1
|
Kumarswamyreddy N, Reddy DN, Robkis DM, Kamiya N, Tsukamoto R, Kanaoka MM, Higashiyama T, Oishi S, Bode JW. Chemical Synthesis of Torenia Plant Pollen Tube Attractant Proteins by KAHA Ligation. RSC Chem Biol 2022; 3:721-727. [PMID: 35755195 PMCID: PMC9175099 DOI: 10.1039/d2cb00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of secreted cysteine-rich proteins (CRPs) is a long-standing challenge due to protein aggregation and premature formation of inter- and intramolecular disulfide bonds. Chemical synthesis provides reduced CRPs with a higher purity, which is advantageous for folding and isolation. Herein, we report the chemical synthesis of pollen tube attractant CRPs Torenia fournieri LURE (TfLURE) and Torenia concolor LURE (TcLURE) and their chimeric analogues via α-ketoacid-hydroxylamine (KAHA) ligation. The bioactivity of chemically synthesized TfLURE protein was shown to be comparable to E. coli expressed recombinant protein through in vitro assay. The convergent protein synthesis approach is beneficial for preparing these small protein variants efficiently. A convergent chemical synthesis was established for Torenia plant pollen tube attractant proteins, LUREs and their chimeric analogues by KAHA ligation. The synthetic TfLURE showed comparable bioactivity with E.coli expressed recombinant protein.![]()
Collapse
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Department of Chemistry, Indian Institute of Technology Tirupati Tirupati Andhra Pradesh 517506 India
| | - Damodara N Reddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - D Miklos Robkis
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Nao Kamiya
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Ryoko Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Masahiro M Kanaoka
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo Tokyo 113-0033 Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Jeffrey W Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
2
|
Plant egg cell fate determination depends on its exact position in female gametophyte. Proc Natl Acad Sci U S A 2021; 118:2017488118. [PMID: 33597298 DOI: 10.1073/pnas.2017488118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Plant fertilization involves both an egg cell, which fuses with a sperm cell, and synergid cells, which guide pollen tubes for sperm cell delivery. Therefore, egg and synergid cell functional specifications are prerequisites for successful fertilization. However, how the egg and synergid cells, referred to as the "egg apparatus," derived from one mother cell develop into distinct cell types remains an unanswered question. In this report, we show that the final position of the nuclei in female gametophyte determines the cell fate of the egg apparatus. We established a live imaging system to visualize the dynamics of nuclear positioning and cell identity establishment in the female gametophyte. We observed that free nuclei should migrate to a specific position before egg apparatus specialization. Artificial changing in the nuclear position on disturbance of the actin cytoskeleton, either in vitro or in vivo, could reset the cell fate of the egg apparatus. We also found that nuclei of the same origin moved to different positions and then showed different cell identities, whereas nuclei of different origins moved to the same position showed the same cell identity, indicating that the final positions of the nuclei, rather than specific nucleus lineage, play critical roles in the egg apparatus specification. Furthermore, the active auxin level was higher in the egg cell than in synergid cells. Auxin transport inhibitor could decrease the auxin level in egg cells and impair egg cell identity, suggesting that directional and accurate auxin distribution likely acts as a positional cue for egg apparatus specialization.
Collapse
|
3
|
Ji D, Chen T, Zhang Z, Li B, Tian S. Versatile Roles of the Receptor-Like Kinase Feronia in Plant Growth, Development and Host-Pathogen Interaction. Int J Mol Sci 2020; 21:E7881. [PMID: 33114219 PMCID: PMC7660594 DOI: 10.3390/ijms21217881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
As a member of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein kinase subfamily, FERONIA (FER) has emerged as a versatile player regulating multifaceted functions in growth and development, as well as responses to environmental factors and pathogens. With the concerted efforts of researchers, the molecular mechanism underlying FER-dependent signaling has been gradually elucidated. A number of cellular processes regulated by FER-ligand interactions have been extensively reported, implying cell type-specific mechanisms for FER. Here, we provide a review on the roles of FER in male-female gametophyte recognition, cell elongation, hormonal signaling, stress responses, responses to fungi and bacteria, and present a brief outlook for future efforts.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
4
|
Gu Z, Li W, Doughty J, Meng D, Yang Q, Yuan H, Li Y, Chen Q, Yu J, Liu CS, Li T. A gamma-thionin protein from apple, MdD1, is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2184-2198. [PMID: 31001872 PMCID: PMC6790362 DOI: 10.1111/pbi.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 05/09/2023]
Abstract
Apple exhibits S-RNase-mediated self-incompatibility. Although the cytotoxic effect of S-RNase inside the self-pollen tube has been studied extensively, the underlying defence mechanism in pollen tube in Rosaceae remains unclear. On exposure to stylar S-RNase, plant defence responses are activated in the pollen tube; however, how these are regulated is currently poorly understood. Here, we show that entry of both self and non-self S-RNase into pollen tubes of apple (Malus domestica) stimulates jasmonic acid (JA) production, in turn inducing the accumulation of MdMYC2 transcripts, a transcription factor in the JA signalling pathway widely considered to be involved in plant defence processes. MdMYC2 acts as a positive regulator in the pollen tube activating expression of MdD1, a gene encoding a defence protein. Importantly, MdD1 was shown to bind to the RNase activity sites of S-RNase leading to inhibition of enzymatic activity. This work provides intriguing insights into an ancient defence mechanism present in apple pollen tubes where MdD1 likely acts as a primary line of defence to inhibit S-RNase cytotoxicity prior to self/non-self recognition.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Wei Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - James Doughty
- Department of Biology and BiochemistryUniversity of BathBathUK
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hui Yuan
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yang Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Chun sheng Liu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Gotelli MM, Lattar EC, Zini LM, Galati BG. Style morphology and pollen tube pathway. PLANT REPRODUCTION 2017; 30:155-170. [PMID: 29116403 DOI: 10.1007/s00497-017-0312-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The style morphology and anatomy vary among different species. Three basic types are: open, closed, and semi-closed. Cells involved in the pollen tube pathway in the different types of styles present abundant endoplasmic reticulum, dictyosomes, mitochondria, and ribosomes. These secretory characteristics are related to the secretion where pollen tube grows. This secretion can be represented by the substances either in the canal or in the intercellular matrix or in the cell wall. Most studies suggest that pollen tubes only grow through the secretion of the canal in open styles. However, some species present pollen tubes that penetrate the epithelial cells of the canal, or grow through the middle lamella between these cells and subepithelial cells. In species with a closed style, a pathway is provided by the presence of an extracellular matrix, or by the thickened cell walls of the stylar transmitting tissue. There are reports in some species where pollen tubes can also penetrate the transmitting tissue cells and continue their growth through the cell lumen. In this review, we define subtypes of styles according to the path of the pollen tube. Style types were mapped on an angiosperm phylogenetic tree following the maximum parsimony principle. In line with this, it could be hypothesized that: the open style appeared in the early divergent angiosperms; the closed type of style originated in Asparagales, Poales, and Eudicots; and the semi-closed style appeared in Rosids, Ericales, and Gentianales. The open style seems to have been lost in core Eudicots, with reversions in some Rosids and Asterids.
Collapse
Affiliation(s)
- M M Gotelli
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
- CONICET, Buenos Aires, Argentina.
| | - E C Lattar
- IBONE-UNNE-CONICET, Corrientes, Argentina
- Cátedra de Morfología de Plantas Vasculares, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), Corrientes, Argentina
| | - L M Zini
- IBONE-UNNE-CONICET, Corrientes, Argentina
| | - B G Galati
- Cátedra de Botánica General, Depto. de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Tonosaki K, Osabe K, Kawanabe T, Fujimoto R. The importance of reproductive barriers and the effect of allopolyploidization on crop breeding. BREEDING SCIENCE 2016; 66:333-49. [PMID: 27436943 PMCID: PMC4902455 DOI: 10.1270/jsbbs.15114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/25/2016] [Indexed: 05/04/2023]
Abstract
Inter-specific hybrids are a useful source for increasing genetic diversity. Some reproductive barriers before and/or after fertilization prevent production of hybrid plants by inter-specific crossing. Therefore, techniques to overcome the reproductive barrier have been developed, and have contributed to hybridization breeding. In recent studies, identification of molecules involved in plant reproduction has been studied to understand the mechanisms of reproductive barriers. Revealing the molecular mechanisms of reproductive barriers may allow us to overcome reproductive barriers in inter-specific crossing, and to efficiently produce inter-specific hybrids in cross-combinations that cannot be produced through artificial techniques. Inter-specific hybrid plants can potentially serve as an elite material for plant breeding, produced through the merging of genomes of parental species by allopolyploidization. Allopolyploidization provides some benefits, such as heterosis, increased genetic diversity and phenotypic variability, which are caused by dynamic changes of the genome and epigenome. Understanding of allopolyploidization mechanisms is important for practical utilization of inter-specific hybrids as a breeding material. This review discusses the importance of reproductive barriers and the effect of allopolyploidization in crop breeding programs.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University,
641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813,
Japan
- Corresponding author (e-mail: )
| | - Kenji Osabe
- Okinawa Institute of Science and Technology,
1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495,
Japan
| | - Takahiro Kawanabe
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe 657-8501,
Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University,
Rokkodai, Nada-ku, Kobe 657-8501,
Japan
| |
Collapse
|
7
|
Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip. Sci Rep 2016; 6:19812. [PMID: 26804186 PMCID: PMC4726441 DOI: 10.1038/srep19812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Pollen tubes are polarly growing plant cells that are able to rapidly respond to a combination of chemical, mechanical, and electrical cues. This behavioural feature allows them to invade the flower pistil and deliver the sperm cells in highly targeted manner to receptive ovules in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood. Evidence for electrical guidance in particular is vague and highly contradictory. To generate reproducible experimental conditions for the investigation of the effect of electric fields on pollen tube growth we developed an Electrical Lab-on-Chip (ELoC). Pollen from the species Camellia displayed differential sensitivity to electric fields depending on whether the entire cell or only its growing tip was exposed. The response to DC fields was dramatically higher than that to AC fields of the same strength. However, AC fields were found to restore and even promote pollen growth. Surprisingly, the pollen tube response correlated with the conductivity of the growth medium under different AC frequencies—consistent with the notion that the effect of the field on pollen tube growth may be mediated via its effect on the motion of ions.
Collapse
|
8
|
Ichikawa M, Iwano M, Sato MH. Nuclear membrane localization during pollen development and apex-focused polarity establishment of SYP124/125 during pollen germination in Arabidopsis thaliana. PLANT REPRODUCTION 2015; 28:143-151. [PMID: 26111864 DOI: 10.1007/s00497-015-0265-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Establishment of apex-polarity. Elongation of the pollen tube is a highly coordinated process involving polarized secretion of cell wall and membrane materials to the apical region. We investigated changes in the localization of soluble NSF attachment proteins (SNAREs) in developing pollen grains and the pollen tube for transgenic Arabidopsis expressing pollen-specific plasma-membrane Qa-SNAREs (SYP124, 125 and 131) fused with the green fluorescent protein (GFP). The expression of SYP124 and SYP125 was firstly detected in the microspore nuclear membrane during pollen mitosis II. Although SYP124, 125 and 131 accumulated throughout the cytosol in the mature pollen grain, GFP-SYP124 and GFP-SYP125 were highly concentrated in the apical or subapical regions of the elongating pollen tube with slightly different localization patterns, whereas GFP-SYP131 was uniformly localized to the plasma membrane of the pollen tube. The apex-focused polarity of GFP-SYP125 was established coincident with formation of a Ca(2+) gradient before pollen germination. These results suggest that SNAREs function differentially in the same cells and that at least two distinct membrane transport pathways are involved in the pollen development and the pollen tube germination and elongation.
Collapse
Affiliation(s)
- Mie Ichikawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan.
| |
Collapse
|
9
|
Fehér A, Lajkó DB. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:93-107. [PMID: 26089155 DOI: 10.1016/j.plantsci.2015.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/11/2023]
Abstract
Rho-type small GTP-binding plant proteins function as two-state molecular switches in cellular signalling. There is accumulating evidence that Rho-of-plants (ROP) signalling is positively controlled by plant receptor kinases, through the ROP guanine nucleotide exchange factor proteins. These signalling modules regulate cell polarity, cell shape, hormone responses, and pathogen defence, among other things. Other ROP-regulatory proteins might also be subjected to protein phosphorylation by cellular kinases (e.g., mitogen-activated protein kinases or calcium-dependent protein kinases), in order to integrate various cellular signalling pathways with ROP GTPase-dependent processes. In contrast to the role of kinases in upstream ROP regulation, much less is known about the potential link between ROP GTPases and downstream kinase signalling. In other eukaryotes, Rho-type G-protein-activated kinases are widespread and have a key role in many cellular processes. Recent data indicate the existence of structurally different ROP-activated kinases in plants, but their ROP-dependent biological functions still need to be validated. In addition to these direct interactions, ROPs may also indirectly control the activity of mitogen-activated protein kinases or calcium-dependent protein kinases. These kinases may therefore function as upstream as well as downstream kinases in ROP-mediated signalling pathways, such as the phosphatidylinositol monophosphate kinases involved in cell polarity establishment.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Dézi Bianka Lajkó
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
10
|
Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans MM. Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 2014; 15:414. [PMID: 25084966 PMCID: PMC4309534 DOI: 10.1186/s13059-014-0414-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Plant gametophytes play central roles in sexual reproduction. A hallmark of the plant life cycle is that gene expression is required in the haploid gametophytes. Consequently, many mutant phenotypes are expressed in this phase. RESULTS We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. Transposon-related transcripts are present in high levels in both gametophytes, suggesting a connection between gamete production and transposon expression in maize not previously identified in any female gametophytes. Two classes of small signaling proteins and several transcription factor gene families are enriched in gametophyte transcriptomes. Expression patterns of maize genes with duplicates in subgenome 1 and subgenome 2 indicate that pollen-expressed genes in subgenome 2 are retained at a higher rate than subgenome 2 genes with other expression patterns. Analysis of available insertion mutant collections shows a statistically significant deficit in insertions in gametophyte-expressed genes. CONCLUSIONS This analysis, the first RNA-seq study to compare both gametophytes in a monocot, identifies maize gametophyte functions, gametophyte expression of transposon-related sequences, and unannotated, novel transcripts. Reduced recovery of mutations in gametophyte-expressed genes is supporting evidence for their function in the gametophytes. Expression patterns of extant, duplicated maize genes reveals that selective pressures based on male gametophytic function have likely had a disproportionate effect on plant genomes.
Collapse
|
11
|
Barlow PW, Fisahn J. Swarms, swarming and entanglements of fungal hyphae and of plant roots. Commun Integr Biol 2013; 6:e25299. [PMID: 24255743 PMCID: PMC3829901 DOI: 10.4161/cib.25299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022] Open
Abstract
There has been recent interest in the possibility that plant roots can show oriented collective motion, or swarming behavior. We examine the evidence supportive of root swarming and we also present new observations on this topic. Seven criteria are proposed for the definition of a swarm, whose application can help identify putative swarming behavior in plants. Examples where these criteria are fulfilled, at many levels of organization, are presented in relation to plant roots and root systems, as well as to the root-like mycelial cords (rhizomorphs) of fungi. The ideas of both an "active" swarming, directed by a signal which imposes a common vector on swarm element aggregation, and a "passive" swarming, where aggregation results from external constraint, are introduced. Active swarming is a pattern of cooperative behavior peculiar to the sporophyte generation of vascular plants and is the antithesis of the competitive behavior shown by the gametophyte generation of such plants, where passive swarming may be found. Fungal mycelial cords could serve as a model example of swarming in a multi-cellular, non-animal system.
Collapse
Affiliation(s)
- Peter W. Barlow
- School of Biological Sciences; University of Bristol; Bristol, United Kingdom
| | - Joachim Fisahn
- Max Planck Institute of Molecular Plant Physiology; Potsdam, Germany
| |
Collapse
|
12
|
Krause C, Richter S, Knöll C, Jürgens G. Plant secretome - from cellular process to biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2429-41. [PMID: 23557863 DOI: 10.1016/j.bbapap.2013.03.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/19/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Recent studies suggest that plants secrete a large number of proteins and peptides into the extracellular space. Secreted proteins play a crucial role in stress response, communication and development of organisms. Here we review the current knowledge of the secretome of more than ten plant species, studied in natural conditions or during (a)biotic stress. This review not only deals with the classical secretory route via endoplasmic reticulum and Golgi followed by proteins containing a known N-terminal signal peptide, but also covers new findings about unconventional secretion of leaderless proteins. We describe alternative secretion pathways and the involved compartments like the recently discovered EXPO. The well characterized secreted peptides that function as ligands of receptor proteins exemplify the biological significance and activity of the secretome. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Cornelia Krause
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
13
|
Kurihara D, Hamamura Y, Higashiyama T. Live-cell analysis of plant reproduction: Live-cell imaging, optical manipulation, and advanced microscopy technologies. Dev Growth Differ 2013; 55:462-73. [DOI: 10.1111/dgd.12040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/29/2012] [Accepted: 01/04/2013] [Indexed: 02/05/2023]
Affiliation(s)
| | - Yuki Hamamura
- Division of Biological Science; Graduate School of Science; Furo-cho, Chikusa-ku; Nagoya; Aichi; 464-8602; Japan
| | | |
Collapse
|
14
|
Iwano M, Ngo QA, Entani T, Shiba H, Nagai T, Miyawaki A, Isogai A, Grossniklaus U, Takayama S. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 2012; 139:4202-9. [DOI: 10.1242/dev.081208] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The directional growth of the pollen tube from the stigma to the embryo sac in the ovules is regulated by pollen-pistil interactions based on intercellular communication. Although pollen tube growth is regulated by the cytoplasmic Ca2+ concentration ([Ca2+]cyt), it is not known whether [Ca2+]cyt is involved in pollen tube guidance and reception. Using Arabidopsis expressing the GFP-based Ca2+-sensor yellow cameleon 3.60 (YC3.60) in pollen tubes and synergid cells, we monitored Ca2+ dynamics in these cells during pollen tube guidance and reception under semi-in vivo fertilization conditions. In the pollen tube growing towards the micropyle, pollen tubes initiated turning within 150 μm of the micropylar opening; the [Ca2+]cyt in these pollen tube tips was higher than in those not growing towards an ovule in assays with myb98 mutant ovules, in which pollen tube guidance is disrupted. These results suggest that attractants secreted from the ovules affect Ca2+ dynamics in the pollen tube. [Ca2+]cyt in synergid cells did not change when the pollen tube grew towards the micropyle or entered the ovule. Upon pollen tube arrival at the synergid cell, however, [Ca2+]cyt oscillation began at the micropylar pole of the synergid, spreading towards the chalazal pole. Finally, [Ca2+]cyt in the synergid cell reached a maximum at pollen tube rupture. These results suggest that signals from the pollen tube induce Ca2+ oscillations in synergid cells, and that this Ca2+ oscillation is involved in the interaction between the pollen tube and synergid cell.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Quy A. Ngo
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Tetsuyuki Entani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Hiroshi Shiba
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | - Akira Isogai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
15
|
Control of Programmed Cell Death During Plant Reproductive Development. BIOCOMMUNICATION OF PLANTS 2012. [DOI: 10.1007/978-3-642-23524-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Wang XF, Armbruster WS, Huang SQ. Extra-gynoecial pollen-tube growth in apocarpous angiosperms is phylogenetically widespread and probably adaptive. THE NEW PHYTOLOGIST 2012; 193:253-260. [PMID: 21955061 DOI: 10.1111/j.1469-8137.2011.03912.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• Fusion of floral carpels (syncarpy) in angiosperms is thought to have allowed for significant improvements in offspring quantity and quality in syncarpous species over gymnosperms and apocarpous (free-carpelled) angiosperms. Given the disadvantages of apocarpy, it remains an evolutionary puzzle why many angiosperm lineages with free carpels (apocarpy) have been so successful and why some lineages show reversals to apocarpy. • To investigate whether some advantages of syncarpy may accrue in other ways to apocarpous species, we reviewed previous studies of pollen-tube growth in apocarpous species and also documented pollen-tube growth in nine additional apocarpous species in six families. • Anatomical studies of a scattering of apocarpous paleodicots, monocots, and eudicots show that, after transiting the style, 'extra' pollen tubes exit fully fertilized carpels and grow to other carpels with unfertilized ovules. In many species this occurs via openings in the simple carpels, as we report here for Sagittaria potamogetifolia, Sagittaria pygmaea, Sedum lineare, and Schisandra sphenanthera. • The finding that extra-gynoecial pollen-tube growth is widespread in apocarpous species eliminates the possibility of a major fitness cost of apocarpy relative to syncarpy and may help to explain the persistence of, and multiple reversals to, apocarpy in the evolutionary history of angiosperms.
Collapse
Affiliation(s)
- Xiao-Fan Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
- Department of Biology, NTNU, N-7491 Trondheim, Norway
| | | |
Collapse
|
17
|
Plant germline development: a tale of cross-talk, signaling, and cellular interactions. ACTA ACUST UNITED AC 2011; 24:91-5. [PMID: 21590362 DOI: 10.1007/s00497-011-0170-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Nuclear behavior, cell polarity, and cell specification in the female gametophyte. ACTA ACUST UNITED AC 2011; 24:123-36. [PMID: 21336612 DOI: 10.1007/s00497-011-0161-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/15/2011] [Indexed: 12/18/2022]
Abstract
In flowering plants, the haploid gamete-forming generation comprises only a few cells and develops within the reproductive organs of the flower. The female gametophyte has become an attractive model system to study the genetic and molecular mechanisms involved in pattern formation and gamete specification. It originates from a single haploid spore through three free nuclear division cycles, giving rise to four different cell types. Research over recent years has allowed to catch a glimpse of the mechanisms that establish the distinct cell identities and suggests dynamic cell-cell communication to orchestrate not only development among the cells of the female gametophyte but also the interaction between male and female gametophytes. Additionally, cytological observations and mutant studies have highlighted the importance of nuclei migration- and positioning for patterning the female gametophyte. Here we review current knowledge on the mechanisms of cell specification in the female gametophyte, emphasizing the importance of positional cues for the establishment of distinct molecular profiles.
Collapse
|
19
|
Kawashima T, Berger F. Green love talks; cell-cell communication during double fertilization in flowering plants. AOB PLANTS 2011; 2011:plr015. [PMID: 22476485 PMCID: PMC3144379 DOI: 10.1093/aobpla/plr015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/19/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Flowering plant seeds originate from a unique double-fertilization event, which involves two sperm cells and two female gametes, the egg cell and the central cell. For many years our knowledge of mechanisms involved in angiosperm fertilization remained minimal. It was obvious that several signals were required to explain how the male gametes are delivered inside the maternal reproductive tissues to the two female gametes but their molecular nature remained unknown. The difficulties in imaging the double-fertilization process prevented the identification of the mode of sperm cell delivery. It was believed that the two sperm cells were not functionally equivalent. SCOPE We review recent studies that have significantly improved our understanding of the early steps of double fertilization. The attractants of the pollen tube have been identified as small proteins produced by the synergid cells that surround the egg cell. Genetic studies have identified the signalling pathways required for the release of male gametes from the pollen tube. High-resolution imaging of the trajectory of the two male gametes showed that their transport does not involve the synergid cells directly and that isomorphic male gametes are functionally equivalent. We also outline major outstanding issues in the field concerned with the barrier against polyspermy, gamete recognition and mechanisms that prevent interspecies crosses.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Temasek LifeScience Laboratory, 1 Research Link, National University of Singapore, 117604Singapore
- Corresponding author's e-mail address: ,
| | - Frederic Berger
- Temasek LifeScience Laboratory, 1 Research Link, National University of Singapore, 117604Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543Singapore, Singapore
- Corresponding author's e-mail address: ,
| |
Collapse
|