1
|
Isozaki K, Iseri K, Saito R, Ueda K, Nakamura M. Dual Catalysis of Gold Nanoclusters: Photocatalytic Cross-Dehydrogenative Coupling by Cooperation of Superatomic Core and Molecularly Modified Staples. Angew Chem Int Ed Engl 2024; 63:e202312135. [PMID: 37926682 DOI: 10.1002/anie.202312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Thiolate-protected gold nanoclusters (AuNCs) have attracted significant attention as nano-catalysts, revealing a superatomic core and gold-thiolate staples as distinct structural units. Here, we demonstrate the unprecedented dual catalytic activity of thiolate-protected [Au25 (SR)18 ]- nanoclusters, involving both photosensitized 1 O2 generation by the Au13 superatomic core and catalytic carbon-carbon bond formation facilitated by Au2 (SR)3 staples. This synergistic combination of two different catalytic units enables efficient cross-dehydrogenative coupling of terminal alkynes and tertiary aliphatic amines to afford propargylamines in high yields of up to 93 %. Mixed-ligand AuNCs bearing both thiolate and alkynyl ligands revealed the intermediacy of the alkynyl-exchanged AuNCs toward both photosensitization and C-C bond-forming catalytic cycles. Density functional theory calculations also supported the intermediacy of the alkynyl-exchanged AuNCs. Thus, the use of ligand-protected metal nanoclusters has enabled the development of an exceptional multifunctional catalyst, wherein distinct nanocluster components facilitate cooperative photo- and chemo-catalysis.
Collapse
Affiliation(s)
- Katsuhiro Isozaki
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenta Iseri
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryohei Saito
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyosuke Ueda
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Tang L, Duan T, Pei Y, Wang S. Synchronous Metal Rearrangement on Two-Dimensional Equatorial Surfaces of Au-Cu Alloy Nanoclusters. ACS NANO 2023; 17:4279-4286. [PMID: 36876873 DOI: 10.1021/acsnano.2c07136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the growth of nanoclusters and the relationship between structure-activity depends on the precise arrangement of metals on their surface. In this work, we realized the synchronous rearrangement of metal atoms on the equatorial plane of Au-Cu alloy nanoclusters. Upon adsorption of the phosphine ligand, the Cu atoms on the equatorial plane of the Au52Cu72(SPh)55 nanocluster are irreversibly rearranged. The whole metal rearrangement process can be understood from a synchronous metal rearrangement mechanism initiated by the adsorption of the phosphine ligand. Furthermore, this metal rearrangement can effectively improve the efficiency of A3 coupling reactions without increasing the amount of catalyst.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tengfei Duan
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
3
|
Guan ZJ, Li JJ, Hu F, Wang QM. Structural Engineering toward Gold Nanocluster Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209725. [PMID: 36169269 DOI: 10.1002/anie.202209725] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/14/2022]
Abstract
Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post-treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis.
Collapse
Affiliation(s)
- Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
4
|
Isozaki K, Ueno R, Ishibashi K, Nakano G, Yin H, Iseri K, Sakamoto M, Takaya H, Teranishi T, Nakamura M. Gold Nanocluster Functionalized with Peptide Dendron Thiolates: Acceleration of the Photocatalytic Oxidation of an Amino Alcohol in a Supramolecular Reaction Field. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Katsuhiro Isozaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryo Ueno
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kosuke Ishibashi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Genta Nakano
- Department of Technological Systems, Osaka Prefecture University College of Technology, Saiwaicho 26-12, Neyagawa, Osaka 572-8572, Japan
| | - Haozhi Yin
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenta Iseri
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masanori Sakamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hikaru Takaya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaharu Nakamura
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Glutathione Disulfide as a Reducing, Capping, and Mass-Separating Agent for the Synthesis and Enrichment of Gold Nanoclusters. NANOMATERIALS 2021; 11:nano11092258. [PMID: 34578574 PMCID: PMC8472339 DOI: 10.3390/nano11092258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022]
Abstract
Water-soluble nanoclusters, which are facilely enrichable without changes in the original properties, are highly demanded in many disciplines. In this contribution, a new class of gold nanoclusters (AuNCs) was synthesized using glutathione disulfide (GSSG) as a reducing and capping agent under intermittent heating mode. The as-prepared GSSG–AuNCs had a higher quantum yield (4.1%) compared to the conventional glutathione-protected AuNCs (1.8%). Moreover, by simply introducing the GSSG–AuNC solution to acetonitrile at a volume ratio of 1:7, a new bottom phase was formed, in which GSSG–AuNCs could be 400-fold enriched without changes in properties, with a percentage recovery higher than 99%. The enrichment approach did not need additional instruments and was potentially suitable for large-scale enrichment of nanoclusters. Further, density functional theory calculations indicated that the hydrogen bonding between GSSG and acetonitrile plays a key role for the bottom phase formation. Our work suggests that the highly emissive GSSG–AuNCs possess great potential not only in fluorescent measurements but also in other scenarios in which high-concentration AuNCs may be needed, such as catalysis, drug delivery, and electronic and optical industries.
Collapse
|
6
|
Saito Y, Shichibu Y, Konishi K. Self-promoted solid-state covalent networking of Au 25(SR) 18 through reversible disulfide bonds. A critical effect of the nanocluster in oxidation processes. NANOSCALE 2021; 13:9971-9977. [PMID: 33978018 DOI: 10.1039/d1nr01812d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Covalent crosslinking of ligand-protected gold nanoclusters offers interesting platforms to investigate the properties associated with the synergetic effects of multiple nanoclusters. In this paper, we report the synthesis of covalent networks of [Au25(SR)18]- nanoclusters using reversible disulfide linkages, which was facilitated by the unique capabilities of the nanocluster to mediate oxidation processes. The conventional Au25 synthesis using 1,6-hexanedithiol afforded a soluble oligodisulfide-appended [Au25(SR)18]- monomer possessing uncoordinated anionic thiolate sites at the terminal ends. Upon exposure to O2, the monomer spontaneously underwent intercluster crosslinking in the solid state to give free-standing transparent films, in which the nanoclusters were condensed with the retention of the original Au25 framework. Through studies combined with model experiments, the Au25 cluster was found to be involved in the O2-mediated radical reactions, promoting the formation of intercluster disulfide linkages. The composition of the films implied the involvement of reversible exchange reactions between disulfide and thiyl radicals, from which it was suggested that solid-state crosslinking occurred in adaptive manners under the control of dynamic covalent chemistry. We also demonstrate that the nanocluster film can serve as a robust and efficient heterogeneous photosensitizer to mediate the generation of singlet oxygen. This work demonstrates a unique aspect of the Au25(SR)18-type nanocluster to mediate oxidation processes as well as the utility of the concept of dynamic covalent chemistry in the bottom-up construction of nanomaterials, which would widen the potential of ligand-protected nanoclusters.
Collapse
Affiliation(s)
- Yuki Saito
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan.
| | | | | |
Collapse
|
7
|
Li Y, Yi S, Lei Z, Xiao Y. Amphiphilic polymer-encapsulated Au nanoclusters with enhanced emission and stability for highly selective detection of hypochlorous acid. RSC Adv 2021; 11:14678-14685. [PMID: 35423968 PMCID: PMC8698203 DOI: 10.1039/d1ra01634b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
It is of vital importance to develop probes to monitor hypochlorous acid (HClO) in biological systems as HClO is associated with many important physiological and pathological processes. Metal nanoclusters (NCs) are promising luminescent nanomaterials for highly reactive oxygen species (hROS) detection on the basis of their strong reaction ability with hROS. However, metal NCs typically can respond to most common hROS and are susceptible to etching by biothiols, hindering their application in the construction of effective HClO probes. Herein, we proposed a strategy to develop a nanoprobe based on Au NCs for highly sensitive and selective detection of HClO. We synthesized luminescent benzyl mercaptan-stabilized Au NCs and encapsulated them with an amphiphilic polymer (DSPE-PEG). After encapsulation, an obvious emission enhancement and good resistance to the etching by biothiols for Au NCs were achieved. More importantly, the DSPE-PEG encapsulated Au NCs can be used as a nanoprobe for detection of HClO with good performance. The luminescence of the Au NCs was effectively and selectively quenched by HClO. A good linear relationship with the concentration of HClO in the range of 5–35 μM and a limit of detection (LOD) of 1.4 μM were obtained. Additionally, this nanoprobe was successfully used for bioimaging and monitoring of HClO changes in live cells, suggesting the application potential of the as-prepared amphiphilic polymer-encapsulated Au NCs for further HClO-related biomedical research. Amphiphilic polymer-encapsulated Au nanoclusters with enhanced emission and stability were synthesized and used for the sensitive and selective detection of hypochlorous acid.![]()
Collapse
Affiliation(s)
- Yiling Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Shuxiao Yi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Zhongli Lei
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| | - Yan Xiao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 China
| |
Collapse
|
8
|
Zorba LP, Vougioukalakis GC. The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Qin Z, Sharma S, Wan C, Malola S, Xu W, Häkkinen H, Li G. A Homoleptic Alkynyl‐Ligated [Au
13
Ag
16
L
24
]
3−
Cluster as a Catalytically Active Eight‐Electron Superatom. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhaoxian Qin
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Sachil Sharma
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Chong‐qing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Wen‐wu Xu
- Department of Physics School of Physical Science and Technology Ningbo University Ningbo 315211 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Gao Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Qin Z, Sharma S, Wan C, Malola S, Xu W, Häkkinen H, Li G. A Homoleptic Alkynyl‐Ligated [Au
13
Ag
16
L
24
]
3−
Cluster as a Catalytically Active Eight‐Electron Superatom. Angew Chem Int Ed Engl 2020; 60:970-975. [DOI: 10.1002/anie.202011780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Zhaoxian Qin
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Sachil Sharma
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Chong‐qing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Wen‐wu Xu
- Department of Physics School of Physical Science and Technology Ningbo University Ningbo 315211 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Gao Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Nagata T, Obora Y. N, N-Dimethylformamide-Protected Single-Sized Metal Nanoparticles and Their Use as Catalysts for Organic Transformations. ACS OMEGA 2020; 5:98-103. [PMID: 31956756 PMCID: PMC6963902 DOI: 10.1021/acsomega.9b03828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 05/12/2023]
Abstract
In this mini-review, we summarize the solution syntheses of N,N-dimethylformamide (DMF)-protected metal nanoparticles (NPs) and nanoclusters (NCs) and their use in catalytic reactions. Representative examples are given of external-stabilizer/protectant-free metal NP and NC syntheses by reduction with DMF. In this method, DMF has three roles, i.e., a solvent, reductant, and protectant. Recent applications of DMF-stabilized metal NPs are summarized. These applications have enabled a versatile organic transformation such as cross-coupling reactions, hydrosilylation, and methylation to be achieved. These reactions proceed under low catalyst loadings and ligandless conditions.
Collapse
Affiliation(s)
- Tatsuki Nagata
- Department of Chemistry and Materials
Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yasushi Obora
- Department of Chemistry and Materials
Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
12
|
Kang X, Abroshan H, Wang S, Zhu M. Free Valence Electron Centralization Strategy for Preparing Ultrastable Nanoclusters and Their Catalytic Application. Inorg Chem 2019; 58:11000-11009. [PMID: 31386346 DOI: 10.1021/acs.inorgchem.9b01545] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal nanoclusters have attracted extensive interests owing to their atomically precise structures as well as intriguing properties. However, silver nanoclusters are not as stable as their gold counterparts, impeding the practical applications of Ag nanoclusters. In this work, a strategy of free valence electron centralization was exploited to render parent Ag nanoclusters highly stable. The stability of Ag29(SSR)12(PPh3)4 (SSR: benzene-1,3-dithiol) was controllably enhanced by stepwisely alloying the Ag29 nanocluster to Ag17Cu12(SSR)12(PPh3)4 and Au1Ag16Cu12(SSR)12(PPh3)4. Specifically, the trimetallic Au1Ag16Cu12 is ultrastable even at 175 °C, which is close to the nanocluster decomposition temperature. The structures of Ag17Cu12 and Au1Ag16Cu12 nanoclusters are determined by single-crystal X-ray diffraction. Furthermore, a combination of X-ray photoelectron spectroscopy measurements and density functional theory calculations demonstrates that the enhanced stability is induced by the centralization of the free valence electrons to the interior of the nanocluster. More importantly, the Au1Ag16Cu12 enables the multicomponent A3 coupling reaction at high temperatures, which remarkably shortens the catalytic reaction time from ∼5 h to 3 min. Overall, this work presents a strategy for enhancing the thermal stability of nanoclusters via centralizing the free valence electrons to the nanocluster kernels.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , Anhui , China
| | - Hadi Abroshan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford 94305 , California , United States
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , Anhui , China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , Anhui , China
| |
Collapse
|
13
|
Du Y, Sheng H, Astruc D, Zhu M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem Rev 2019; 120:526-622. [DOI: 10.1021/acs.chemrev.8b00726] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanxin Du
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Gholinejad M, Afrasi M, Najera C. Caffeine gold complex supported on magnetic nanoparticles as a green and high turnover frequency catalyst for room temperature A3
coupling reaction in water. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4760] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Gavazang Zanjan 45137-66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST); Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Mahmoud Afrasi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Gavazang Zanjan 45137-66731 Iran
| | - Carmen Najera
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA); Universidad de Alicante; Apdo. 99 E-03080 Alicante Spain
| |
Collapse
|
15
|
Li YZ, Leong WK. A comparative study on atomically precise Au nanoclusters as catalysts for the aldehyde–alkyne–amine (A3) coupling reaction: ligand effects on the nature of the catalysis and efficiency. RSC Adv 2019; 9:5475-5479. [PMID: 35515902 PMCID: PMC9060790 DOI: 10.1039/c9ra00933g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Atomically precise Au13 nanoclusters stabilized by stibines catalyze the aldehyde–alkyne–amine coupling reaction more efficiently than those stabilized by thiols or phosphines. The nature of the catalytic activity is also different, and may be attributed to the weaker coordinating ability of the stibine ligands. A stibine-stabilised gold nanocluster which acts as a homogeneous catalyst in the A3 coupling reaction.![]()
Collapse
Affiliation(s)
- Ying-Zhou Li
- Division of Chemistry & Biological Chemistry
- Nanyang Technological University
- Singapore
- Shandong Provincial Key Laboratory of Molecular Engineering
- Qilu University of Technology (Shandong Academy of Science)
| | - Weng Kee Leong
- Division of Chemistry & Biological Chemistry
- Nanyang Technological University
- Singapore
| |
Collapse
|
16
|
Nagata T, Inoue T, Lin X, Ishimoto S, Nakamichi S, Oka H, Kondo R, Suzuki T, Obora Y. Dimethylformamide-stabilised palladium nanoclusters catalysed coupling reactions of aryl halides with hydrosilanes/disilanes. RSC Adv 2019; 9:17425-17431. [PMID: 35519839 PMCID: PMC9064576 DOI: 10.1039/c9ra02895a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022] Open
Abstract
N,N-Dimethylformamide-stabilised Pd nanocluster (NC) catalysed cross-coupling reactions of hydrosilane/disilane have been investigated. In this reaction, the coupling reaction proceeds without ligands with low catalyst loading. N,N-Dimethylacetamide is a crucial solvent in these reactions. The solvent effect was considered by various techniques, such as transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Pd NCs can be recycled five times under both hydrosilane and disilane reaction conditions. A highly efficient and reusable Pd NCs catalyst system for silylation of aryl halides was developed.![]()
Collapse
Affiliation(s)
- Tatsuki Nagata
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| | - Takeru Inoue
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| | - Xianjin Lin
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| | - Shinya Ishimoto
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| | - Seiya Nakamichi
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| | - Hideo Oka
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| | - Ryota Kondo
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center
- The Institute of Scientific and Industrial Research (ISIR)
- Osaka University
- Ibaraki
- Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry, Materials and Bioengineering
- Kansai University
- Suita
- Japan
| |
Collapse
|
17
|
Gholinejad M, Zareh F, Najera C. Iron oxide modified with pyridyl-triazole ligand for stabilization of gold nanoparticles: An efficient heterogeneous catalyst for A3
coupling reaction in water. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); PO Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST); Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Fatemeh Zareh
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); PO Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
| | - Carmen Najera
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA); Universidad de Alicante; Apdo. 99 E-03080 Alicante Spain
| |
Collapse
|
18
|
Kang X, Chong H, Zhu M. Au 25(SR) 18: the captain of the great nanocluster ship. NANOSCALE 2018; 10:10758-10834. [PMID: 29873658 DOI: 10.1039/c8nr02973c] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Noble metal nanoclusters are in the intermediate state between discrete atoms and plasmonic nanoparticles and are of significance due to their atomically accurate structures, intriguing properties, and great potential for applications in various fields. In addition, the size-dependent properties of nanoclusters construct a platform for thoroughly researching the structure (composition)-property correlations, which is favorable for obtaining novel nanomaterials with enhanced physicochemical properties. Thus far, more than 100 species of nanoclusters (mono-metallic Au or Ag nanoclusters, and bi- or tri-metallic alloy nanoclusters) with crystal structures have been reported. Among these nanoclusters, Au25(SR)18-the brightest molecular star in the nanocluster field-is capable of revealing the past developments and prospecting the future of the nanoclusters. Since being successfully synthesized (in 1998, with a 20-year history) and structurally determined (in 2008, with a 10-year history), Au25(SR)18 has stimulated the interest of chemists as well as material scientists, due to the early discovery, easy preparation, high stability, and easy functionalization and application of this molecular star. In this review, the preparation methods, crystal structures, physicochemical properties, and practical applications of Au25(SR)18 are summarized. The properties of Au25(SR)18 range from optics and chirality to magnetism and electrochemistry, and the property-oriented applications include catalysis, chemical imaging, sensing, biological labeling, biomedicine and beyond. Furthermore, the research progress on the Ag-based M25(SR)18 counterpart (i.e., Ag25(SR)18) is included in this review due to its homologous composition, construction and optical absorption to its gold-counterpart Au25(SR)18. Moreover, the alloying methods, metal-exchange sites and property alternations based on the templated Au25(SR)18 are highlighted. Finally, some perspectives and challenges for the future research of the Au25(SR)18 nanocluster are proposed (also holding true for all members in the nanocluster field). This review is directed toward the broader scientific community interested in the metal nanocluster field, and hopefully opens up new horizons for scientists studying nanomaterials. This review is based on the publications available up to March 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institute of Physical Science and Information Technology and AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | | | | |
Collapse
|
19
|
Ma M, Liu L, Zhu H, Lu J, Tan G. Structural evolution and properties of small-size thiol-protected gold nanoclusters. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1457804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Miaomiao Ma
- College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, People’s Republic of China
| | - Liren Liu
- College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, People’s Republic of China
| | - Hengjiang Zhu
- College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, People’s Republic of China
- Key Laboratory of Mineral Luminescence Materials and Micro structures of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Junzhe Lu
- College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, People’s Republic of China
- Key Laboratory of Mineral Luminescence Materials and Micro structures of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Guiping Tan
- College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, People’s Republic of China
| |
Collapse
|
20
|
Gholinejad M, Bonyasi R, Najera C, Saadati F, Bahrami M, Dasvarz N. Gold Nanoparticles Supported on Imidazole-Modified Bentonite: Environmentally Benign Heterogeneous Catalyst for the Three-Component Synthesis of Propargylamines in Water. Chempluschem 2018; 83:431-438. [DOI: 10.1002/cplu.201800162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST); Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Reza Bonyasi
- Department of Chemistry; Faculty of Science; University of Zanjan; P. O. Box 45195-313 Zanjan Iran
| | - Carmen Najera
- Departamento de Química Orgánica; and Centro de Innovación en Química Avanzada (ORFEO-CINQA); Universidad de Alicante; Apdo. 99 03080 Alicante Spain
| | - Fariba Saadati
- Department of Chemistry; Faculty of Science; University of Zanjan; P. O. Box 45195-313 Zanjan Iran
| | - Maedeh Bahrami
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
| | - Neda Dasvarz
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
| |
Collapse
|
21
|
Nasrollahzadeh M, Sajjadi M, Ghorbannezhad F, Sajadi SM. A Review on Recent Advances in the Application of Nanocatalysts in A
3
Coupling Reactions. CHEM REC 2018. [DOI: 10.1002/tcr.201700100] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of ChemistryFaculty of Science University of Qom Qom 37185-359 Iran
| | | | - S. Mohammad Sajadi
- Department of Petroleum Geoscience, Faculty of ScienceSoran University PO Box 624 Soran, Kurdistan Regional Government Iraq
| |
Collapse
|