1
|
Jung Y, Park S, Lee SS, Kim SH. Centrifugation-Mediated Crystal Growth of Attractive Colloids for Band Edge Lasing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402887. [PMID: 38895964 DOI: 10.1002/smll.202402887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Attractive depletion interactions are utilized to organize colloidal particles into crystalline arrays with high crystallinity through spontaneous phase separation. However, uncontrolled nucleation frequently leads to the formation of crystalline grains with varied crystal orientations, which hampers the optical performance of photonic crystals. Here, colloidal crystals have been engineered with uniform orientation and high surface coverage by applying centrifugal force during the depletion-induced assembly of polystyrene particles. The centrifugal force encourages the particles to move toward the bottom surface, which fosters heterogeneous nucleation and supports rapid crystal growth, yielding densely-packed and uniformly-arranged crystal grains with high reflectivity. This study has observed that the nucleation and crystal growth behavior is significantly influenced by the salt concentration. Based on the pair potentials, the transition boundary has been quantitatively analyzed between fluid and crystal phases and identified the threshold for homogeneous nucleation. Utilizing the high-reflectivity colloidal crystals, band-edge lasing is achieved by dissolving the water-soluble dye into the aqueous suspensions. Upon optical excitation, a lasing emission characterized is observed by a narrow spectral width at the short-wavelength band edge. Notably, the laser wavelength can be adjusted by altering the salt concentration or particle diameter, offering a versatile approach to tuning the optical properties.
Collapse
Affiliation(s)
- Yongseok Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Seok Lee
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials Korea Institute of Science and Technology (KIST), Jeonbuk, 55324, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Chen G, Gallegos MJ, Soetrisno DD, Vekilov PG, Conrad JC. A minimal colloid model of solution crystallization nucleates crystals classically. SOFT MATTER 2024; 20:2575-2583. [PMID: 38415982 DOI: 10.1039/d3sm01609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A fundamental assumption of the classical theories of crystal nucleation is that the individual molecules from the "old" phase associate to an emerging nucleus individually and sequentially. Numerous recent studies of crystal nucleation in solution have revealed nonclassical pathways, whereby crystal nuclei are hosted and fed by amorphous clusters pre-formed in the solution. A sizable knowledge gap has persisted, however, in the definition of the molecular-level parameters that direct a solute towards classical or nonclassical nucleation. Here we construct a suspension of colloid particles of hydrodynamic diameter 1.1 μm and monitor their individual motions towards a quasi-two-dimensional crystal by scanning confocal microscopy. We combine electrostatic repulsion and polymer-induced attraction to obtain a simple isotropic pair interaction potential with a single attractive minimum of tunable depth between 1.2kBT and 2.7kBT. We find that even the smallest aggregates that form in this system structure as hexagonal two-dimensional crystals and grow and maturate by the association and exchange of single particles from the solution, signature behaviors during classical nucleation. The particles in the suspension equilibrate with those in the clusters and the volume fractions of suspensions at equilibrium correspond to straightforward thermodynamic predictions based on depth of the interparticle attraction. These results demonstrate that classical nucleation is selected by particles interacting with a minimal potential and present a benchmark for future modifications of the molecular interactions that may induce nonclassical nucleation.
Collapse
Affiliation(s)
- Gary Chen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| | - Mariah J Gallegos
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| | - Diego D Soetrisno
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, Texas 77204-5003, USA
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| |
Collapse
|
3
|
Yang S, Kim YG, Park S, Kim SH. Structural Color Mixing in Microcapsules through Exclusive Crystallization of Binary and Ternary Colloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302750. [PMID: 37319336 DOI: 10.1002/adma.202302750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Colloidal crystals are designed as photonic microparticles for various applications. However, conventional microparticles generally have only one stopband from a single lattice constant, which restricts the range of colors and optical codes available. Here, photonic microcapsules are created that contain two or three distinct crystalline grains, resulting in dual or triple stopbands that offer a wider range of colors through structural color mixing. To produce distinct colloidal crystallites from binary or ternary colloidal mixtures, the interparticle interaction is manipulated using depletion forces in double-emulsion droplets. Aqueous dispersions of binary or ternary colloidal mixtures in the innermost droplet are gently concentrated in the presence of a depletant and salt by imposing hypertonic conditions. Different-sized particles crystallize into their own crystals rather than forming random glassy alloys to minimize free energy. The average size of the crystalline grains can be adjusted with osmotic pressure, and the relative ratio of distinct grains can be controlled with the mixing ratio of particles. The resulting microcapsules with small grains and high surface coverage are almost optically isotropic and exhibit highly-saturated mixed structural colors and multiple reflectance peaks. The mixed color and reflectance spectrum are controllable with the selection of particle sizes and mixing ratios.
Collapse
Affiliation(s)
- Sehee Yang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Kim YG, Park S, Kim SH. Centrifugation-Assisted Growth of Single-Crystalline Grains in Microcapsules. ACS NANO 2023; 17:2782-2791. [PMID: 36648203 DOI: 10.1021/acsnano.2c11071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidal crystals have been tailored in a format of microspheres to use them as a building block to construct macroscopic photonic surfaces. However, the polycrystalline grains grown from the spherical surface usually exhibit low reflectivity. Although single-crystalline microspheres have been produced, it is difficult to control the crystal orientation. Here, we design spherical microcapsules with density anisotropy that contain single-crystalline grains along the heavy side. The microcapsules spontaneously align to have a heavy side down under the action of gravity and display a bright and uniform reflection color from the entire surface of the grains. Key to the success is the use of gentle centrifugal force to initiate nucleation and grow single-crystalline grains from the heavy side through depletion attraction. The microcapsules have density anisotropy due to the heterogeneity of the shell thickness, which causes them to self-align under centrifugation. At the same time, particles are accumulated on the heavy side, which produces many tiny grains on the heavy side immediately after the centrifugation. With controlled depletion attraction among particles, only a few grains survive during postincubation through Ostwald ripening, and one or a few giant single-crystalline grains are finally produced along the heavy side of each microcapsule.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| |
Collapse
|
5
|
Park S, Hwang H, Kim SH. Direct Determination of the Phase Diagram of a Depletion-Mediated Colloidal System. J Am Chem Soc 2022; 144:18397-18405. [PMID: 36170562 DOI: 10.1021/jacs.2c06715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Depletion is one widely used potential to modulate colloidal interaction because it enables the production of a wide variety of crystalline and glassy phases of spherical and shape-tailored colloids. The attractive depletion potential gives rise to qualitatively new behavior. However, depletion-mediated phase behaviors have never been systematically investigated experimentally regarding pair potentials for aqueous suspensions. In this work, we implement three distinct phases of fluid, crystal, and glass by adjusting the concentrations of depletant and salt in the aqueous suspension of polystyrene particles. To define the phase boundary between the fluid and crystal, we calculate pair potential with a superposition of van der Waals, electrostatic, and depletion interactions. Two unknown parameters in the pair potential─the concentration of ionic impurities and the ratio of the molar concentration of depletant to osmolarity─are experimentally determined from sets of reflectance spectra. The interparticle spacing in the crystalline phase is extracted from the peak wavelength originating from Bragg diffraction, which corresponds to the interparticle separation at energy minimum in the pair potential. The boundary between the fluid and crystal is well defined with the depth of the energy well of 3kBT. By contrast, the onset of glass formation is better characterized by not the well depth but the assembly rate, which is estimated from the slope of the pair potential from force balance. Glasses are produced as the speed exceeds 300 μm/s. That is, crystals are produced by enthalpy gain overwhelming entropy loss, whereas glasses are kinetically produced due to fast jamming.
Collapse
Affiliation(s)
- Sanghyuk Park
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyerim Hwang
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Kim YG, Park S, Choi YH, Han SH, Kim SH. Elastic Photonic Microcapsules Containing Colloidal Crystallites as Building Blocks for Macroscopic Photonic Surfaces. ACS NANO 2021; 15:12438-12448. [PMID: 33988026 DOI: 10.1021/acsnano.1c02000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal crystals develop structural colors through wavelength-selective diffraction. Recently, a granular format of colloidal crystals has emerged as building blocks to construct macroscopic photonic surfaces or architectures with high reconfigurability through the secondary assembly. Here, we design elastic photonic microcapsules containing colloidal crystallites along the inner wall as a building block. Water-in-oil-in-water double-emulsion templates are microfluidically prepared to have an aqueous dispersion of polystyrene particles in the inner droplet and polydimethylsiloxane prepolymers in the shell. Colloidal particles are enriched in the presence of depletant and salt by osmotic compression, with the crystallization at the inner interface by depletion attraction. The number of nucleation sites depends on the rate of the enrichment, which enables control over the size and surface coverage of the crystallites with osmotic conditions. The enrichment is ceased by transferring the droplets into an isotonic solution, and the oil shell is cured to form an elastic membrane. As the elastic microcapsules have a large void in the core, they are deformable without structural damage in the crystallites. Therefore, the microcapsules can be closely packed to form macroscopic surfaces while achieving a high quality of structural colors with a collection of crystallites aligned along the flattened membrane.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Kohri M, Kobayashi A, Okoshi T, Shirasawa H, Hirai K, Ujiie K, Kojima T, Kishikawa K. Bright Solvent Sensor Using an Inverse Opal Structure Containing Melanin-mimicking Polydopamine. CHEM LETT 2021. [DOI: 10.1246/cl.200626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michinari Kohri
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Akari Kobayashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Taku Okoshi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroki Shirasawa
- Department of Imaging Sciences, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keita Hirai
- Department of Imaging Sciences, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kazuya Ujiie
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Kojima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keiki Kishikawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|