1
|
Amaral LMPF, Moniz T, Silva AMN, Rangel M. Vanadium Compounds with Antidiabetic Potential. Int J Mol Sci 2023; 24:15675. [PMID: 37958659 PMCID: PMC10650557 DOI: 10.3390/ijms242115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Over the last four decades, vanadium compounds have been extensively studied as potential antidiabetic drugs. With the present review, we aim at presenting a general overview of the most promising compounds and the main results obtained with in vivo studies, reported from 1899-2023. The chemistry of vanadium is explored, discussing the importance of the structure and biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect. The spectroscopic characterization of vanadium compounds is discussed, particularly magnetic resonance methodologies, emphasizing its relevance for understanding species activity, speciation, and interaction with biological membranes. Finally, the most relevant studies regarding the use of vanadium compounds to treat diabetes are summarized, considering both animal models and human clinical trials. An overview of the main hypotheses explaining the biological activity of these compounds is presented, particularly the most accepted pathway involving vanadium interaction with phosphatase and kinase enzymes involved in the insulin signaling cascade. From our point of view, the major discoveries regarding the pharmacological action of this family of compounds are not yet fully understood. Thus, we still believe that vanadium presents the potential to help in metabolic control and the clinical management of diabetes, either as an insulin-like drug or as an insulin adjuvant. We look forward to the next forty years of research in this field, aiming to discover a vanadium compound with the desired therapeutic properties.
Collapse
Affiliation(s)
- Luísa M. P. F. Amaral
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
| | - Tânia Moniz
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André M. N. Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Rangel
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Lima LMA, da Silva AKJPF, Batista EK, Postal K, Kostenkova K, Fenton A, Crans DC, Silva WE, Belian MF, Lira EC. The antihyperglycemic and hypolipidemic activities of a sulfur-oxidovanadium(IV) complex. J Inorg Biochem 2023; 241:112127. [PMID: 36822888 DOI: 10.1016/j.jinorgbio.2023.112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
This study describes the synthesis, characterization, and biological activity of a new class of antidiabetic oxidovanadium(IV)-complexes with S2O2 coordination mode. The target complex 3,6-dithio-1,8-octanediolatooxidovanadium(IV), abbreviated as ([VIVO(octd)]), where octd = 3,6-dithio-1,8-octanediol, is formed from the reaction between the 3,6-dithio-1,8-octanediol and vanadyl sulfate (VIVOSO4). The effects of treatment with ([VIVO(octd)] on blood glucose, lipidic profile, body weight, food intake, water intake, urinary volume, glycogen levels, and biomarkers for liver toxicity were investigated using a streptozotocin (STZ)-induced diabetic Wistar rats model. The results have shown that the [VIVO(octd)] complex caused a significant decrease in blood glucose (247.6 ± 19.3 mg/dL vs 430.1 ± 37.6 mg/dL diabetic group, p < 0.05), triglycerides (TG, 50%) and very low-density cholesterol (VLDL-C, 50%) levels in STZ-diabetic rats after 3 weeks of treatment. The [VIVO(octd)] has shown antihyperglycemic activity in diabetic rats as well as a reduction in elevated lipid levels. Time-dependent studies using EPR and 51V NMR spectroscopy of [VIVO(octd)] were done in aqueous solutions to determine the complex stability and species present in the oral gavage solution used for complex administration. The spectroscopic studies have shown that the antidiabetic/hypolipidemic activity could be attributed to [VIVO(octd)], vanadium species resulting from redox processes, the hydrolysis of [VIVO(octd)] and its decomposition products, or some combination of these factors. In summary, the oxidovanadium(IV) complex containing the S2O2 donor ligand has desirable antidiabetic properties eliminating the symptoms of Diabetes mellitus and its comorbidities.
Collapse
Affiliation(s)
- Lidiane M A Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - Amanda K J P F da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - Eucilene K Batista
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Kahoana Postal
- Departamento de Química, Universidade Federal do Paraná, 81531-980 Curitiba, PR, Brazil; Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
| | - Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
| | - Alex Fenton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80513, USA
| | - Wagner E Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
| | - Mônica F Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil.
| | - Eduardo C Lira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
3
|
Kladnik J, Kljun J, Burmeister H, Ott I, Romero-Canelón I, Turel I. Towards Identification of Essential Structural Elements of Organoruthenium(II)-Pyrithionato Complexes for Anticancer Activity. Chemistry 2019; 25:14169-14182. [PMID: 31461189 DOI: 10.1002/chem.201903109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Indexed: 12/25/2022]
Abstract
An organoruthenium(II) complex with pyrithione (2-mercaptopyridine N-oxide) 1 a has previously been identified by our group as a compound with promising anticancer potential without cytotoxicity towards non-cancerous cells. To expand the rather limited research on compounds of this type, an array of novel chlorido and 1,3,5-triaza-7-phosphaadamantane (pta) organoruthenium(II) complexes with methyl-substituted pyrithiones has been prepared. After thorough investigation of the aqueous stability of these complexes, their modes of action have been elucidated at the cellular level. Minor structural alterations in the ruthenium-pyrithionato compounds resulted in fine-tuning of their cytotoxicities. The best performing compounds, 1 b and 2 b, with a chlorido or pta ligand bound to ruthenium, respectively, and a methyl group at the 3-position of the pyrithione scaffold, have been further investigated. Both compounds trigger early apoptosis, induce the generation of reactive oxygen species and G1 arrest in A549 cancer cells, and show no strong interaction with DNA. However, only 1 b also inhibits thioredoxin reductase. Wound healing assays and mitochondrial function evaluation have revealed differences between these two compounds at the cellular level.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
4
|
Adam AMA, Naglah AM, Al-Omar MA, Refat MS. Synthesis of a new insulin-mimetic anti-diabetic drug containing vitamin A and vanadium(IV) salt: Chemico-biological characterizations. Int J Immunopathol Pharmacol 2017; 30:272-281. [PMID: 28731364 PMCID: PMC5815261 DOI: 10.1177/0394632017719601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/06/2017] [Indexed: 01/29/2023] Open
Abstract
Diabetes patients suffer from chronic disorders in the metabolism due to high blood sugar caused by anomalies in insulin excretion. Recently, vanadium compounds have been prepared and functionalized to decrease the level of hyperglycemia. Vitamin A boosts beta cell activity; therefore, the lack of this vitamin plays a role in the development of type 2 diabetes. The aim of this article focused on the synthesis of a new anti-diabetic drug formed from the complexation of a vanadium(IV) salt with vitamin A. Vitamin A acts as a unidentate chelate through the oxygen of its -OH group. The vanadium(IV) compound is surrounded by two vitamin A molecules. The [VO(vitamin A)2(H2O)2] compound was synthesized in a binary solvent system consisting of MeOH/H2O (1:1 ratio) in alkaline media at pH = 8. This compound was characterized using Fourier transform infrared spectra (FT-IR), electronic spectra (UV-vis), effective magnetic moment, electron spin resonance (ESR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermal analysis (thermogravimetry (TG)-differential thermal analysis (DTA)). Anti-diabetic efficiency for the vanadium(IV) compound was assessed in streptozotocin (STZ)-induced diabetic mice. The results of the animal studies demonstrate the ability of the vanadium(IV) complex to act as an anti-diabetic agent, as measured by improvements of lipid profile, antioxidant activity (superoxide dismutase), malondialdehyde (MDA), glutathione, methionine synthase, and kidney and liver functions.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Cairo, Egypt
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, Drug Exploration & Development Chair, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
5
|
Sakurai H. The discovery of vanadyl and zinc complexes for treating diabetes and metabolic syndromes. Expert Opin Drug Discov 2013; 2:873-87. [PMID: 23489004 DOI: 10.1517/17460441.2.6.873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of diabetes mellitus has increased over the decades because of lifestyle changes. The number of people with diabetes mellitus worldwide is expected to increase from 150 million to 220 million by 2010 and to 300 million by 2025. There are two main types of diabetes mellitus. Type 1 diabetes mellitus is due to the autoimmune-mediated destruction of pancreatic β cells, resulting in absolute insulin deficiency; the patients require exogenous insulin injections. Type 2 is characterized by insulin resistance and abnormal insulin secretion and the patients require exercise, diet control and/or oral hypoglycemics. However, each treatment has some adverse effects, including physical burden, formation of self-antibodies for insulin injections, the severe side effects of hypoglycemics and the discontinuation of insulin synthesis in the pancreas. To overcome these adverse effects and replace the use of these agents, the author attempted to develop new antidiabetic agents with novel structures and mechanisms. This review focuses on the authors' recent development of vanadium and zinc complexes for antidiabetic and antimetabolic syndromes.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Kyoto Pharmaceutical University, Department of Analytical and Bioinorganic Chemistry, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
6
|
Sanna D, Ugone V, Micera G, Garribba E. Temperature and solvent structure dependence of VO2+ complexes of pyridine-N-oxide derivatives and their interaction with human serum transferrin. Dalton Trans 2012; 41:7304-18. [PMID: 22576640 DOI: 10.1039/c2dt12503j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The behaviour of the systems formed by VO(2+), 2-hydroxypyridine-N-oxide (Hhpo) and 2-mercaptopyridine-N-oxide (Hmpo) was studied both in solution and in the solid state through the combined application of spectroscopic (EPR and UV-Vis spectroscopy) and DFT methods. The geometry of solid bis-chelated complexes [VOL(2)], with L = hpo and mpo, is square pyramidal, but it can change to cis-[VOL(2)S], where S is a solvent molecule, when these are dissolved in a coordinating solvent. The equilibrium between the square pyramidal and cis-octahedral forms is strongly affected by solvent and temperature. At room temperature, the predominant species is [VOL(2)], which gives a pink colour to the solutions; at lower temperatures, the equilibrium is shifted--partially or completely--toward the formation of cis-[VOL(2)S], which is green. In an acidic environment and in the presence of an excess of ligand, [VOL(2)] can transform into the tris-chelated complex [VL(3)](+), in which vanadium loses the oxido ligand and adopts a hexa-coordinated geometry intermediate between octahedral and trigonal prismatic. 1-Methylimidazole (1-MeIm), which represents a model for His-N coordination, forms mixed complexes with stoichiometry cis-[VOL(2)(1-MeIm)], occupying an equatorial position. In the ternary systems VO(2+)-Hhpo-hTf and VO(2+)-Hmpo-hTf at room temperature and pH 7.4, besides (VO)hTf and (VO)(2)hTf, the mixed species cis-VO(hpo)(2)(hTf) and VO(mpo)(hTf) are observed, with the equatorial binding of an accessible histidine residue. Finally, the contribution of the N-oxide group to (51)V A(z) and A(iso) hyperfine coupling constants, which can be important in the characterisation of similar species, is discussed.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | | | |
Collapse
|
7
|
|
8
|
Lodyga-Chruscinska E, Micera G, Garribba E. Complex Formation in Aqueous Solution and in the Solid State of the Potent Insulin-Enhancing VIVO2+ Compounds Formed by Picolinate and Quinolinate Derivatives. Inorg Chem 2011; 50:883-99. [DOI: 10.1021/ic101475x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elzbieta Lodyga-Chruscinska
- Institute of General Food Chemistry, Technical University of Lodz, ul. Stefanowskiego 4/10, PL-90924, Lodz, Poland
| | - Giovanni Micera
- Dipartimento di Chimica e Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
9
|
Sakurai H, Katoh A, Kiss T, Jakusch T, Hattori M. Metallo-allixinate complexes with anti-diabetic and anti-metabolic syndrome activities. Metallomics 2010; 2:670-82. [PMID: 21072358 DOI: 10.1039/c0mt00025f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metabolic syndrome and the accompanied diabetes mellitus are both important diseases worldwide due to changes of lifestyle and eating habits. The number of patients with diabetes worldwide is estimated to increase to 300 million by 2025 from 150-220 million in 2010. There are two main types of diabetes. In type 1 diabetes, caused by destruction of pancreatic β-cells resulting in absolute deficiency of intrinsic insulin secretion, the patients require exogenous insulin injections several times a day. In type 2 diabetes, characterized by insulin resistance and abnormal insulin secretion, the patients need exercise, diet control and/or several types of hypoglycemics. The idea of using metal ions for the treatment of diabetes originates from the report in 1899. The research on the role of metal ions that may contribute to the improvement of diabetes began. The orally active metal complexes containing vanadyl (oxidovanadium(iv)) ion and cysteine or other ligands were first proposed in 1990, and a wide class of vanadium, copper and zinc complexes was found to be effective for treating diabetes in experimental animals. We noticed a characteristic compound, allixin, which is a non-sulfur component in dry garlic. Its vanadyl and zinc complexes improved both types of diabetes following oral administration in diabetic animals. We then developed a new zinc complex with thioxoallixin-N-methyl (tanm), which is both a sulfur and N-methyl derivative of allixin, and found that this complex improves not only diabetes but also metabolic syndrome. Furthermore, new zinc complexes inspired from the zinc-tanm were prepared; one of them exceeded the activity of zinc-tanm. The mechanism of such complexes was studied in adipocytes. We describe here the usefulness of the development of metal-based complexes in the context of potential therapeutic application for diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Department of Pharmaco-analytical and Biocoordination Chemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minami-Tamagaki-cho, Suzuka, Mie, Japan.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Sakurai H, Katoh A, Yoshikawa Y. Chemistry and Biochemistry of Insulin-Mimetic Vanadium and Zinc Complexes. Trial for Treatment of Diabetes Mellitus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.1645] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Garribba E, Micera G, Lodyga-Chruscinska E, Sanna D. Oxovanadium(IV) Complexes with Pyrazinecarboxylic Acids:The Coordinating Properties of Ligands with the (Naromatic, COO–) Donor Set. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600230] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Maurya MR, Kumar A, Abid M, Azam A. Dioxovanadium(V) and μ-oxo bis[oxovanadium(V)] complexes containing thiosemicarbazone based ONS donor set and their antiamoebic activity. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2006.02.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Ghosh T, Roy A, Bhattacharya S, Banerjee S. A family of mixed-ligand oxovanadium(V) complexes incorporating tridentate ONO donor hydrazone ligands derived from acetylhydrazide and 2-hydroxybenzaldehyde/2-hydroxyacetophenone. TRANSIT METAL CHEM 2005. [DOI: 10.1007/s11243-005-0727-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Gaber HM, Elgemeie GEH, Ouf SA, Sherif SM. Heterocyclic synthesis with 4-hydrazinopyridothienopyrimidines: Synthesis of pyridothienotriazolopyrimidines and heterocyclylpyridothienopyrimidines with biological interest. HETEROATOM CHEMISTRY 2005. [DOI: 10.1002/hc.20126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Noblía P, Baran E, Otero L, Draper P, Cerecetto H, González M, Piro O, Castellano E, Inohara T, Adachi Y, Sakurai H, Gambino D. New Vanadium(V) Complexes with Salicylaldehyde Semicarbazone Derivatives: Synthesis, Characterization, and in vitro Insulin-Mimetic Activity− Crystal Structure of [VvO2(salicylaldehyde semicarbazone)]. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200300421] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Sakurai H, Tamura A, Fugono J, Yasui H, Kiss T. New antidiabetic vanadyl–pyridone complexes: effect of equivalent transformation of coordinating atom in the ligand. Coord Chem Rev 2003. [DOI: 10.1016/s0010-8545(03)00031-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Abstract
In the 21st century, patients suffering from diabetes mellitus (DM), a lifestyle-related disease, will increase more than in the 20th century. DM is threatening because of the development of many severe secondary complications, including atherosclerosis, microangiopathy, renal dysfunction and failure, cardiac abnormalities, diabetic retinopathy, and ocular disorders. Generally, DM is classified as either insulin-dependent type 1 or noninsulin-dependent type 2 DM. Type 1 DM is treated only by daily insulin injections; type 2 DM is treated by several types of synthetic therapeutic substances together with a controlled diet and physical exercise. Even with these measures, the daily necessity for several insulin injections can be painful both physically and mentally, whereas the synthetic therapeutic substances used over the long term often have side effects. For those reasons, the creation and development of a new class of pharmaceuticals for treatment of DM in the 21st century would be extremely desirable. In the last half of the 20th century, investigations of the relationships among diseases and micronutrients, such as iron, copper, zinc, and selenium, have been numerous. Research into the development of metallopharmaceuticals involving the platinum-containing anticancer drug, cisplatin, and the gold-containing rheumatoid arthritis drug, auranofin, has also been widespread. Such important findings prompted us to develop therapeutic reagents based on a new concept to replace either insulin injections or the use of synthetic drugs. After many trials, we noticed that vanadium might be very useful in the treatment of DM. Before the discovery of insulin by Banting and Best in 1921 and its clinical trial for treating DM, the findings in 1899, in which orally administered sodium vanadate (NaVO(3)) was reported to improve human DM, gave us the idea to use vanadium to treat DM. However, it has taken a long time to obtain a scientific explanation as to why the metal ion exhibits insulin-mimetic or blood-glucose lowering effects in in vitro and in vivo experiments. After investigations from many perspectives involving biochemistry and bioinorganic chemistry, vanadyl sulfate (VOSO(4)) and its complexes with several types of ligands have been proposed as useful for treating DM in experimental diabetic animals. On the basis of a mechanistic study, this article reports on recent progress regarding the development of antidiabetic vanadyl complexes, emphasizing that the vanadyl ion and its complexes are effective not only in treating or relieving both types of DM but also in preventing the onset of DM.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
19
|
Kiss E, Kawabe K, Tamura A, Jakusch T, Sakurai H, Kiss T. Chemical speciation of insulinomimetic VO(IV) complexes of pyridine-N-oxide derivatives: binary and ternary systems. J Inorg Biochem 2003; 95:69-76. [PMID: 12763650 DOI: 10.1016/s0162-0134(03)00103-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to estimate the impact of the low-molecular-mass (l.m.m.) VO(IV) binders of blood serum on the potentially insulin-enhancing compound VO(HPO)(2) (HPO, 2-hydroxypyridine-N-oxide): and VO(MPO)(2) (MPO, 2-mercaptopyridine-N-oxide), the speciation in the binary system VO(IV)-HPO and VO(IV)-MPO and in the ternary systems VO(IV)-HPO(MPO)-ligand B (B=oxalate, lactate, citrate or phosphate) was studied by pH-potentiometry. The stability constants of the complexes formed were determined in aqueous solution at I=0.2 M (KCl) and T=25 degrees C. The most probable binding modes of the complexes were determined by EPR method. The pyridine-N-oxides were found to form very stable bis complexes, which are predominant in the pH range 2-7. The results in the ternary systems demonstrate that only the citrate is a strong enough VO(IV) binder to compete with the carrier ligands. The binding ability of the high-molecular-mass (h.m.m.) serum proteins albumin and transferrin were also assessed and transferrin was found to be an efficient binder molecule. The actual solution state of these compounds in blood serum is compared with that of other insulin-mimic VO(IV) complexes.
Collapse
Affiliation(s)
- Erzsébet Kiss
- Biocoordination Chemistry Research Group of Hungarian Academy of Sciences, University of Szeged, PO Box 440, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
20
|
Heinemann G, Fichtl B, Vogt W. Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution. Br J Clin Pharmacol 2003; 55:241-5. [PMID: 12630973 PMCID: PMC1884224 DOI: 10.1046/j.1365-2125.2003.01711.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Accepted: 07/01/2002] [Indexed: 11/20/2022] Open
Abstract
AIMS Vanadium is currently undergoing clinical trials as an oral drug in patients with noninsulin-dependent diabetes mellitus. Furthermore, vanadium occurs in elevated concentrations in the blood of patients receiving intravenous albumin solutions containing large amounts of the metal ion as an impurity. The present study was performed to examine the pharmacokinetics of vanadium in humans following a single intravenous (i.v.) dose of a commercial albumin solution containing a high amount of vanadium. METHODS The study was conducted in five healthy volunteer subjects who received intravenously 90 ml of a commercial 20% albumin infusion solution containing 47.6 micro g vanadium as an impurity. Vanadium concentrations in serum and urine were determined by electrothermal atomic absorption spectrometry. RESULTS Vanadium serum concentrations after i.v. administration were measured for 31 days. The data could be fitted by a triexponential function corresponding formally to a three-compartment model. There was an initial rapid decrease in serum concentrations with half-lives of 1.2 and 26 h. This was followed by a long-terminal half-life time of 10 days. The terminal phase accounted for about 80% of the total area under the serum concentration-time curve (AUC). The mean apparent volume of distribution of the central compartment was found to be 10 l. The volume of distribution at steady state was 54 l, and total clearance was 0.15 l h(-1). Vanadium was mainly excreted by the kidneys. About 52% of the dose was recovered in the urine after 12 days. CONCLUSIONS This study provides data on vanadium pharmacokinetics in healthy humans.
Collapse
Affiliation(s)
- Günter Heinemann
- Institut für Laboratoriumsmedizin, Deutsches Herzzentrum München des Freistaates Bayern, Klinik an der Technischen Universität, D-80636 München, Germany.
| | | | | |
Collapse
|
21
|
Katoh A, Taguchi K, Saito R, Fujisawa Y, Takino T, Sakurai H. Oxovanadium Complexes of N-Substituted 3-Hydroxy-2-methyl-4(1H)-pyridinones: Synthesis, Spectroscopic Characterization, and the Insulin-mimetic Activity. HETEROCYCLES 2003. [DOI: 10.3987/com-03-9719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chimiak A, Przychodzen W, Rachon J. The thiohydroxamate system. HETEROATOM CHEMISTRY 2002. [DOI: 10.1002/hc.10017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
|
24
|
Fugono J, Yasui H, Sakurai H. Pharmacokinetic study on gastrointestinal absorption of insulinomimetic vanadyl complexes in rats by ESR spectroscopy. J Pharm Pharmacol 2001; 53:1247-55. [PMID: 11578107 DOI: 10.1211/0022357011776531] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, we have shown that oral administrations of vanadyl (+4 oxidation state of vanadium) complexes normalize the blood glucose level of streptozotocin-induced diabetic rats (STZ-rats). To develop clinically useful insulin-mimetic vanadyl complexes, clarification of the pharmacokinetic features of vanadyl compounds is essential. First, we investigated the absorption processes of three compounds, an ionic form of vanadyl sulfate (VS) and the complex forms of bis(picolinato)oxovanadium(IV) (VO(pic)2) and bis(6-methylpicolinato)oxovanadium(IV) (VO(6mpa)2), from the gastrointestinal tract of healthy rats. The concentration curves of paramagnetic vanadyl species in the blood of rats after oral administration of these compounds, as monitored by X-band electron spin resonance (ESR) spectroscopy, exhibited biphasic increasing patterns, indicating that these compounds were absorbed from more than two sites in the gastrointestinal tract. The bioavailability of the compounds was enhanced in the following order on both oral and intraperitoneal administration: VO(6mpa)2 > VO(pic)2 > VS. In addition, bioavailability of the VO(6mpa)2 on ileal administration was enhanced compared with that using other administration sites such as the stomach and jejunum, and resulted in an enhancement about 1.8 fold that compared with oral administration. On the basis of these results, we concluded that the bioavailability of the complex is enhanced most effectively by delivery of the VO(6mpa)2 complex to the ileum.
Collapse
Affiliation(s)
- J Fugono
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan
| | | | | |
Collapse
|
25
|
Takeshita S, Kawamura I, Yasuno T, Kimura C, Yamamoto T, Seki J, Tamura A, Sakurai H, Goto T. Amelioration of insulin resistance in diabetic ob/ob mice by a new type of orally active insulin-mimetic vanadyl complex: bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) with VO(S(2)O(2)) coordination mode. J Inorg Biochem 2001; 85:179-86. [PMID: 11410238 DOI: 10.1016/s0162-0134(01)00192-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we have shown that a newly synthesized vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), VO(opt)(2), is a potent orally active insulin-mimetic in treating streptozotocin-induced diabetes in rats, with long-term action. In the present study, the anti-diabetic effect of VO(opt)(2) and its mechanism in ob/ob mice, an obese non-insulin-dependent diabetes mellitus (NIDDM) animal model, was investigated. In ob/ob mice, 15-day oral treatment with VO(opt)(2) resulted in a dose-dependent decrease in the levels of glucose, insulin and triglyceride in blood. VO(opt)(2) was also effective in ameliorating impaired glucose tolerance in ob/ob mice, when an oral glucose tolerance test was performed after treatment with VO(opt)(2). Tumor necrosis factor-alpha (TNF-alpha) is a key component of obesity-diabetes link, we therefore examined the attenuating effect of VO(opt)(2) on impaired insulin signal transduction induced by TNF-alpha. Elevated expression of TNF-alpha was observed in the epididymal and subcutaneous fat tissues of ob/ob mice. Incubation of 3T3-L1, mouse adipocytes, with TNF-alpha reduced the phosphorylation of insulin receptor substrate-1 (IRS-1), whereas VO(opt)(2) treatment resulted in an enhancement of IRS-1 phosphorylation, irrespective of the presence or absence of TNF-alpha. Overall, the present study demonstrates that VO(opt)(2) exerts an anti-diabetic effect in ob/ob mice by ameliorating impaired glucose tolerance, and furthermore, attenuates the TNF-alpha-induced decrease in IRS-1 phosphorylation in adipocytes. These results suggest that the anti-diabetic action of VO(opt)(2) is derived from an attenuation of a TNF-alpha induced impaired insulin signal transduction via inhibition of protein tyrosine phosphatase, providing a potential clinical utility for VO(opt)(2) in the treatment of NIDDM.
Collapse
Affiliation(s)
- S Takeshita
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sakurai H, Sano H, Takino T, Yasui H. An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats. J Inorg Biochem 2000; 80:99-105. [PMID: 10885469 DOI: 10.1016/s0162-0134(00)00045-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
According to Pearson's HSAB (hard and soft acids and bases) rule, the vanadyl ion is classified as a hard acid. However, vanadyl-cysteine methyl ester and dithiocarbamate complexes with VO(S2N2) and VO(S4) coordination modes, respectively, that contain bonds with a combination of hard acid (VO2+) and soft base (sulfur) have been found to form stable complexes and exhibit insulin-mimetic activities in in vitro and in vivo evaluations. Based on such observations, a purple bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) (VO(OPT)) complex with VO(S2O2) coordination mode was prepared and found to have a strong insulin-mimetic activity in in vitro evaluation, which followed in vivo effectiveness on intraperitoneal injection and oral administration. Then, we examined the real-time ESR analysis of vanadyl species in the blood of live rats given VO(OPT) by use of the blood circulation monitoring-ESR method. The clearance of vanadyl species from the blood in terms of half-life (t(1/2)) was determined as 15 min in VO(OPT)-treated rats, while t(1/2) of VOSO4-treated rats was 5 min, indicating the long-term acting character of VO(OPT). On the basis of the results, VO(OPT) with VO(S2O2) coordination mode is proposed to be a potent orally active insulin-mimetic complex in treating insulin-dependent diabetes mellitus in experimental animals.
Collapse
Affiliation(s)
- H Sakurai
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan.
| | | | | | | |
Collapse
|