1
|
Singh G, Pandey SP, Singh PK. Guest Binding with Sulfated Cyclodextrins: Does the Size of Cavity Matter? Chemphyschem 2023; 24:e202200421. [PMID: 36228089 DOI: 10.1002/cphc.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Indexed: 01/19/2023]
Abstract
Sulfated cyclodextrins have recently emerged as potential candidates for producing host-induced guest aggregation with properties better than p-sulfonatocalixarenes that have previously shown numerous applications involving the phenomena of host-induced guest aggregation. In the class of sulfated cyclodextrins (SCD), sulfated β-cyclodextrin (β-SCD) remains the most extensively investigated host molecule. Although it is assumed that the host-induced guest aggregation is predominantly an outcome of interaction of the guest molecule with the charges on the exterior of SCD cavity, it has not been deciphered whether the variation in the cavity size will make a difference in the efficiency of host-induced guest-aggregation process. In this investigation, we present a systematic study of host-induced guest aggregation of a cationic molecular rotor dye, Thioflavin T (ThT) with three different sulfated cyclodextrin molecules, α-SCD, β-SCD and γ-SCD, which differ in their cavity size, using steady-state emission, ground-state absorption and time-resolved emission measurements. The obtained photophysical properties of ThT, upon interaction with different SCD molecules, indicate that the binding strength of ThT with different SCD molecules correlate with the cavity size of the host molecule, giving rise to the strongest complexation of ThT with the largest host molecule (γ-SCD). The binding affinity of ThT towards different host molecules has been supported by molecular docking calculations. The results obtained are further supported with the temperature and ionic strength dependent studies performed on the host-guest complex. Our results indicate that for host-induced guest aggregation, involving oppositely charged molecules, the size of the cavity also plays a crucial role beside the charge density on the exterior of host cavity.
Collapse
Affiliation(s)
- Gaurav Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan Panvel, Mumbai, 410206, India.,Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
2
|
Ma X, Shi L, Fu Y, Zhang B, Zhang X. Construction of Different Cyanine Dye Supramolecular Aggregates Induced by Rare Earth Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Lei Shi
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Yao Fu
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Buyue Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Xiufeng Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine North China University of Science and Technology Tangshan 063210 China
| |
Collapse
|
3
|
Kaur J, Mirgane HA, Bhosale SV, Singh PK. A cationic AIEgen and hexametaphosphate based simple and convenient fluorometric assay for alkaline phosphatase and its inhibitor. Org Biomol Chem 2022; 20:4599-4607. [PMID: 35603784 DOI: 10.1039/d2ob00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alkaline phosphatase (ALP) is an important biomarker to diagnose a number of diseases, such as anaemia, hepatobiliary diseases, chronic nephritis, and hypothyroidism. Therefore, the development of simple and convenient assays to monitor levels of ALP is highly desirable. In the present study, an aggregation-induced emission based simple, real-time, and direct fluorescence detection platform has been developed, by using a tetracationic pyridinium derivative of tetraphenylethylene (TPy-TPE) and anionic sodium hexametaphosphate (HMP) as component units. The sensing system, based on the TPy-TPE-HMP assembly, is highly responsive to the ALP dependent disintegration of the TPy-TPE-HMP aggregation complex, owing to HMP digestion by ALP. The sensing platform has an ALP detection limit of 16 mU mL-1 and linear range of 0-742 mU mL-1, respectively. The enzyme kinetic parameters, Km and Vmax, have been evaluated. In addition, the potential applicability of the TPy-TPE-HMP sensing system has also been shown with diluted human serum samples. Moreover, the TPy-TPE-HMP probe system is also useful for screening inhibitors of ALP.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Harshad A Mirgane
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| |
Collapse
|
4
|
Liu L, Shi L, Liu JY, Yang DW, Fu Y, Ma XY, Zhang BY, Zhang XF. A cysteine and Hg 2+ detection method based on transformation supramolecular assembly of cyanine dye by AGRO100. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120779. [PMID: 34974293 DOI: 10.1016/j.saa.2021.120779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
ETC (3,3'-di(3-sulfopropyl)-4,5,4',5'-dibenzo-9-ethylthiacarbocyanine triethylammonium salt), as a derivative of thiazole, is capable of forming various aggregates by the short-range noncovalent interaction forces under specific conditions, accompanying with significant absorbance and fluorescence characteristics. In this work, a label-free probe (ETC) for the detection of Cys (Cysteine) and Hg2+ was developed based on transformation between monomers and J-aggregations by AGRO100. AGRO100 can transform between single-stranded DNA and G-quadruplex to realize recognition of Cys and Hg2+ in dual-channel mode. These recognitional signals can be captured by UV-visible absorption spectra and fluorescence spectroscopy. ETC exhibits high sensitivity and selectivity with the detection limit of 0.197 nM in a wide range of 0-15 μM, which can apply of Cys and Hg2+ detection in human serum.
Collapse
Affiliation(s)
- Lu Liu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China.
| | - Lei Shi
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China.
| | - Jian-Yong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| | - Da-Wei Yang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China.
| | - Yao Fu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China.
| | - Xiao-Ying Ma
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China.
| | - Bu-Yue Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China.
| | - Xiu-Feng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China.
| |
Collapse
|
5
|
Singh G, Singh PK. Stimulus-Responsive Supramolecular Host-Guest Assembly of a Cationic Pyrene Derivative with Sulfated β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14628-14638. [PMID: 31609124 DOI: 10.1021/acs.langmuir.9b03083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In general, aggregation-prone organic molecules are prevented from self-aggregation in the presence of macrocyclic hosts like β-cyclodextrin because of their preference for the formation of inclusion complex with guest molecules. On the contrary, sulfate-laced β-cyclodextrin has been recently reported to induce the aggregation of some of the non-aggregation-prone organic dyes, which have been subsequently utilized for biosensing applications. In the present contribution, we report the interaction of a cationic organic probe molecule, 1-pyrene methyl amine (PMA), which belongs to one of the most useful families of organic fluorescent probes, that is, pyrene, with a sulfated β-cyclodextrin derivative (SCD). Interaction of a cationic probe with a β-cyclodextrin derivative was studied using a variety of photophysical methods such as ground-state absorption, steady-state emission, and time-resolved emission techniques. Detailed photophysical investigations have revealed that SCD induces the ground-state association of PMA molecules. This SCD-induced aggregation of PMA molecules has been attributed to the charge neutralization of the cationic probe by negatively charged sulfate groups, which subsequently lead to their association because of the close proximity on the rims of cyclodextrin. This monomer-dimer equilibrium of the PMA-SCD system is found to be extremely responsive to external chemical stimuli like temperature, pH, ionic strength of the medium, and organic solvent (dimethyl sulfoxide), which projects them as potential platforms for various sensing applications including bioanalytes. The supramolecular assembly has been demonstrated to sense arginine.
Collapse
Affiliation(s)
- Gaurav Singh
- UM-DAE Centre for Excellence in Basic Sciences , University of Mumbai , Kalina, Santacruz (E), Mumbai 400 098 , India
| | - Prabhat K Singh
- Radiation & Photochemistry Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
- Homi Bhabha National Institute , Training School Complex, Anushaktinagar, Mumbai 400 094 , India
| |
Collapse
|
6
|
Awasthi AA, Singh PK. Stimulus-Responsive Supramolecular Aggregate Assembly of Auramine O Templated by Sulfated Cyclodextrin. J Phys Chem B 2017; 121:6208-6219. [DOI: 10.1021/acs.jpcb.7b03592] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ankur A. Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
7
|
Lu CC, Su SK. A New Low-Molecular-Weight Gelator: 2,4,6-Tris(N′-Laurylureido-Phenoxy)Triazine in Different Solvents. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200900017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Lu CC, Su SK. Gelation of a Highly Fluorescent Urea-Containing Triarylmelamine Derivative: 2,4,6-Tris(p-N′-Octadecylureido-Anilino)Triazine in Organic Solvents. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200900016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Avinash MB, Govindaraju T. A bio-inspired design strategy: Organization of tryptophan-appended naphthalenediimide into well-defined architectures induced by molecular interactions. NANOSCALE 2011; 3:2536-43. [PMID: 21270990 DOI: 10.1039/c0nr00766h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The chemistry of molecular assemblies involves weak yet complex non-covalent interactions, and the molecular organization of the π-conjugated material is crucial in determining the performance of an organic electronic device. Herein we demonstrate a bioinspired design strategy to tune the self-assembly of naphthalenediimides (NDIs) by minute structural variations, π-π stacking, hydrophobic interactions and metal interactions. We address some of the limitations associated with current design strategies, such as restriction to a specific molecular interaction or the difficulty in controlling the assembly due to several complicated intermolecular interactions. Hydrophobic-effect-induced J-type aggregation and sodium-interaction-induced H-type aggregation of tryptophan-appended NDIs have been illustrated. (1)H NMR spectra further reveal sodium cation-π interactions in tryptophan-appended NDIs, while NMR and IR spectroscopic studies confirm the structural variations associated with the molecular assembly. In summary, the molecular organization has been successfully transformed from nanospheres to particles, nanobelts, fibers and fractals. Such drastic changes in the morphology are clear and striking evidence of the importance of non-trivial weak non-covalent forces.
Collapse
Affiliation(s)
- M B Avinash
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | | |
Collapse
|
10
|
|
11
|
Heier J, Steiger R, Nüesch F, Hany R. Fast assembly of cyanine dyes into aggregates onto [6,6]-phenyl C61-butyric acid methyl ester surfaces from organic solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3955-3961. [PMID: 20073528 DOI: 10.1021/la903313k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Supramolecular agglomerates of organic colorants based on noncovalent interactions are promising candidates for the development of sensors, optoelectronics, lighting, or photovoltaics. However, their fast and defect-free fabrication on large scales using low-cost technologies has proven elusive so far. Here, we introduce a so far unreported mechanism to induce molecular order in cyanine dyes within minutes from organic solvents by self-assembly. Spin coating blends of a cyanine dye and a soluble fullerene derivative ([6,6]-phenyl C(61)-butyric acid methyl ester (PCBM)) from apolar, aprotic solvents leads to phase-separated structures on the micrometer scale. With this superordinated phase structure, adjustment of dye aggregation is possible, leading to novel optical properties of the film emerging from dye self-assembly on the nanometer scale. In the primary process, semiporous PCBM domains act as nucleation sites for H-aggregates. H-aggregates can then be reconstructed into J-aggregates by dissolving PCBM from the film. Unexpectedly, the method even works for sterically hindered cyanine dyes that are known for their reduced tendency to aggregate. Additionally, selective removal of H-aggregates leaves a template of PCBM nanocrystals, onto which cyanine dye monomers readsorb from solution, forming H-aggregates of similar quality.
Collapse
Affiliation(s)
- Jakob Heier
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Functional Polymers, Uberlandstr. 129, 8600 Dübendorf, Switzerland.
| | | | | | | |
Collapse
|
12
|
Yang Q, Xiang J, Yang S, Li Q, Zhou Q, Guan A, Zhang X, Zhang H, Tang Y, Xu G. Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: II. The binding characterization with specific intramolecular G-quadruplex and the recognizing mechanism. Nucleic Acids Res 2009; 38:1022-33. [PMID: 19933263 PMCID: PMC2817466 DOI: 10.1093/nar/gkp1045] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The supramolecular assembly of a novel cyanine dye, 3,3′-di(3-sulfopropyl)-4,5,4′,5′-dibenzo-9-ethyl-thiacarbocyanine triethylammonium salt (ETC) was designed to verify specific intramolecular G-quadruplexes from duplex and single-strand DNAs. Spectral results have shown that ETC presented two major distinct signatures with specific intramolecular G-quadruplexes in vitro: (i) dramatic changes in the absorption spectra (including disappearance of absorption peak around 660 nm and appearance of independent new peak around 584 nm); (ii) ∼70 times enhancement of fluorescence signal at 600 nm. Furthermore, based on 1H-nuclear magnetic resonance and circular dichroism results, the preferring binding of ETC to specific intramolecular G-quadruplexes probably result from end-stacking, and the loop structure nearby also plays an important role.
Collapse
Affiliation(s)
- Qianfan Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lu CC, Su SK. New gelators of urea-containing triazine derivatives: effects of aggregation and optical features in different organic solvents. Supramol Chem 2009. [DOI: 10.1080/10610270802516591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cheng Chi Lu
- a Department of Polymer Engineering , National Taiwan University of Science and Technology , Taipei, Taiwan, ROC
| | - Shuenn Kung Su
- a Department of Polymer Engineering , National Taiwan University of Science and Technology , Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Lu CC, Su SK. Gelation of a highly fluorescent urea-containing triarylamine derivative: N, N, N ′, N ′-tetrakis (p-octadecylureido-phenyl)-p-phenylenediamine in organic solvents. Supramol Chem 2009. [DOI: 10.1080/10610270802406603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cheng Chi Lu
- a Department of Polymer Engineering , National Taiwan University of Science and Technology , Taipei, Taiwan, R.O.C
| | - Shuenn Kung Su
- a Department of Polymer Engineering , National Taiwan University of Science and Technology , Taipei, Taiwan, R.O.C
| |
Collapse
|
15
|
Klapperstück T, Glanz D, Klapperstück M, Wohlrab J. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytometry A 2009; 75:593-608. [PMID: 19504578 DOI: 10.1002/cyto.a.20735] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The bis-barbituric acid oxonol, DiBAC(4)(3) is used as a standard potentiometric probe in human cells. However, its fluorescence depends not only on membrane potential but also varies with nonpotential related changes in the amount of intracellular free and bound dye. This study demonstrates the influence of different experimental conditions on this nonspecific fluorescence proportion. IGR1 melanoma cells as a model were specifically altered in cell volume and protein content by depolarizing treatments or cell cycle synchronization. Flow cytometry was performed over a wide range of extracellular DiBAC(4)(3) concentrations. Fixation and increase in protein content led to a nonspecifically enhanced fluorescence, while changes in the amount of free intracellular dye as a result of altered cell volume proved to be negligible. To establish a calibration curve using totally depolarized cells, the pore-forming action of gramicidin should be preferred to fixation. Below 100 nM DiBAC(4)(3), the logarithmic relation between cell fluorescence and dye concentration turned into a virtually linear function intersecting with zero. Consequently, calibration can then be confined to determination of the fluorescence of depolarized cells stained with the same concentration as used for the actual measurement of membrane potential. Unexpectedly, quenching of fluorescence occurred in totally depolarized cells at concentrations higher than 6,250 nM. Linearity and quenching could be confirmed by additional experiments on Chinese hamster ovary CHO-K1 and B lymphoblastoid LCL-HO cells.
Collapse
Affiliation(s)
- Thomas Klapperstück
- Department of Dermatology and Venereology, Martin Luther University of Halle-Wittenberg, Saale, Germany.
| | | | | | | |
Collapse
|