triformylbenzene and a vicinal diamine, was achieved using twin screw extrusion (TSE). Compared to both batch and flow syntheses, the use of TSE enabled the large scale synthesis of CC3 using minimal solvent and in short reaction times, with liquid-assisted grinding (LAG) also promoting window-to-window crystal packing to form a 3-D diamondoid pore network in the solid state. A new kinetically trapped [3+5] product was also observed alongside the formation of the targeted [4+6] cage species. Post-synthetic purification by Soxhlet extraction of the as-extruded 'technical grade' mixture of CC3 and [3+5] species rendered the material porous.
Collapse
Affiliation(s)
- Benjamin D Egleston
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool , L7 3NY , UK
| | - Michael C Brand
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool , L7 3NY , UK
| | - Francesca Greenwell
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool , L7 3NY , UK
| | - Michael E Briggs
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool , L7 3NY , UK
| | - Stuart L James
- School of Chemistry and Chemical Engineering , Queen's University Belfast , 39-123 Stranmillis Road , Belfast , Northern Ireland BT9 5AG , UK
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool , L7 3NY , UK
| | - Deborah E Crawford
- School of Chemistry and Biosciences , University of Bradford , Richmond Road , Bradford , BD7 1DP , UK .
| | - Rebecca L Greenaway
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool , L7 3NY , UK.,Department of Chemistry , Imperial College London , White City Campus, Wood Lane , London , W12 0BZ , UK .
| |
Collapse
|
23
|
Greenaway RL, Santolini V, Szczypiński FT, Bennison MJ, Little MA, Marsh A, Jelfs KE, Cooper AI. Organic Cage Dumbbells. Chemistry 2020; 26:3718-3722. [PMID: 32011048 DOI: 10.1002/chem.201905623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 01/22/2023]
Abstract
Molecular dumbbells with organic cage capping units were synthesised via a multi-component imine condensation between a tri-topic amine and di- and tetra-topic aldehydes. This is an example of self-sorting, which can be rationalised by computational modelling.
Collapse
Affiliation(s)
- Rebecca L Greenaway
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Valentina Santolini
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Filip T Szczypiński
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Michael J Bennison
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Andrew Marsh
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| |
Collapse
|
24
|
Feng GF, Geng J, Feng FD, Huang W. Solvent-controlled self-assembly of tetrapodal [4 + 4] phosphate organic molecular cage. Sci Rep 2020; 10:4712. [PMID: 32170278 PMCID: PMC7070053 DOI: 10.1038/s41598-020-61813-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Two flexible subcomponents, namely tris(4-formylphenyl)phosphate and tris(2-aminoethyl)amine, are assembled into a tetrapodal [4 + 4] cage depending on the solvent effect. Single-crystal structure analysis reveals that the caivity is surrounded by four phosphate uints. Good selectivity of CO2 adsorption over CH4 is demonstrated by the gas adsorption experiment.
Collapse
Affiliation(s)
- Gen-Feng Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province, 210093, P.R. China
| | - Jiao Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province, 210093, P.R. China
| | - Fan-Da Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province, 210093, P.R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province, 210093, P.R. China. .,Shenzhen Research Institute of Nanjing University, Shenzhen, Guangdong Province, 518057, P.R. China.
| |
Collapse
|
25
|
Abstract
Structurally divergent molecules containing bulky substituents tend to produce porous materials via frustrated packing. Two rigid tetrahedral cores, tetraphenylmethane and 1,3,5,7-tetraphenyladamantane, grafted peripherally with four (trimethylsilyl)ethynyl moieties, were found to have only isolated voids in their crystal structures. Hence, they were modified into tecton-like entities, tetrakis(4-(iodoethynyl)phenyl)methane [I4TEPM] and 1,3,5,7-tetrakis(4-(iodoethynyl)phenyl)adamantane [I4TEPA], in order to deliberately use the motif-forming characteristics of iodoethynyl units to enhance crystal porosity. I4TEPM not only holds increased free volume compared to its precursor, but also forms one-dimensional channels. Furthermore, it readily co-crystallizes with Lewis basic solvents to afford two-component porous crystals.
Collapse
|
26
|
Jiang D, Deng R, Li G, Zheng G, Guo H. Constructing an ultra-adsorbent based on the porous organic molecules of noria for the highly efficient adsorption of cationic dyes. RSC Adv 2020; 10:6185-6191. [PMID: 35495996 PMCID: PMC9049634 DOI: 10.1039/c9ra08490h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022] Open
Abstract
A novel Noria-POP-1 material has been successfully synthesized by the simple polymerization of the porous organic molecules of noria and aryl diamines. Noria-POP-1 displayed excellent adsorption capacity for cationic dyes from water with selective removal ability. The adsorption experiments show that Noria-POP-1 displays a remarkable capability to selectively adsorb and separate methylene blue with an adsorption capacity of 2434 mg g−1, which is the highest value obtained so far for porous organic polymers. A novel Noria-POP-1 material has been successfully synthesized by simply polymerization of Noria and aryl diamines. Noria-POP-1 displays a remarkable capability to selectively absorb and separate methylene blue, which is 2434 mg g−1.![]()
Collapse
Affiliation(s)
- Danyong Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ruiping Deng
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization
- China
| | - Gang Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Guoli Zheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Huadong Guo
- Department of Chemistry
- Changchun Normal University
- Changchun
- P. R. China
| |
Collapse
|
27
|
From Concept to Crystals via Prediction: Multi‐Component Organic Cage Pots by Social Self‐Sorting. Angew Chem Int Ed Engl 2019; 58:16275-16281. [DOI: 10.1002/anie.201909237] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Indexed: 12/11/2022]
|
28
|
Greenaway RL, Santolini V, Pulido A, Little MA, Alston BM, Briggs ME, Day GM, Cooper AI, Jelfs KE. From Concept to Crystals via Prediction: Multi‐Component Organic Cage Pots by Social Self‐Sorting. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rebecca L. Greenaway
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Valentina Santolini
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - Angeles Pulido
- School of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ UK
- Current address: The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Marc A. Little
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Ben M. Alston
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Michael E. Briggs
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Graeme M. Day
- School of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ UK
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Kim E. Jelfs
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
29
|
Wei Y, Luo M, Zhang G, Lei J, Xie LH, Huang W. A convenient one-pot nanosynthesis of a C(sp 2)-C(sp 3)-linked 3D grid via an 'A 2 + B 3' approach. Org Biomol Chem 2019; 17:6574-6579. [PMID: 31237308 DOI: 10.1039/c9ob00754g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fluorene-based 3D-grid-FTPA was synthesised with a total yield of 55% via the one-pot formation of six C(sp2)-C(sp3) bonds through a BF3·Et2O-mediated Friedel-Crafts reaction of A2-type bifluorene tertiary alcohol (BIOH) and two B3-type triphenylamines. At the same time, Un-grid-FTPA (2.7%) and 2D-grid-FTPA (5.6%) were obtained as by-products from this synthesis method. In addition, the effect of stereoisomers of BIOH was evaluated to demonstrate that Rac-BIOH is a better A2-type building block to prepare 3D-grid-FTPA in a relatively high yield. Furthermore, 3D-grid-FTPA showed excellent chemical, thermal, and photo-stabilities.
Collapse
Affiliation(s)
- Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Mengcheng Luo
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Guangwei Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Jiaqi Lei
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Ling-Hai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China.
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China. and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| |
Collapse
|
30
|
Teng B, Little MA, Hasell T, Chong SY, Jelfs KE, Clowes R, Briggs M, Cooper AI. Synthesis of a Large, Shape-Flexible, Solvatomorphic Porous Organic Cage. CRYSTAL GROWTH & DESIGN 2019; 19:3647-3651. [PMID: 31303868 PMCID: PMC6614879 DOI: 10.1021/acs.cgd.8b01761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/22/2019] [Indexed: 06/10/2023]
Abstract
Porous organic cages have emerged over the last 10 years as a subclass of functional microporous materials. However, among all of the organic cages reported, large multicomponent organic cages with 20 components or more are still rare. Here, we present an [8 + 12] porous organic imine cage, CC20, which has an apparent surface area up to 1752 m2 g-1, depending on the crystallization and activation conditions. The cage is solvatomorphic and displays distinct geometrical cage structures, caused by crystal-packing effects, in its crystal structures. This indicates that larger cages can display a certain range of shape flexibility in the solid state, while remaining shape persistent and porous.
Collapse
Affiliation(s)
- Baiyang Teng
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Marc A. Little
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Tom Hasell
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Samantha Y. Chong
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Kim E. Jelfs
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Rob Clowes
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Michael
E. Briggs
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
31
|
Bavykina A, Cadiau A, Gascon J. Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Bera S, Dey K, Pal TK, Halder A, Tothadi S, Karak S, Addicoat M, Banerjee R. Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angew Chem Int Ed Engl 2019; 58:4243-4247. [DOI: 10.1002/anie.201813773] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Saibal Bera
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Kaushik Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur Campus Mohanpur 741246 India
| | - Tapan K. Pal
- Physical/Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Arjun Halder
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Srinu Tothadi
- Physical/Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Suvendu Karak
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Matthew Addicoat
- School of Science and TechnologyNottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Rahul Banerjee
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur Campus Mohanpur 741246 India
| |
Collapse
|
33
|
Bera S, Dey K, Pal TK, Halder A, Tothadi S, Karak S, Addicoat M, Banerjee R. Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saibal Bera
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Kaushik Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur Campus Mohanpur 741246 India
| | - Tapan K. Pal
- Physical/Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Arjun Halder
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Srinu Tothadi
- Physical/Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Suvendu Karak
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Matthew Addicoat
- School of Science and TechnologyNottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Rahul Banerjee
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur Campus Mohanpur 741246 India
| |
Collapse
|
34
|
Gupta M, Tomar K, Pandey SK, Bharadwaj PK. Weak and Reversible Binding of Alkali Metal Ions (Na +/K +) by an Aza‐Oxa Cryptand. ChemistrySelect 2019. [DOI: 10.1002/slct.201803353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mayank Gupta
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Kapil Tomar
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sarvesh K. Pandey
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Parimal K. Bharadwaj
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
35
|
Akine S, Miyashita M, Nabeshima T. A Closed Metallomolecular Cage that can Open its Aperture by Disulfide Exchange. Chemistry 2019; 25:1432-1435. [DOI: 10.1002/chem.201805359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Shigehisa Akine
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI); Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Masato Miyashita
- Faculty of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
36
|
Lucero J, Osuna C, Crawford JM, Carreon MA. Microwave-assisted synthesis of porous organic cages CC3 and CC2. CrystEngComm 2019. [DOI: 10.1039/c9ce00880b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The microwave synthesis of two prototypical porous organic cages, denoted as CC3 and CC2 is demonstrated.
Collapse
Affiliation(s)
- Jolie Lucero
- Department of Chemical and Biological Engineering
- Colorado School of Mines
- Golden
- USA
| | - Carla Osuna
- Department of Chemical and Biological Engineering
- Colorado School of Mines
- Golden
- USA
| | - James M. Crawford
- Department of Chemical and Biological Engineering
- Colorado School of Mines
- Golden
- USA
| | - Moises A. Carreon
- Department of Chemical and Biological Engineering
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
37
|
Wang F, Sikma E, Duan Z, Sarma T, Lei C, Zhang Z, Humphrey SM, Sessler JL. Shape-persistent pyrrole-based covalent organic cages: synthesis, structure and selective gas adsorption properties. Chem Commun (Camb) 2019; 55:6185-6188. [PMID: 31080980 DOI: 10.1039/c9cc02490e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two cryptand-like, shape persistent [2+3] imine cages (1 and 2) derived from oligopyrrolic precursors (diformyl dipyrrylpyridine 3 and diformyl bipyrrole 4) were prepared. These cages contain open cavities as inferred from solid state structural analyses and act as selective CO2 gas adsorbing materials in the solid state.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sturluson A, Huynh MT, York AHP, Simon CM. Eigencages: Learning a Latent Space of Porous Cage Molecules. ACS CENTRAL SCIENCE 2018; 4:1663-1676. [PMID: 30648150 PMCID: PMC6311689 DOI: 10.1021/acscentsci.8b00638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 05/22/2023]
Abstract
Porous organic cage molecules harbor nanosized cavities that can selectively adsorb gas molecules, lending them applications in separations and sensing. The geometry of the cavity strongly influences their adsorptive selectivity. For comparing cages and predicting their adsorption properties, we embed/encode a set of 74 porous organic cage molecules into a low-dimensional, latent "cage space" on the basis of their intrinsic porosity. We first computationally scan each cage to generate a three-dimensional (3D) image of its porosity. Leveraging the singular value decomposition, in an unsupervised manner, we then learn across all cages an approximate, lower-dimensional subspace in which the 3D porosity images congregate. The "eigencages" are the set of orthogonal, characteristic 3D porosity images that span this lower-dimensional subspace, ordered in terms of importance. A latent representation/encoding of each cage follows by approximately expressing it as a combination of the eigencages. We show that the learned encoding captures salient features of the cavities of porous cages and is predictive of properties of the cages that arise from cavity shape. Our methods could be applied to learn latent representations of cavities within other classes of porous materials and of shapes of molecules in general.
Collapse
|
39
|
Berardo E, Turcani L, Miklitz M, Jelfs KE. An evolutionary algorithm for the discovery of porous organic cages. Chem Sci 2018; 9:8513-8527. [PMID: 30568775 PMCID: PMC6251339 DOI: 10.1039/c8sc03560a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
The chemical and structural space of possible molecular materials is enormous, as they can, in principle, be built from any combination of organic building blocks. Here we have developed an evolutionary algorithm (EA) that can assist in the efficient exploration of chemical space for molecular materials, helping to guide synthesis to materials with promising applications. We demonstrate the utility of our EA to porous organic cages, predicting both promising targets and identifying the chemical features that emerge as important for a cage to be shape persistent or to adopt a particular cavity size. We identify that shape persistent cages require a low percentage of rotatable bonds in their precursors (<20%) and that the higher topicity building block in particular should use double bonds for rigidity. We can use the EA to explore what size ranges for precursors are required for achieving a given pore size in a cage and show that 16 Å pores, which are absent in the literature, should be synthetically achievable. Our EA implementation is adaptable and easily extendable, not only to target specific properties of porous organic cages, such as optimal encapsulants or molecular separation materials, but also to any easily calculable property of other molecular materials.
Collapse
Affiliation(s)
- Enrico Berardo
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK . ; Tel: +44 (0)207 594 3438
| | - Lukas Turcani
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK . ; Tel: +44 (0)207 594 3438
| | - Marcin Miklitz
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK . ; Tel: +44 (0)207 594 3438
| | - Kim E Jelfs
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK . ; Tel: +44 (0)207 594 3438
| |
Collapse
|
40
|
Turcani L, Berardo E, Jelfs KE. stk: A python toolkit for supramolecular assembly. J Comput Chem 2018; 39:1931-1942. [PMID: 30247770 PMCID: PMC6585955 DOI: 10.1002/jcc.25377] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/08/2023]
Abstract
A tool for the automated assembly, molecular optimization and property calculation of supramolecular materials is presented. stk is a modular, extensible and open-source Python library that provides a simple Python API and integration with third party computational codes. stk currently supports the construction of linear polymers, small linear oligomers, organic cages in multiple topologies and covalent organic frameworks (COFs) in multiple framework topologies, but is designed to be easy to extend to new, unrelated, supramolecules or new topologies. Extension to metal-organic frameworks (MOFs), metallocycles or supramolecules, such as catenanes, would be straightforward. Through integration with third party codes, stk offers the user the opportunity to explore the potential energy landscape of the assembled supramolecule and then calculate the supramolecule's structural features and properties. stk provides support for high-throughput screening of large batches of supramolecules at a time. The source code of the program can be found at https://github.com/supramolecular-toolkit/stk. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lukas Turcani
- Department of ChemistryImperial College LondonSouth KensingtonSW7 2AZLondon
| | - Enrico Berardo
- Department of ChemistryImperial College LondonSouth KensingtonSW7 2AZLondon
| | - Kim E. Jelfs
- Department of ChemistryImperial College LondonSouth KensingtonSW7 2AZLondon
| |
Collapse
|
41
|
Day GM, Cooper AI. Energy-Structure-Function Maps: Cartography for Materials Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704944. [PMID: 29205536 DOI: 10.1002/adma.201704944] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Some of the most successful approaches to structural design in materials chemistry have exploited strong directional bonds, whose geometric reliability lends predictability to solid-state assembly. For example, metal-organic frameworks are an important design platform in materials chemistry. By contrast, the structure of molecular crystals is defined by a balance of weaker intermolecular forces, and small changes to the molecular building blocks can lead to large changes in crystal packing. Hence, empirical rules are inherently less reliable for engineering the structures of molecular solids. Energy-structure-function (ESF) maps are a new approach for the discovery of functional organic crystals. These maps fuse crystal-structure prediction with the computation of physical properties to allow researchers to choose the most promising molecule for a given application, prior to its synthesis. ESF maps were used recently to discover a highly porous molecular crystal that has a high methane deliverable capacity and the lowest density molecular crystal reported to date (r = 0.41 g cm-3 , SABET = 3425 m2 g-1 ). Progress in this field is reviewed, with emphasis on the future opportunities and challenges for a design strategy based on computed ESF maps.
Collapse
Affiliation(s)
- Graeme M Day
- Computational Systems Chemistry, School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, Leverhulme Centre for Functional Materials Design, 51 Oxford Street, Liverpool, L7 3NY, UK
| |
Collapse
|
42
|
Hashim MI, Le HTM, Chen TH, Chen YS, Daugulis O, Hsu CW, Jacobson AJ, Kaveevivitchai W, Liang X, Makarenko T, Miljanić OŠ, Popovs I, Tran HV, Wang X, Wu CH, Wu JI. Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics. J Am Chem Soc 2018; 140:6014-6026. [PMID: 29656637 DOI: 10.1021/jacs.8b02869] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous molecular crystals are an emerging class of porous materials that is unique in being built from discrete molecules rather than being polymeric in nature. In this study, we examined the effects of molecular structure of the precursors on the formation of porous solid-state structures with a series of 16 rigid aromatics. The majority of these precursors possess pyrazole groups capable of hydrogen bonding, as well as electron-rich aromatics and electron-poor tetrafluorobenzene rings. These precursors were prepared using a combination of Pd- and Cu-catalyzed cross-couplings, careful manipulations of protecting groups on the nitrogen atoms, and solvothermal syntheses. Our study varied the geometry and dimensions of precursors, as well as the presence of groups capable of hydrogen bonding and [π···π] stacking. Thirteen derivatives were crystallographically characterized, and four of them were found to be porous with surface areas between 283 and 1821 m2 g-1. Common to these four porous structures were (a) rigid trigonal geometry, (b) [π···π] stacking of electron-poor tetrafluorobenzenes with electron-rich pyrazoles or tetrazoles, and
Collapse
Affiliation(s)
- Mohamed I Hashim
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ha T M Le
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Teng-Hao Chen
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Yu-Sheng Chen
- Center for Advanced Radiation Source (ChemMatCARS) , The University of Chicago , c/o APS/ANL, 9700 South Cass Drive , Argonne , Illinois 60439 , United States
| | - Olafs Daugulis
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Wei Hsu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Allan J Jacobson
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States.,Texas Center for Superconductivity , 202 UH Science Center , Houston , Texas 77204-5002 , United States
| | - Watchareeya Kaveevivitchai
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiao Liang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Tatyana Makarenko
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ognjen Š Miljanić
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ilja Popovs
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Hung Vu Tran
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiqu Wang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Hua Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Judy I Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| |
Collapse
|
43
|
Lauer JC, Zhang WS, Rominger F, Schröder RR, Mastalerz M. Shape-Persistent [4+4] Imine Cages with a Truncated Tetrahedral Geometry. Chemistry 2018; 24:1816-1820. [PMID: 29272048 PMCID: PMC5838406 DOI: 10.1002/chem.201705713] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/29/2022]
Abstract
The synthesis of shape-persistent organic cage compounds is often based on the usage of multiple dynamic covalent bond formation (such as imines) of readily available precursors. By careful choice of the precursors geometry, the geometry and size of the resulting cage can be accurately designed and indeed a number of different geometries and sizes have been realized to date. Despite of this fact, little is known about the precursors conformational rigidity and steric preorganization of reacting functional groups on the outcome of the reaction. Herein, the influence of conformational rigidity in the precursors on the formation of a [4+4] imine cage with truncated tetrahedral geometry is discussed.
Collapse
Affiliation(s)
- Jochen C Lauer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Wen-Shan Zhang
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Rasmus R Schröder
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
44
|
Qiu L, McCaffrey R, Zhang W. Synthesis of Metallic Nanoparticles Using Closed-Shell Structures as Templates. Chem Asian J 2018; 13:362-372. [DOI: 10.1002/asia.201701478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Li Qiu
- School of Materials Science and Engineering; Yunnan Key Laboratory for Micro/Nano Materials & Technology; Yunnan University; 1650091 Kunming China
- Department of Chemistry and Biochemistry; University of Colorado; Boulder CO 80309 USA
| | - Ryan McCaffrey
- Department of Chemistry and Biochemistry; University of Colorado; Boulder CO 80309 USA
| | - Wei Zhang
- School of Materials Science and Engineering; Yunnan Key Laboratory for Micro/Nano Materials & Technology; Yunnan University; 1650091 Kunming China
- Department of Chemistry and Biochemistry; University of Colorado; Boulder CO 80309 USA
| |
Collapse
|
45
|
Liang RR, Zhao X. Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities. Org Chem Front 2018. [DOI: 10.1039/c8qo00830b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the development of heteropore covalent organic frameworks, a new class of porous organic polymers which exhibit well-ordered heterogeneous/hierarchical porosities.
Collapse
Affiliation(s)
- Rong-Ran Liang
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Xin Zhao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
46
|
Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Mixed-Matrix Membranes. Angew Chem Int Ed Engl 2017; 56:9292-9310. [PMID: 28378379 DOI: 10.1002/anie.201701109] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/03/2017] [Indexed: 01/26/2023]
Abstract
Research into extended porous materials such as metal-organic frameworks (MOFs) and porous organic frameworks (POFs), as well as the analogous metal-organic polyhedra (MOPs) and porous organic cages (POCs), has blossomed over the last decade. Given their chemical and structural variability and notable porosity, MOFs have been proposed as adsorbents for industrial gas separations and also as promising filler components for high-performance mixed-matrix membranes (MMMs). Research in this area has focused on enhancing the chemical compatibility of the MOF and polymer phases by judiciously functionalizing the organic linkers of the MOF, modifying the MOF surface chemistry, and, more recently, exploring how particle size, morphology, and distribution enhance separation performance. Other filler materials, including POFs, MOPs, and POCs, are also being explored as additives for MMMs and have shown remarkable anti-aging performance and excellent chemical compatibility with commercially available polymers. This Review briefly outlines the state-of-the-art in MOF-MMM fabrication, and the more recent use of POFs and molecular additives.
Collapse
Affiliation(s)
- Janina Dechnik
- Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Düsseldorf, Germany
| | - Jorge Gascon
- Department of Chemical Engineering, Technical University Delft, Delft, The Netherlands
| | - Christian J Doonan
- Department of Chemistry and the Centre for Advanced Nanomaterials, University of Adelaide, Adelaide, Australia
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Düsseldorf, Germany
| | - Christopher J Sumby
- Department of Chemistry and the Centre for Advanced Nanomaterials, University of Adelaide, Adelaide, Australia
| |
Collapse
|
47
|
Affiliation(s)
- Janina Dechnik
- Institut für Anorganische Chemie und Strukturchemie Universität Düsseldorf Düsseldorf Deutschland
| | - Jorge Gascon
- Department of Chemical Engineering Technical University Delft Delft Niederlande
| | - Christian J. Doonan
- Department of Chemistry and the Centre for Advanced Nanomaterials University of Adelaide Adelaide Australien
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie Universität Düsseldorf Düsseldorf Deutschland
| | - Christopher J. Sumby
- Department of Chemistry and the Centre for Advanced Nanomaterials University of Adelaide Adelaide Australien
| |
Collapse
|
48
|
Ronson TK, Meng W, Nitschke JR. Design Principles for the Optimization of Guest Binding in Aromatic-Paneled Fe II4L 6 Cages. J Am Chem Soc 2017; 139:9698-9707. [PMID: 28682628 DOI: 10.1021/jacs.7b05202] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A series of aromatic-paneled FeII4L6 cages was synthesized through iron(II)-templated subcomponent self-assembly of 2-formylpyridine and C2-symmetric diamine building blocks having differing geometries, including many with a large degree of lateral offset between metal-binding sites. The new cages were characterized using X-ray crystallography, NMR spectroscopy, and mass spectrometry. Investigations of the guest binding properties of the cages provided insights into the structural factors important for the observation of guest binding. Both the size and arrangement of the aromatic panels were shown to be crucial for achieving effective encapsulation of large hydrophobic guests, including fullerenes, polycyclic aromatic hydrocarbons, and steroids, with subtle differences in the structure of subcomponents resulting in incommensurate effects on the binding abilities of the resulting hosts. Cages with large, offset aromatic panels were observed to be the most effective hosts as a result of a preference for a ligand conformation where the aromatic panels lie tangent to the edges of the tetrahedron, thus maximizing cavity enclosure.
Collapse
Affiliation(s)
- Tanya K Ronson
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Wenjing Meng
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
49
|
Cooper AI. Porous Molecular Solids and Liquids. ACS CENTRAL SCIENCE 2017; 3:544-553. [PMID: 28691065 PMCID: PMC5492258 DOI: 10.1021/acscentsci.7b00146] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 05/23/2023]
Abstract
Until recently, porous molecular solids were isolated curiosities with properties that were eclipsed by porous frameworks, such as metal-organic frameworks. Now molecules have emerged as a functional materials platform that can have high levels of porosity, good chemical stability, and, uniquely, solution processability. The lack of intermolecular bonding in these materials has also led to new, counterintuitive states of matter, such as porous liquids. Our ability to design these materials has improved significantly due to advances in computational prediction methods.
Collapse
|
50
|
Akine S, Miyashita M, Nabeshima T. A Metallo-molecular Cage That Can Close the Apertures with Coordination Bonds. J Am Chem Soc 2017; 139:4631-4634. [DOI: 10.1021/jacs.7b00840] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shigehisa Akine
- Graduate
School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masato Miyashita
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuya Nabeshima
- Faculty
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|