1
|
Hashidzume A, Itami T, Nakahata M, Kamon Y, Yamaguchi H, Harada A. Additive-assisted macroscopic self-assembly and control of the shape of assemblies based on host-guest interaction. Sci Rep 2024; 14:20676. [PMID: 39237578 PMCID: PMC11377729 DOI: 10.1038/s41598-024-71649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
In these decades, considerable attention has focused on supramolecular polymers due to their unique structures and properties. More recently, macroscopic supramolecular polymers have attracted increasing interest from not only biologists but also materials scientists inspired by the sophisticated structures and functions of living organisms. Since the functions of supramolecular polymers are strongly dependent on their shape, control of the shape is an important issue in controlling the functions of supramolecular polymers. However, the control of shape in macroscopic supramolecular assemblies has not yet been sufficiently investigated. Previously, we studied the macroscopic self-assembly behavior of super absorbent polymer (SAP) microparticles modified with β-cyclodextrin (βCD) and adamantane (Ad) residues (βCD(x)-SAP and Ad(y)-SAP microparticles, where x and y are the mol% contents of βCD and Ad residues, respectively). More elongated assemblies were formed at higher y, indicating that the shape of assemblies can be controlled by varying the interaction strength. The noteworthy is that 1-adamantanamine hydrochloride (AdNH3Cl) assisted the formation of assemblies from βCD(x)-SAP and Ad(y)-SAP microparticles, indicating that AdNH3Cl acts as a chemical stimulus for macroscopic assemblies of βCD(x)-SAP and Ad(y)-SAP microparticles. In this study, we have thus studied the assembling behavior of βCD(x)-SAP microparticles with Ad(y)-SAP microparticles and unmodified SAP microparticles assisted by AdNH3Cl, as well as the shape of the resulting macroscopic assemblies. AdNH3Cl assisted the formation of assemblies from βCD(16.2)-SAP and Ad(15.1)-SAP microparticles, in which AdNH3Cl crosslinked the SAP microparticles through the formation of inclusion complexes of βCD residues with the Ad residue and the electrostatic interaction of ammonium and carboxylate residues. Assemblies of βCD(26.7)-SAP and unmodified SAP microparticles were formed at the concentrations of AdNH3Cl ([AdNH3Cl]0) higher than a certain level (ca. 0.05 mM). The aspect ratio (a/b) of assemblies showed a maximum at [AdNH3Cl]0 ~ 0.10 mM, indicating that the chemical stimulus, i.e., addition of AdNH3Cl, controls the shape of assemblies formed from βCD(26.7)-SAP and unmodified SAP microparticles. This study suggests that other stimuli, e.g., heat, pH, light, redox, and force, can be utilized to control the shape of macroscopic assemblies based on supramolecular interactions.
Collapse
Affiliation(s)
- Akihito Hashidzume
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Takahiro Itami
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Masaki Nakahata
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Yuri Kamon
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
2
|
Itami T, Hashidzume A, Kamon Y, Yamaguchi H, Harada A. The macroscopic shape of assemblies formed from microparticles based on host-guest interaction dependent on the guest content. Sci Rep 2021; 11:6320. [PMID: 33737714 PMCID: PMC7973530 DOI: 10.1038/s41598-021-85816-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Biological macroscopic assemblies have inspired researchers to utilize molecular recognition to develop smart materials in these decades. Recently, macroscopic self-assemblies based on molecular recognition have been realized using millimeter-scale hydrogel pieces possessing molecular recognition moieties. During the study on macroscopic self-assembly based on molecular recognition, we noticed that the shape of assemblies might be dependent on the host-guest pair. In this study, we were thus motivated to study the macroscopic shape of assemblies formed through host-guest interaction. We modified crosslinked poly(sodium acrylate) microparticles, i.e., superabsorbent polymer (SAP) microparticles, with β-cyclodextrin (βCD) and adamantyl (Ad) residues (βCD(x)-SAP and Ad(y)-SAP microparticles, respectively, where x and y denote the mol% contents of βCD and Ad residues). Then, we studied the self-assembly behavior of βCD(x)-SAP and Ad(y)-SAP microparticles through the complexation of βCD with Ad residues. There was a threshold of the βCD content in βCD(x)-SAP microparticles for assembly formation between x = 22.3 and 26.7. On the other hand, the shape of assemblies was dependent on the Ad content, y; More elongated assemblies were formed at a higher y. This may be because, at a higher y, small clusters formed in an early stage can stick together even upon collisions at a single contact point to form elongated aggregates, whereas, at a smaller y, small clusters stick together only upon collisions at multiple contact points to give rather circular assemblies. On the basis of these observations, the shape of assembly formed from microparticles can be controlled by varying y.
Collapse
Affiliation(s)
- Takahiro Itami
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akihito Hashidzume
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Yuri Kamon
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|