1
|
Yang Z, Peh SB, Xi S, Lu Y, Liu Q, Zhao D. Packing Engineering of Zirconium Metal-Organic Cages in Mixed Matrix Membranes for CO 2/CH 4 Separation. Angew Chem Int Ed Engl 2025:e202418098. [PMID: 39776029 DOI: 10.1002/anie.202418098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogeneous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs). We further explore the packing engineering of MOC networks to produce distinct polymorphs (α and β phases) for tailoring membrane performance. Synchrotron X-ray absorption and positron annihilation lifetime spectroscopy were employed to differentiate distinct MOC polymorphous networks within membranes. Gas permeation tests revealed that the corresponding MMMs showed superior CO2/CH4 separation performance, exceeding the Robeson upper bound. Our proposed approach is expected to enrich the repertoire of reticular chemistry pertaining to molecular-based networks.
Collapse
Affiliation(s)
- Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, Jurong Island, 627833, Singapore
| | - Yanqiu Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qixing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
2
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2024. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
3
|
Lai P, Wu JX, Wu LH, Li LY, Cai SL, Zheng SR. Construction of binary metal-organic cage-based materials via a "covalently linked plus cage encapsulated" strategy. Chem Commun (Camb) 2024; 60:10362-10365. [PMID: 39212618 DOI: 10.1039/d4cc02536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A strategy for constructing binary metal-organic cage (MOC)-based materials was developed. The cationic MOCs were covalently linked by organic linkers to a cationic extended network, whereas the anionic MOCs acted as counterions and were encapsulated in the network. Compared with the corresponding unary materials, the binary MOC-based materials exhibited improved porosity and adsorption performance.
Collapse
Affiliation(s)
- Pei Lai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China. zhengsr-scnu.edu.cn
| | - Jia-Xuan Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China. zhengsr-scnu.edu.cn
| | - Liang-Hua Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China. zhengsr-scnu.edu.cn
| | - Lai-Yi Li
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China. zhengsr-scnu.edu.cn
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China. zhengsr-scnu.edu.cn
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China. zhengsr-scnu.edu.cn
| |
Collapse
|
4
|
Jaswal V, Pachisia S, Chaudhary J, Rangan K, Sarkar M. Selective sensing of picric acid using a Zn(II)-metallacycle: experimental and theoretical validation of the sensing mechanism and quantitative analysis of sensitivity in contact mode detection. Dalton Trans 2024; 53:14710-14724. [PMID: 39158052 DOI: 10.1039/d4dt01771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A combination of N,N',N''-tris(3-pyridyl)-1,3,5-benzenetricarboxamide (L1) and p-chlorobenzoic acid (HL2) with Zn(NO3)2·6H2O resulted in the formation of a dinuclear metallacycle [ZnL1(L2)2(DMF)2]2 (1(DMF)4). In 1(DMF)4, the Zn(II) centre adopts a square pyramidal geometry, while one of the pyridyl N out of the three pyridyl groups in L1 remained uncoordinated. Solvated DMF molecules are present in 1(DMF)4. The structural and chemical nature of 1(DMF)4 is effective for it to act as a potential fluorescent probe for the detection of nitroaromatic compounds. It is observed that the probe, 1(DMF)4, could selectively detect picric acid (PA) among various aromatic compounds in solution (DMSO), while the solid state (contact mode) detection showed a positive sensing response for the nitrophenols (PA: 87% quenching efficiency, 2,4-dinitrophenol (2,4-DNP): 57% quenching efficiency and 4-nitrophenol (4-NP): 40% quenching efficiency). The limit of detection (LOD) of PA by the probe in DMSO was found to be 6.8 × 10-11 M while the LOD in contact mode detection was estimated to be 0.49 ng cm-2. The mechanism of selective detection of PA by 1(DMF)4 in DMSO was analyzed through photophysical studies, 1H-NMR experiments and also by density functional theory (DFT) calculations. The effective overlap of the absorption spectrum of 1(DMF)4 and emission spectrum of PA in DMSO suggests that the Förster resonance energy transfer (FRET) is responsible for quenching phenomena in DMSO. The DFT calculations and molecular docking studies showed the adduct formation due to the favorable interactions between 1(DMF)4 and PA in DMSO, while negligible interactions were observed between 1(DMF)4 with other aromatic compounds. The experimental and DFT studies showed that the efficient sensing ability of PA by 1(DMF)4 in the solid-state was due to photoelectron transfer (PET) and FRET phenomena described herein.
Collapse
Affiliation(s)
- Vishakha Jaswal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Sanya Pachisia
- Department of Chemistry, University of Delhi, India
- Department of Chemistry, University of California, Irvine, California, USA
| | - Jagrity Chaudhary
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Krishnan Rangan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar Shameerpet Mandal, Ranga Reddy District, Hyderabad 500078, India
| | - Madhushree Sarkar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
5
|
Luo D, Zhu XW, Zhou XP, Li D. Covalent Post-Synthetic Modification of Metal-Organic Cages: Concepts and Recent Progress. Chemistry 2024; 30:e202400020. [PMID: 38293757 DOI: 10.1002/chem.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Metal-organic cages (MOCs) are supramolecular coordination complexes that have internal cavities for hosting guest molecules and exhibiting various properties. However, the functions of MOCs are limited by the choice of the building blocks. Post-synthetic modification (PSM) is a technique that can introduce new functional groups and replace existing ones on the MOCs without changing their geometry. Among many PSM methods, covalent PSM is a promising approach to modify MOCs with tailored structures and functions. Covalent PSM can be applied to either the internal cavity or the external surface of the MOCs, depending on the functionality expected to be customized. However, there are still some challenges and limitations in the field of covalent PSM of MOCs, such as the balance between the stability of MOCs and the harshness of organic reactions involved in covalent PSMs. This concept article introduces the organic reaction types involved in covalent PSM of MOCs, their new applications after modification, and summarizes and provides an outlook of this research field.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Xiao-Wei Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
- Guangdong Rare Earth Photofunctional Materials Engineering Technology Research Center, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, P.R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P.R. China
| |
Collapse
|
6
|
Wang H, Shi L, Xiong Z, Ma S, Cao H, Cai S, Qiao Z, Pan J, Chen Z. A two-dimensional metal-organic framework assembled from scandium-based cages for the selective capture of sulfur hexafluoride. Chem Commun (Camb) 2024; 60:2397-2400. [PMID: 38323363 DOI: 10.1039/d3cc05087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein, we report the synthesis of a two-dimensional metal-organic framework (MOF), assembled from octahedral metal-organic cages featuring phenanthroline-based carboxylate linkers and μ3-oxo-centered trinuclear Sc(III) inorganic building blocks. We study the performance of this MOF towards the capture of sulfur hexafluoride (SF6). On account of its structural features and porous nature, this MOF displays an SF6 uptake capacity of 0.92 mmol g-1 at 0.1 bar and an isosteric heat of adsorption of about 30.7 kJ mol-1 for SF6, illustrating its potential application for the selective capture of SF6 from N2. In addition, we study the adsorptive binding mechanism of SF6 and N2 inside this MOF via molecular simulations.
Collapse
Affiliation(s)
- Hao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Zhangyi Xiong
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Si Ma
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Honghao Cao
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Shijia Cai
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 5100006, P. R. China.
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 5100006, P. R. China.
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| |
Collapse
|
7
|
Moree LK, Faulkner LAV, Crowley JD. Heterometallic cages: synthesis and applications. Chem Soc Rev 2024; 53:25-46. [PMID: 38037385 DOI: 10.1039/d3cs00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
High symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of applications including molecular recognition, catalysis and drug delivery. Recently there have been increasing efforts to enhance those applications by generating reduced symmetry MSAs. While there are several emerging methods for generating lower symmetry MSAs, this tutorial review examines the general methods used for synthesizing heterometallic MSAs with a particular focus on heterometallic cages. Additionally, the intrinsic properties of the cages and their potential emerging applications as host-guest systems and reaction catalysts are described.
Collapse
Affiliation(s)
- Lana K Moree
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Logan A V Faulkner
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
8
|
Drożdż W, Ciesielski A, Stefankiewicz AR. Dynamic Cages-Towards Nanostructured Smart Materials. Angew Chem Int Ed Engl 2023; 62:e202307552. [PMID: 37449543 DOI: 10.1002/anie.202307552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The interest in capsular assemblies such as dynamic organic and coordination cages has blossomed over the last decade. Given their chemical and structural variability, these systems have found applications in diverse fields of research, including energy conversion and storage, catalysis, separation, molecular recognition, and live-cell imaging. In the exploration of the potential of these discrete architectures, they are increasingly being employed in the formation of more complex systems and smart materials. This Review highlights the most promising pathways to overcome common drawbacks of cage systems (stability, recovery) and discusses the most promising strategies for their hybridization with systems featuring various dimensionalities. Following the description of the most recent advances in the fabrication of zero to three-dimensional cage-based systems, this Review will provide the reader with the structure-dependent relationship between the employed cages and the properties of the materials.
Collapse
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Artur Ciesielski
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
9
|
Troyano J, Tayier F, Phattharaphuti P, Aoyama T, Urayama K, Furukawa S. Porous supramolecular gels produced by reversible self-gelation of ruthenium-based metal-organic polyhedra. Chem Sci 2023; 14:9543-9552. [PMID: 37712036 PMCID: PMC10498683 DOI: 10.1039/d3sc02888g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023] Open
Abstract
Supramolecular gels based on metal-organic polyhedra (MOPs) represent a versatile platform to access processable soft materials with controlled porosity. Herein, we report a self-gelation approach that allows the reversible assembly of a novel Ru-based MOP in the form of colloidal gels. The presence of cationic mixed-valence [Ru2(COO)4]+ paddlewheel units allows for modification of the MOP charge via acid/base treatment, and therefore, its solubility. This feature enables control over supramolecular interactions, making it possible to reversibly force MOP aggregation to form nanoparticles, which further assemble to form a colloidal gel network. The gelation process was thoroughly investigated by time-resolved ζ-potential, pH, and dynamic light scattering measurements. This strategy leads to the evolution of hierarchically porous aerogel from individual MOP molecules without using any additional component. Furthermore, we demonstrate that the simplicity of this method can be exploited for the obtention of MOP-based gels through a one-pot synthetic approach starting from MOP precursors.
Collapse
Affiliation(s)
- Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Inorganic Chemistry, Autonomous University of Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid 28049 Madrid Spain
| | - Fuerkaiti Tayier
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Phitchayapha Phattharaphuti
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku 606-8501 Kyoto Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
10
|
Zhao X, Tang Y, Wang Y, Rong X, Wu P, Li Z, Cai N, Deng X, Wang J. Zirconium metal-organic cage decorated with squaramides imparts dual activation for chemical fixation of CO 2 under mild conditions. Chem Commun (Camb) 2023; 59:10944-10947. [PMID: 37606520 DOI: 10.1039/d3cc02953k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A "two-in-one" dual activation strategy has been developed to give high-density hydrogen-bonding (HB) active units and Lewis acid (LA) active centres by immobilizing squaramides into metal-organic cages (MOCs). The obtained MOC served as an efficient catalyst for the chemical fixation of CO2 under mild conditions up to 99% yields with good recyclability, and the mechanism of high catalytic activity has been further explored.
Collapse
Affiliation(s)
- Xiaoli Zhao
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yue Tang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yuxuan Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Xinjing Rong
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Zihan Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Ning Cai
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Xinyi Deng
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
11
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages. Chem Sci 2023; 14:6631-6642. [PMID: 37350816 PMCID: PMC10284075 DOI: 10.1039/d3sc01174g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
12
|
Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties. Molecules 2023; 28:molecules28031012. [PMID: 36770685 PMCID: PMC9919814 DOI: 10.3390/molecules28031012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Supramolecular architectures, which are formed through the combination of inorganic metal cations and organic ligands by self-assembly, are one of the techniques in modern chemical science. This kind of multi-nuclear system in various dimensionalities can be implemented in various applications such as sensing, storage/cargo, display and molecular switching. Iron(II) mediated spin-crossover (SCO) supramolecular architectures with Schiff bases have attracted the attention of many investigators due to their structural novelty as well as their potential application possibilities. In this paper, we review a number of supramolecular SCO architectures of iron(II) with Schiff base ligands exhibiting varying geometrical possibilities. The structural and SCO behavior of these complexes are also discussed in detail.
Collapse
|
13
|
Zhang YT, Zhu J, Liu ZY, Li SB, Huang H, Jiang BX. Microwave-assisted synthesis of Zr-based metal-organic polyhedron: Serving as efficient visible-light photocatalyst for Cr(VI) reduction. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
|
15
|
Liu J, Li J, Qiao S, Wang Z, Zhang P, Fan X, Cheng P, Li Y, Chen Y, Zhang Z. Self‐Healing and Shape Memory Hypercrosslinked Metal‐Organic Polyhedra Polymers via Coordination Post‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202212253. [DOI: 10.1002/anie.202212253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jiamin Li
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Shan Qiao
- College of Pharmacy Nankai University Tianjin 300071 China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Penghui Zhang
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
| | - Xiangqian Fan
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Yue‐Sheng Li
- Tianjin Key Lab Composite & Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
- College of Pharmacy Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical biology College of Chemistry Nankai University Tianjin 300071 China
- College of Pharmacy Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Liu J, Li J, Qiao S, Wang Z, Zhang P, Fan X, Cheng P, Li YS, Chen Y, Zhang Z. Self‐Healing and Shape Memory Hypercrosslinked Metal‐Organic Polyhedra Polymers via Coordination Post‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinjin Liu
- Nankai University College of Chemistry CHINA
| | - Jiamin Li
- Nankai University College of Chemistry CHINA
| | - Shan Qiao
- Nankai University College of Chemistry CHINA
| | | | | | | | - Peng Cheng
- Nankai University College of Chemistry CHINA
| | | | - Yao Chen
- Nankai University College of Chemistry CHINA
| | - Zhenjie Zhang
- Nankai University Chemistry Weijin Road 94# 300071 Tianjin CHINA
| |
Collapse
|
17
|
Gao Z, Jia J, Fan W, Liao T, Zhang X. Zirconium metal organic cages: From phosphate selective sensing to derivate forming. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li TT, Liu SN, Wu LH, Cai SL, Zheng SR. Strategies for the Construction of Functional Materials Utilizing Presynthesized Metal-Organic Cages (MOCs). Chempluschem 2022; 87:e202200172. [PMID: 35922387 DOI: 10.1002/cplu.202200172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Metal-organic cages (MOCs) that assemble from metal ions or metal clusters and organic ligands have attracted the interest of the scientific community because of their various functional coordination cavities. Unlike metal-organic frameworks (MOFs) with infinite frameworks, MOCs have discrete structures, making them soluble and stable in certain solvents and facilitating their application as starting reagents in the further construction of single components or composite materials. In recent years, increasing progress has been made in this field. In this review, we introduce these works from the perspective of design strategies, and focus on how presynthesized MOCs can be used to construct functional materials. Finally, we discuss the challenges and development prospects in this field.
Collapse
Affiliation(s)
- Tian-Tian Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, P. R. China
| | - Shu-Na Liu
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Liang-Hua Wu
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Song-Liang Cai
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China
| | - Sheng-Run Zheng
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, Guangdong, 511517, P. R. China
| |
Collapse
|
19
|
El-Sayed ESM, Yuan YD, Zhao D, Yuan D. Zirconium Metal-Organic Cages: Synthesis and Applications. Acc Chem Res 2022; 55:1546-1560. [PMID: 35579616 DOI: 10.1021/acs.accounts.1c00654] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFor the last two decades, materials scientists have contributed to a growing library of porous crystalline materials. These synthetic materials are typically extended networks, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), or discrete materials like metal-organic cages (MOCs) and porous organic cages (POCs). Advanced porous materials have shown promise for various applications due to their modular nature and structural tunability. MOCs have recently garnered attention because of their molecularity that bestows them with many unique possibilities (e.g., solution-processability, structural diversity, and postsynthetic processability).MOCs are discrete molecular assemblies of organic ligands coordinated with either metal cations or metal oxide clusters of different nuclearities, resulting in architectures with inherent porosity. Notably, the molecular nature of MOCs endows them with easy solution-processability unattainable with traditional framework materials. To date, a number of stable MOCs have been reported, such as those based on Rh (Rh-O bond energy: 405 ± 42 kJ/mol), Fe (Fe-O bond energy: 407.0 ± 1.0 kJ/mol), Cr (Cr-O bond energy: 461 ± 8.7 kJ/mol), Ti (Ti-O bond energy: 666.5 ± 5.6 kJ/mol), and Zr (Zr-O bond energy: 766.1 ± 10.6 kJ/mol). Paddle-wheel MOCs have also shown great stability in aqueous environments due to their rigid backbones. The zirconium MOC (Zr-MOCs) family emerges as a class of very robust cages for which their high bond energy endows them with high hydrothermal stability.In 2013, we reported the first four zirconocene tetrahedrons assembled from trinuclear zirconium oxide clusters with ditopic or tritopic organic ligands. Since then, significant progress in the rational design of Zr-MOC has led to an assortment of structures dedicated to meaningful applications.In this Account, we highlight the recent progress in synthesizing Zr-MOCs and Zr-MOC-based higher dimensional frameworks and their applications dedicated in our laboratories and beyond. The general Zr-MOC synthetic strategy involves assembling Zr trinuclear clusters with organic ligands (rigid or flexible) containing various functional groups. This chemistry has afforded cages with structural versatility and active sites, e.g., amino groups, for postsynthetic modifications (PSMs). Since the extrinsic porosity of cage-based frameworks is relatively weak, the resulting frameworks are susceptible to structural rearrangement after solvent removal. To circumvent this limitation, increasing the hydrogen bond ratio and strength between interlinked cages and conducting in situ catalytic polymerizations have been reported to afford permanently porous structures amenable to host-guest reactions.To expand their potential applications, multifunctional Zr-MOCs are highly desired. Such multivariate MOCs can be attained by either employing the isoreticular expansion strategy to create MOCs with high surface areas or using mixed-ligand approaches to afford heterogeneous MOCs. In addition, amorphous MOCs, flexible organic ligands, new functionalities, and MOC-based extended networks are exciting new approaches to developing materials with structural versatility and enhanced characteristics. Thereby, we believe the stability and versatility of the Zr-MOC family hold great potential in expanding and addressing challenging applications.
Collapse
Affiliation(s)
- El-Sayed M El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road, West Fuzhou 350002, P.R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Yi Di Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road, West Fuzhou 350002, P.R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| |
Collapse
|
20
|
Zhu C, Yang K, Wang H, Fang Y, Feng L, Zhang J, Xiao Z, Wu X, Li Y, Fu Y, Zhang W, Wang KY, Zhou HC. Enantioseparation in Hierarchically Porous Assemblies of Homochiral Cages. ACS CENTRAL SCIENCE 2022; 8:562-570. [PMID: 35647277 PMCID: PMC9136985 DOI: 10.1021/acscentsci.1c01571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 05/17/2023]
Abstract
Efficient enantioselective separation using porous materials requires tailored and diverse pore environments to interact with chiral substrates; yet, current cage materials usually feature uniform pores. Herein, we report two porous assemblies, PCC-60 and PCC-67, using isostructural octahedral cages with intrinsic microporous cavities of 1.5 nm. The PCC-67 adopts a densely packed mode, while the PCC-60 is a hierarchically porous assembly featuring interconnected 2.4 nm mesopores. Compared with PCC-67, the PCC-60 demonstrates excellent enantioselectivity and recyclability in separating racemic diols and amides. This solid adsorbent PCC-60 is further utilized as a chiral stationary phase for high-performance liquid chromatography (HPLC), enabling the complete separation of six valuable pharmaceutical intermediates. According to quantitative dynamic experiments, the hierarchical pores facilitate the mass transfer within the superstructure, shortening the equilibrium time for adsorbing chiral substrates. Notably, this hierarchically porous material PCC-60 indicates remarkably higher enantiomeric excess (ee) values in separating racemates than PCC-67 with uniform microporous cavities. Control experiments confirm that the presence of mesopores enables the PCC-60 to separate bulky substrates. These results uncover the traditionally underestimated role of hierarchical porosity in porous-superstructure-based enantioseparation.
Collapse
Affiliation(s)
- Chengfeng Zhu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Keke Yang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hongzhao Wang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yu Fang
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, P. R. China
| | - Liang Feng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiang Wu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yougui Li
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yanming Fu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wencheng Zhang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
21
|
Ilic S, May AM, Usov PM, Cornell HD, Gibbons B, Celis-Salazar P, Cairnie DR, Alatis J, Slebodnick C, Morris AJ. An Aluminum-Based Metal-Organic Cage for Cesium Capture. Inorg Chem 2022; 61:6604-6611. [PMID: 35446572 DOI: 10.1021/acs.inorgchem.2c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic cages are a class of supramolecular structures that often require the careful selection of organic linkers and metal nodes. Of this class, few examples of metal-organic cages exist where the nodes are composed of main group metals. Herein, we have prepared an aluminum-based metal-organic cage, H8[Al8(pdc)8(OAc)8O4] (Al-pdc-AA), using inexpensive and commercially available materials. The cage formation was achieved via solvothermal self-assembly of solvated aluminum and pyridine-dicarboxylic linkers in the presence of a capping agent, acetic acid. The obtained supramolecular structure was characterized by single-crystal X-ray diffraction (SCXRD), thermogravimetric analysis, and NMR spectroscopy. Based on crystal structure and computational analyses, the cage has a 3.7 Å diameter electron-rich cavity suitable for the binding of cations such as cesium (ionic radius of 1.69 Å). The host-guest interactions were probed with 1H and 133Cs NMR spectroscopy in DMSO, where at low concentrations, Cs+ binds to Al-pdc-AA in a 1:1 ratio. The binding site was identified from the crystal structure of CsH7[Al8(pdc)8(OAc)8O4] (Cs+⊂Al-pdc-AA), and a binding affinity of ∼106-107 M-1 was determined from NMR titration experiments. The Al-pdc-AA showed improved selectivity for cesium binding over alkali metal cations (Cs+ > Rb+ > K+ ≫ Na+ ∼ Li+). Collectively, the study reports a novel aluminum cage that can serve as a promising host for efficient and selective cesium removal.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ann M May
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pavel M Usov
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hannah D Cornell
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bradley Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Paula Celis-Salazar
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Daniel R Cairnie
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James Alatis
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 2022; 6:339-356. [PMID: 37117929 DOI: 10.1038/s41570-022-00380-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Metal-organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure-function relationships that will guide future developments.
Collapse
|
23
|
Tarzia A, Jelfs KE. Unlocking the computational design of metal-organic cages. Chem Commun (Camb) 2022; 58:3717-3730. [PMID: 35229861 PMCID: PMC8932387 DOI: 10.1039/d2cc00532h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal-organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal-organic cages is more recent. We show examples of structure prediction and host-guest/catalytic property evaluation of metal-organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal-organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
24
|
Kniazeva MV, Ovsyannikov AS, Nowicka B, Kyritsakas N, Samigullina AI, Gubaidullin AT, Islamov DR, Dorovatovskii PV, Popova EV, Kleshnina SR, Solovieva SE, Antipin IS, Ferlay S. Porous nickel and cobalt hexanuclear ring-like clusters built from two different kind of calixarene ligands – new molecular traps for small volatile molecules. CrystEngComm 2022. [DOI: 10.1039/d1ce01361k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation and structural analysis of porous hexanuclear ring-like cluster complexes built from two different kind of calixarene ligands is presented, together with their stability and vapor solvent sorption properties.
Collapse
Affiliation(s)
- Mariia V. Kniazeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Alexander S. Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Daut R. Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo 2 str, Kazan 420008, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Centre “Kurchatov Institute”, Acad. Kurchatov 1 Sq., 123182 Moscow, Russian Federation
| | - Elena V. Popova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | - Sofiya R. Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan, 420088, Russian Federation
| | | | - Igor S. Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
| |
Collapse
|
25
|
Liu ZY, Tong RM, Chen X, Zhang YT. Amino-functionalized zr-based metal-organic tetrahedron for adsorptive removal of sulfonamide antibiotic in aqueous phase. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Jia Y, Yin J, Li N, Zhang Y, Feng R, Yao Z, Bu X. Crystalline‐State
Solvent:
Metal‐Organic
Frameworks as a Platform for Intercepting
Aggregation‐Caused
Quenching. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Yuan Jia
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jia‐Cheng Yin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Na Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Ying‐Hui Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Rui Feng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zhao‐Quan Yao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Xian‐He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
- State Key Laboratory of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
27
|
Markwell-Heys AW, Roemelt M, Slattery AD, Linder-Patton OM, Bloch WM. Linking metal-organic cages pairwise as a design approach for assembling multivariate crystalline materials. Chem Sci 2021; 13:68-73. [PMID: 35059152 PMCID: PMC8694310 DOI: 10.1039/d1sc05663h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
Using metal-organic cages (MOCs) as preformed supermolecular building-blocks (SBBs) is a powerful strategy to design functional metal-organic frameworks (MOFs) with control over the pore architecture and connectivity. However, introducing chemical complexity into the network via this route is limited as most methodologies focus on only one type of MOC as the building-block. Herein we present the pairwise linking of MOCs as a design approach to introduce defined chemical complexity into porous materials. Our methodology exploits preferential Rh-aniline coordination and stoichiometric control to rationally link Cu4L4 and Rh4L4 MOCs into chemically complex, yet extremely well-defined crystalline solids. This strategy is expected to open up significant new possibilities to design bespoke multi-functional materials with atomistic control over the location and ordering of chemical functionalities.
Collapse
Affiliation(s)
| | - Michael Roemelt
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor Str. 2 12489 Berlin Germany
| | - Ashley D Slattery
- Adelaide Microscopy, The University of Adelaide Adelaide 5005 Australia
| | | | - Witold M Bloch
- Department of Chemistry, The University of Adelaide Adelaide Australia +61 8 8313 5039
| |
Collapse
|
28
|
Hendi Z, Jamali S, Mahmoudi S, Samouei H, Nayeri S, Chabok SMJ, Jamshidi Z. Metal-Organic Cubane Cage with Trimethylplatinum(IV) Vertices. Inorg Chem 2021; 61:15-19. [PMID: 34890191 DOI: 10.1021/acs.inorgchem.1c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we describe the synthesis and characterization of the first platinum(IV) metal-organic cage [(Me3PtIV)8(byp)12](OTf)8 (2), in which the organometallic moieties trimethylplatinum(IV) (PtMe3) occupied the corners of a cubane structure and 4,4'-bipyridine ligands used as linkers. The first-principles density functional theory calculations showed that the highest occupied molecular orbitals were localized on the PtMe3 moieties, while the lowest unoccupied molecular orbitals were distributed on the organic linkers.
Collapse
Affiliation(s)
- Zohreh Hendi
- Department of Chemistry, Sharif University of Technology, Tehran 11155, Iran
| | - Sirous Jamali
- Department of Chemistry, Sharif University of Technology, Tehran 11155, Iran
| | - Soheil Mahmoudi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, Vienna 1090, Austria
| | - Hamidreza Samouei
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Sara Nayeri
- Department of Chemistry, Sharif University of Technology, Tehran 11155, Iran
| | | | - Zahra Jamshidi
- Department of Chemistry, Sharif University of Technology, Tehran 11155, Iran
| |
Collapse
|
29
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
30
|
|
31
|
Gosselin AJ, Antonio AM, Korman KJ, Deegan MM, Yap GPA, Bloch ED. Elaboration of Porous Salts. J Am Chem Soc 2021; 143:14956-14961. [PMID: 34498853 DOI: 10.1021/jacs.1c05613] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A large library of novel porous salts based on charged coordination cages was synthesized via straightforward salt metathesis reactions. For these, solutions of salts of oppositely charged coordination cages are mixed to precipitate MOF-like permanently porous products where metal identity, pore size, ligand functional groups, and surface area are highly tunable. For most of these materials, the constituent cages combine in the ratios expected based on their charge. Additional studies focused on the rate of salt metathesis or reaction stoichiometry as variables to tune particle size or product composition, respectively. It is expected that the design principles outlined here will be widely applicable for the synthesis of new porous salts based on a variety of charged porous molecular precursors.
Collapse
Affiliation(s)
- Aeri J Gosselin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alexandra M Antonio
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kyle J Korman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Meaghan M Deegan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
32
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Schneider ML, Markwell-Heys AW, Linder-Patton OM, Bloch WM. Assembly and Covalent Cross-Linking of an Amine-Functionalised Metal-Organic Cage. Front Chem 2021; 9:696081. [PMID: 34113604 PMCID: PMC8185198 DOI: 10.3389/fchem.2021.696081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
The incorporation of reactive functional groups onto the exterior of metal-organic cages (MOCs) opens up new opportunities to link their well-defined scaffolds into functional porous solids. Amine moieties offer access to a rich catalogue of covalent chemistry; however, they also tend to coordinate undesirably and interfere with MOC formation, particular in the case of Cu2 paddlewheel-based MOCs. We demonstrate that tuning the basicity of an aniline-functionalized ligand enables the self-assembly of a soluble, amine-functionalized Cu4L4 lantern cage (1). Importantly, we show control over the coordinative propensity of the exterior amine of the ligand, which enables us to isolate a crystalline, two-dimensional metal-organic framework composed entirely of MOC units (2). Furthermore, we show that the nucleophilicity of the exterior amine of 1 can be accessed in solution to generate a cross-linked cage polymer (3) via imine condensation.
Collapse
Affiliation(s)
- Matthew L Schneider
- Department of Chemistry, The University of Adelaide, Adelaide, SA, Australia
| | | | | | - Witold M Bloch
- Department of Chemistry, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
34
|
Halide-regulated Hg(II) coordination polymers with 3,5-bis(4-pyridyl)-4-(3-pyridyl)-1,2,4-triazole showing diverse electrochemical biosensing toward penicillin. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Peresypkina E, Grill K, Hiltl B, Virovets AV, Kremer W, Hilgert J, Tremel W, Scheer M. Die Dreikomponenten‐Selbstorganisation ändert ihre Richtung: Ein Sprung von einfachen Polymeren zu 3D‐Netzwerken sphärischer Wirt/Gast‐Aggregate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eugenia Peresypkina
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Kevin Grill
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Barbara Hiltl
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Alexander V. Virovets
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Werner Kremer
- Institut für Biophysik und Physikalische Biochemie Universität Regensburg 93040 Regensburg Deutschland
| | - Jan Hilgert
- Institut für Anorganische Chemie und Analytische Chemie Universität Mainz 55128 Mainz Deutschland
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie Universität Mainz 55128 Mainz Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| |
Collapse
|
36
|
Zhang K, Du SW. A novel series of giant cobalt-calixarene macrocycles: ring-expansion and modulation of pore apertures through recrystallization. Dalton Trans 2021; 50:6181-6187. [PMID: 33871004 DOI: 10.1039/d1dt00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of metallomacrocycles can be quite challenging because the assemblies of such molecular cycles are difficult to control and the products are usually unpredictable. In this work, a novel series of metallomacrocycles, denoted as {Co30-A}, {Co30-B} and {Co32-A} have been synthesized via self-assembly of p-tert-butylthiacalix[4]arene (H4TC4A) and 3,5-pyrazoledicarboxylic acid (H3pdc) with Co2+ ions under solvothermal conditions. Recrystallization of {Co32-A} under different conditions was found to form {Co32-B} and {Co32-C} that have a similar ring structure to that of {Co32-A} but have different molecular packing modes in the lattices, as well as a 40-membered ring {Co40}. These complexes represent the highest-nuclearity metallocalixarene coordination wheels reported to date. Crystallographic studies indicate that all these metallomacrocycles feature wheel-like structures with apertures varing from 11.4 to 20.3 Å. It is noteworthy that {Co32-A} exhibited good efficiency in removing RhB even at low initial concentration (10 ppm) and also excellent adsorption selectivity towards RhB over Na2Fl (RhB = Rhodamine B, Na2Fl = disodium fluorescein). This work not only makes a breakthrough in the synthesis of metallocalixarene macrocycles with high nuclearity and large apertures, but also provides a simple recrystallization approach to realize the ring-expansion and regulation of molecular packing modes of the metallomacrocycles.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China and University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shao-Wu Du
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
37
|
Peresypkina E, Grill K, Hiltl B, Virovets AV, Kremer W, Hilgert J, Tremel W, Scheer M. Three-Component Self-Assembly Changes its Course: A Leap from Simple Polymers to 3D Networks of Spherical Host-Guest Assemblies. Angew Chem Int Ed Engl 2021; 60:12132-12142. [PMID: 33686782 PMCID: PMC8252601 DOI: 10.1002/anie.202103178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/20/2022]
Abstract
One‐pot self‐assembly reactions of the polyphosphorus complex [Cp*Fe(η5‐P5)] (A), a coinage metal salt AgSbF6, and flexible aliphatic dinitriles NC(CH2)xCN (x=1–10) yield 1D, 2D, and 3D coordination polymers. The seven‐membered backbone of the dinitrile was experimentally found as the borderline for the self‐assembly system furnishing products of different kinds. At x<7, various rather simple polymers are exclusively formed possessing either 0D or 1D Ag/A structural motifs connected by dinitrile spacers, while at x≥7, the self‐assembly switches to unprecedented extraordinary 3D networks of nano‐sized host–guest assemblies (SbF6)@[(A)9Ag11]11+ (x=7) or (A)@[(A)12Ag12]12+ (x=8–10) linked by dinitriles. The polycationic nodes represent the first superspheres based on A and silver and are host–guest able. All products are characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. The assemblies [(A)12Ag12]12+ were visualized by transmission electron microscopy.
Collapse
Affiliation(s)
- Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Kevin Grill
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Barbara Hiltl
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Jan Hilgert
- Institute of Inorganic Chemistry and Analytical Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
38
|
Kamebuchi H, Murakami H, Shiga R, Tadokoro M. Preparation of a magnetic metal-organic square and metal-organic cubes using 4,5-bis(2-imidazolinyl)imidazolate: slow magnetization relaxation behavior in mixed-valent octamanganese(ii/iii) clusters. Dalton Trans 2021; 50:5452-5464. [PMID: 33908930 DOI: 10.1039/d0dt04425c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional metal-organic squares (MOSs) and metal-organic cubes (MOCs) are important building units for zeolite-like metal-organic frameworks (ZMOFs), which are required to exhibit solid-state properties, such as dielectric, conductive, and magnetic properties. This work describes the preparation and magnetism of a tetracopper(ii) macrocyclic complex [CuII4(im-H2bizn)4(DMSO)3(THF)](ClO4)4·8DMSO (1) (Him-H2bizn = 4,5-bis(4,5-dihydro-1H-imidazol-2-yl)imidazole) as a MOS and octametallic clusters [NiII8(im-H2bizn)12](ClO4)4·10MeOH·3H2O (2) and [MnII4MnIII4(im-H2bizn)12](ClO4)8·14MeOH (3) as MOCs. The CuII ion in 1 possesses a five-coordinated square pyramidal geometry, resulting in the formation of an M4L4-type square, which gives an estimated intramolecular antiferromagnetic interaction with an exchange coupling constant of JCu-Cu = -95 K. Meanwhile, 2 and 3 present six-coordinated octahedral geometries, giving M8L12-type cubes, of which 2 is a normal paramagnetic compound with intramolecular antiferromagnetic interactions, and where JNi-Ni = -32 K. The most notable compound 3 is a MnII4MnIII4 mixed valence state compound, which exhibits a slow magnetization relaxation behavior similar to that of single-molecule magnets. This is attributed to the contribution of magnetic anisotropy caused by the Jahn-Teller effect of the MnIII ions. Utilizing a modified Arrhenius plot to extract the values of the thermal barrier for magnetization reversal (Ea/kB) and the pre-exponential factor (τ0), the parameters for the relaxation behavior were estimated to be Ea/kB = 6.38 K and τ0 = 3.87 × 10-7 s. UV-vis spectroscopy and electrochemical measurements in solution were also carried out. Compound 3 will be expected to lead to a solid-state material in which the magnetic and dielectric properties of encapsulated small molecules cooperate with the slow magnetization relaxation properties of the MOC backbone.
Collapse
Affiliation(s)
- Hajime Kamebuchi
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan.
| | | | | | | |
Collapse
|
39
|
Brake H, Peresypkina E, Virovets AV, Kremer W, Klimas C, Schwarzmaier C, Scheer M. Au-Containing Coordination Polymers Based on Polyphosphorus Ligand Complexes. Inorg Chem 2021; 60:6027-6039. [PMID: 33830751 DOI: 10.1021/acs.inorgchem.1c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whereas the self-assembly of pentaphosphaferrocenes [CpRFe(η5-P5)] (CpR = Cp*, Cp×, and CpBn) with Cu and Ag salts has been well-studied in the past, the coordination chemistry toward Au complexes has been left untouched so far. Herein, the results of the self-assembly processes of [CpRFe(η5-P5)] with Au salts of different anions (GaCl4-, SbF6-, and Al(OC(CF3)3)4 (TEF-)) are reported. Next to a variety of molecular coordination products, the first coordination polymers based on polyphosphorus ligand complexes and Au salts are also obtained. Thereby, a 2D coordination polymer comprising metal vacancies is isolated. In all products, the Au centers are coordinated in a linear or a trigonal planar environment. In solution, highly dynamic processes are observed. Variable-temperature NMR spectroscopy, solid-state NMR spectroscopy, and X-ray powder diffraction were applied to gain further insight into selected coordination compounds.
Collapse
Affiliation(s)
- Helena Brake
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Christian Klimas
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
40
|
Yoshinari N, Konno T. Lithium-, Sodium-, and Potassium-ion Conduction in Polymeric and Discrete Coordination Systems. CHEM LETT 2021. [DOI: 10.1246/cl.200857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0044, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0044, Japan
| |
Collapse
|
41
|
Solvent-directed assembly of Zr-based metal-organic cages for dye adsorption from aqueous solution. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Legrand A, Liu LH, Royla P, Aoyama T, Craig GA, Carné-Sánchez A, Urayama K, Weigand JJ, Lin CH, Furukawa S. Spatiotemporal Control of Supramolecular Polymerization and Gelation of Metal-Organic Polyhedra. J Am Chem Soc 2021; 143:3562-3570. [PMID: 33646776 DOI: 10.1021/jacs.1c00108] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In coordination-based supramolecular materials such as metallogels, simultaneous temporal and spatial control of their assembly remains challenging. Here, we demonstrate that the combination of light with acids as stimuli allows for the spatiotemporal control over the architectures, mechanical properties, and shape of porous soft materials based on metal-organic polyhedra (MOPs). First, we show that the formation of a colloidal gel network from a preformed kinetically trapped MOP solution can be triggered upon addition of trifluoroacetic acid (TFA) and that acid concentration determines the reaction kinetics. As determined by time-resolved dynamic light scattering, UV-vis absorption, and 1H NMR spectroscopies and rheology measurements, the consequences of the increase in acid concentration are (i) an increase in the cross-linking between MOPs; (ii) a growth in the size of the colloidal particles forming the gel network; (iii) an increase in the density of the colloidal network; and (iv) a decrease in the ductility and stiffness of the resulting gel. We then demonstrate that irradiation of a dispersed photoacid generator, pyranine, allows the spatiotemporal control of the gel formation by locally triggering the self-assembly process. Using this methodology, we show that the gel can be patterned into a desired shape. Such precise positioning of the assembled structures, combined with the stable and permanent porosity of MOPs, could allow their integration into devices for applications such as sensing, separation, catalysis, or drug release.
Collapse
Affiliation(s)
- Alexandre Legrand
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li-Hao Liu
- Department of Chemistry, Chung-Yuan Christian University, Chung Li, 32023 Taiwan
| | - Philipp Royla
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Gavin A Craig
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Arnau Carné-Sánchez
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Chia-Her Lin
- Department of Chemistry, Chung-Yuan Christian University, Chung Li, 32023 Taiwan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
43
|
Wang XY, Chen WC, Shao KZ, Wang XL, Zhao L, Su ZM. An octahedral polyoxomolybdate-organic molecular cage. Chem Commun (Camb) 2021; 57:1042-1045. [PMID: 33409516 DOI: 10.1039/d0cc07120j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unprecedented Mo-organic molecular cage built on interesting {MoVI2O5} secondary building blocks and BTC ligands, which has been successfully synthesized and systematically characterized, presents the first example of an isopolyoxomolybdates(vi)-organic molecular cage. An investigation into the related Cs+-exchange experiment was performed in detail.
Collapse
Affiliation(s)
- Xin-Ying Wang
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Wei-Chao Chen
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Kui-Zhan Shao
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Liang Zhao
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| | - Zhong-Min Su
- Key Laboratory of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|
44
|
Zhu ZZ, Tian CB, Sun QF. Coordination-Assembled Molecular Cages with Metal Cluster Nodes. CHEM REC 2020; 21:498-522. [PMID: 33270374 DOI: 10.1002/tcr.202000130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023]
Abstract
Molecular cages have attracted great attention because of their fascinating topological structures and well-defined functional cavities. These discrete cages were usually fabricated by coordination assembly approach, a process employing directional metal-ligand coordination bonds due to the nature of the divinable coordination geometry and the required lability to encode dynamic equilibrium/error-correction. Compared to these coordination molecular cages with mononulcear metal-nodes, an increasing number of molecular cages featuring dinuclear and then polynuclear metal-cluster nodes have been synthesized. These metal-cluster-based coordination cages (MCCCs) combine the merits of both metal clusters and the cage structure, and exhibit excellent performances in catalysis, separation, host-guest chemistry and so on. In this review, we highlight the syntheses of MCCCs and their potential functions that is donated by the metal-cluster nodes.
Collapse
Affiliation(s)
- Zheng-Zhong Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
45
|
Deng SQ, Li DM, Mo XJ, Miao YL, Cai SL, Fan J, Zhang WG, Zheng SR. Covalent Cross-Linking of Metal-Organic Cages: Formation of an Amorphous Cationic Porous Extended Framework for the Uptake of Oxo-Anions from Water. Chempluschem 2020; 86:709-715. [PMID: 33314751 DOI: 10.1002/cplu.202000570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Cationic amorphous metal-organic cage (MOC)-based materials capable of removing anionic pollutants from water are receiving increasing attention but they are still relatively less reported. Herein, for the first time, a cationic porous MOC-based extended framework, namely, CL-aMOC-1, was constructed by covalent linking of a cationic Pd12 L24 (L=3,5-di-pyridin-4-yl-benzaldehyde) cage with a 1,4-bis(4-aminophenyl)benzene (BAPB) linker. Interestingly, the reaction could be completed within 15 min using an amorphous MOC-based solid (aMOC-1) and BAPB as reactant via a low-temperature solid-state reaction. The CL-aMOC-1 showed improved stability, lower solubility and higher oxo-anion uptake in water compared with the original aMOC-1. The adsorption capacities for CrO4 2- , Cr2 O7 2- and ReO4 - on CL-aMOC-1 were 245.1, 311.5 and 452.5 mg/g, respectively, in which the uptake of Cr(VI)-containing oxo-anions was among the highest compared with those of other metal-organic materials. The CL-aMOC-1 can selectively capture oxo-anions in the presence of competitive anions. It exhibits good reusability as over 85 % of the uptake capacity is retained after 5 cycles. Finally, it shows the ability to remove Cr(VI) ions from electroplating wastewater.
Collapse
Affiliation(s)
- Shu-Qi Deng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Dian-Mei Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Jing Mo
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yi-Ling Miao
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Song-Liang Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jun Fan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wei-Guang Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Sheng-Run Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
46
|
Affiliation(s)
- Chuanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yong Zuo
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yu-Quan Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
47
|
Wang FK, Yang SY, Dong HZ. Influences of mixed solvent DMF/H 2O or DMA/H 2O on the topologies of coordination polymers. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1835980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fang-Kuo Wang
- College of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P.R. China
| | - Shi-Yao Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Hua-Ze Dong
- College of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, China
| |
Collapse
|
48
|
Schneider ML, Linder-Patton OM, Bloch WM. A covalent deprotection strategy for assembling supramolecular coordination polymers from metal-organic cages. Chem Commun (Camb) 2020; 56:12969-12972. [PMID: 32996491 DOI: 10.1039/d0cc05349j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A Cu4L4 metal-organic cage (MOC) composed of amine-protected ligands forms supramolecular coordination polymers (SCPs) upon covalent post-assembly deprotection. The amorphous SCPs form by virtue of aniline-copper coordination and possess a tunable porosity based on the rate of deprotection.
Collapse
Affiliation(s)
- Matthew L Schneider
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia.
| | | | | |
Collapse
|
49
|
Planes OM, Jansze SM, Scopelliti R, Fadaei-Tirani F, Severin K. Two-Step Synthesis of Linear and Bent Dicarboxylic Acid Metalloligands with Lengths of up to 3 nm. Inorg Chem 2020; 59:14544-14548. [PMID: 32962338 DOI: 10.1021/acs.inorgchem.0c02358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanometer-sized polycarboxylate ligands are interesting building blocks for metallasupramolecular chemistry, but access to these compounds is often limited by complicated synthetic pathways. Here, we describe a simple two-step protocol, which allows preparing linear and bent dicarboxylate ligands with lengths of up to 3 nm from commercially available compounds. The ligands are prepared by iron-templated polycondensation reactions involving arylboronic acids and nioxime. The final products contain two iron clathrochelate complexes and two terminal carboxyphenylene groups. To demonstrate that the new ligands are suitable for the construction of more complex molecular nanostructures, we have prepared a Cu-based metal-organic polyhedron, which represents the largest M4L4 cage described so far.
Collapse
Affiliation(s)
- Ophélie M Planes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Affiliation(s)
- Aeri J. Gosselin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Casey A. Rowland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|