1
|
Wang HC, Li L, Zhang JH, Yao ZH, Pang BP. MicroRNA miR-7-5p targets MARK2 to control metamorphosis in Galeruca daurica. Comp Biochem Physiol B Biochem Mol Biol 2024; 272:110967. [PMID: 38521445 DOI: 10.1016/j.cbpb.2024.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The MARK2 gene, coding microtubule affinity-regulating kinase or serine/threonine protein kinase, is an important modulator in organism microtubule generation and cell polarity. However, its role in the metamorphosis of insects remains unknown. In this study, we found a conserved miRNA, miR-7-5p, which targets MARK2 to participate in the regulation of the larval-pupal metamorphosis in Galeruca daurica. The dual luciferase reporter assay showed that miR-7-5p interacted with the 3' UTR of MARK2 and repressed its expression. The expression profiling of miR-7-5p and MARK2 displayed an opposite trend during the larval-adult development process. In in-vivo experiments, overexpression of miR-7-5p by injecting miR-7-5p agomir in the final instar larvae down-regulated MARK2 and up-regulated main ecdysone signaling pathway genes including E74, E75, ECR, FTZ-F1 and HR3, which was similar to the results from knockdown of MARK2 by RNAi. In contrast, repression of miR-7-5p by injecting miR-7-5p antagomir obtained opposite effects. Notably, both overexpression and repression of miR-7-5p in the final instar larvae caused abnormal molting and high mortality during the larval-pupal transition, and high mortality during the pupal-adult transition. The 20-hydroxyecdysone (20E) injection experiment showed that 20E up-regulated miR-7-5p whereas down-regulated MARK2. This study reveals that the accurate regulation of miRNAs and their target genes is indispensable for insect metamorphosis.
Collapse
Affiliation(s)
- Hai-Chao Wang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing-Hang Zhang
- Inner Mongolia Center for Plant Protection and Quarantine, Hohhot, China
| | - Zhi-Han Yao
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
2
|
Lei Y, Zhang R, Cai F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 2024; 31:497-506. [PMID: 38302729 DOI: 10.1038/s41417-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
3
|
Imai S, Ooki T, Murata-Kamiya N, Komura D, Tahmina K, Wu W, Takahashi-Kanemitsu A, Knight CT, Kunita A, Suzuki N, Del Valle AA, Tsuboi M, Hata M, Hayakawa Y, Ohnishi N, Ueda K, Fukayama M, Ushiku T, Ishikawa S, Hatakeyama M. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe 2021; 29:941-958.e10. [PMID: 33989515 DOI: 10.1016/j.chom.2021.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Infection with CagA-producing Helicobacter pylori plays a causative role in the development of gastric cancer. Upon delivery into gastric epithelial cells, CagA deregulates prooncogenic phosphatase SHP2 while inhibiting polarity-regulating kinase PAR1b through complex formation. Here, we show that CagA/PAR1b interaction subverts nuclear translocation of BRCA1 by inhibiting PAR1b-mediated BRCA1 phosphorylation. It hereby induces BRCAness that promotes DNA double-strand breaks (DSBs) while disabling error-free homologous recombination-mediated DNA repair. The CagA/PAR1b interaction also stimulates Hippo signaling that circumvents apoptosis of DNA-damaged cells, giving cells time to repair DSBs through error-prone mechanisms. The DSB-activated p53-p21Cip1 axis inhibits proliferation of CagA-delivered cells, but the inhibition can be overcome by p53 inactivation. Indeed, sequential pulses of CagA in TP53-mutant cells drove somatic mutation with BRCAness-associated genetic signatures. Expansion of CagA-delivered cells with BRCAness-mediated genome instability, from which CagA-independent cancer-predisposing cells arise, provides a plausible "hit-and-run mechanism" of H. pylori CagA for gastric carcinogenesis.
Collapse
Affiliation(s)
- Satoshi Imai
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Murata-Kamiya
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Kamrunnesa Tahmina
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Weida Wu
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | | | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Adriana A Del Valle
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Naomi Ohnishi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Wang L, Li L, Wu X, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Semin Cell Dev Biol 2021; 121:53-62. [PMID: 33867214 DOI: 10.1016/j.semcdb.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China; The Population Council, Center for Biomedical Research, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
5
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:E3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
6
|
Horníková L, Bruštíková K, Forstová J. Microtubules in Polyomavirus Infection. Viruses 2020; 12:E121. [PMID: 31963741 PMCID: PMC7019765 DOI: 10.3390/v12010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection. In this review, we summarize the role of the microtubules' network during polyomavirus infection. Polyomaviruses usurp microtubules and their motors to travel via early and late acidic endosomes to the endoplasmic reticulum. As shown for SV40, kinesin-1 and microtubules are engaged in the release of partially disassembled virus from the endoplasmic reticulum to the cytosol, and dynein apparently assists in the further disassembly of virions prior to their translocation to the cell nucleus-the place of their replication. Polyomavirus gene products affect the regulation of microtubule dynamics. Early T antigens destabilize microtubules and cause aberrant mitosis. The role of these activities in tumorigenesis has been documented. However, its importance for productive infection remains elusive. On the other hand, in the late phase of infection, the major capsid protein, VP1, of the mouse polyomavirus, counteracts T-antigen-induced destabilization. It physically binds microtubules and stabilizes them. The interaction results in the G2/M block of the cell cycle and prolonged S phase, which is apparently required for successful completion of the viral replication cycle.
Collapse
Affiliation(s)
| | | | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic; (L.H.); (K.B.)
| |
Collapse
|
7
|
Fumoto K, Takigawa-Imamura H, Sumiyama K, Yoshimura SH, Maehara N, Kikuchi A. Mark1 regulates distal airspace expansion through type I pneumocyte flattening in lung development. J Cell Sci 2019; 132:jcs.235556. [PMID: 31719161 DOI: 10.1242/jcs.235556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
During the later stages of lung development, two types of pneumocytes, cuboidal type II (AECII) and flattened type I (AECI) alveolar epithelial cells, form distal lung saccules. Here, we highlight how fibroblasts expressing MAP-microtubule affinity regulating kinase 1 (Mark1) are required for the terminal stages of pulmonary development, called lung sacculation. In Mark1-knockout (KO) mice, distal sacculation and AECI flattening are significantly impaired. Fetal epithelial cells generate alveolar organoids and differentiate into pneumocytes when co-cultured with fibroblasts. However, the size of organoids decreased and AECI flattening was impaired in the presence of Mark1 KO fibroblasts. In Mark1 KO fibroblasts themselves, cilia formation and the Hedgehog pathway were suppressed, resulting in the loss of type I collagen expression. The addition of type I collagen restored AECI flattening in organoids co-cultured with Mark1 KO fibroblasts and rescued the decreased size of organoids. Mathematical modeling of distal lung sacculation supports the view that AECI flattening is necessary for the proper formation of saccule-like structures. These results suggest that Mark1-mediated fibroblast activation induces AECI flattening and thereby regulates distal lung sacculation.
Collapse
Affiliation(s)
- Katsumi Fumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hisako Takigawa-Imamura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Natsumi Maehara
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
8
|
Hatakeyama M. Malignant Helicobacter pylori-Associated Diseases: Gastric Cancer and MALT Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:135-149. [DOI: 10.1007/5584_2019_363] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Mechanisms of Axonal Sorting of Tau and Influence of the Axon Initial Segment on Tau Cell Polarity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:69-77. [DOI: 10.1007/978-981-32-9358-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
10
|
HATAKEYAMA M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:196-219. [PMID: 28413197 PMCID: PMC5489429 DOI: 10.2183/pjab.93.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor of gastric cancer. The cagA gene-encoded CagA protein is delivered into gastric epithelial cells via bacterial type IV secretion, where it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs. Delivered CagA then acts as a non-physiological scaffold/hub protein by interacting with multiple host signaling molecules, most notably the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1/MARK, in both tyrosine phosphorylation-dependent and -independent manners. CagA-mediated manipulation of intracellular signaling promotes neoplastic transformation of gastric epithelial cells. Transgenic expression of CagA in experimental animals has confirmed the oncogenic potential of the bacterial protein. Structural polymorphism of CagA influences its scaffold function, which may underlie the geographic difference in the incidence of gastric cancer. Since CagA is no longer required for the maintenance of established gastric cancer cells, studying the role of CagA during neoplastic transformation will provide an excellent opportunity to understand molecular processes underlying "Hit-and-Run" carcinogenesis.
Collapse
Affiliation(s)
- Masanori HATAKEYAMA
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: M. Hatakeyama, Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (e-mail: )
| |
Collapse
|
11
|
Gervais EM, Sequeira SJ, Wang W, Abraham S, Kim JH, Leonard D, DeSantis KA, Larsen M. Par-1b is required for morphogenesis and differentiation of myoepithelial cells during salivary gland development. Organogenesis 2016; 12:194-216. [PMID: 27841695 PMCID: PMC5198941 DOI: 10.1080/15476278.2016.1252887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/24/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023] Open
Abstract
The salivary epithelium initiates as a solid mass of epithelial cells that are organized into a primary bud that undergoes morphogenesis and differentiation to yield bilayered acini consisting of interior secretory acinar cells that are surrounded by contractile myoepithelial cells in mature salivary glands. How the primary bud transitions into acini has not been previously documented. We document here that the outer epithelial cells subsequently undergo a vertical compression as they express smooth muscle α-actin and differentiate into myoepithelial cells. The outermost layer of polarized epithelial cells assemble and organize the basal deposition of basement membrane, which requires basal positioning of the polarity protein, Par-1b. Whether Par-1b is required for the vertical compression and differentiation of the myoepithelial cells is unknown. Following manipulation of Par-1b in salivary gland organ explants, Par-1b-inhibited explants showed both a reduced vertical compression of differentiating myoepithelial cells and reduced levels of smooth muscle α-actin. Rac1 knockdown and inhibition of Rac GTPase function also inhibited branching morphogenesis. Since Rac regulates cellular morphology, we investigated a contribution for Rac in myoepithelial cell differentiation. Inhibition of Rac GTPase activity showed a similar reduction in vertical compression and smooth muscle α-actin levels while decreasing the levels of Par-1b protein and altering its basal localization in the outer cells. Inhibition of ROCK, which is required for basal positioning of Par-1b, resulted in mislocalization of Par-1b and loss of vertical cellular compression, but did not significantly alter levels of smooth muscle α-actin in these cells. Overexpression of Par-1b in the presence of Rac inhibition restored basement membrane protein levels and localization. Our results indicate that the basal localization of Par-1b in the outer epithelial cells is required for myoepithelial cell compression, and Par-1b is required for myoepithelial differentiation, regardless of its localization.
Collapse
Affiliation(s)
- Elise M. Gervais
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, Albany, NY, USA
| | - Sharon J. Sequeira
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Weihao Wang
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Stanley Abraham
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Janice H. Kim
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Daniel Leonard
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Kara A. DeSantis
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, Albany, NY, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
12
|
Epelboin Y, Quintric L, Guévélou E, Boudry P, Pichereau V, Corporeau C. The Kinome of Pacific Oyster Crassostrea gigas, Its Expression during Development and in Response to Environmental Factors. PLoS One 2016; 11:e0155435. [PMID: 27231950 PMCID: PMC4883820 DOI: 10.1371/journal.pone.0155435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
Oysters play an important role in estuarine and coastal marine habitats, where the majority of humans live. In these ecosystems, environmental degradation is substantial, and oysters must cope with highly dynamic and stressful environmental constraints during their lives in the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassostrea gigas represents a unique opportunity for a comprehensive assessment of the signal transduction pathways that the species has developed to deal with this unique habitat. We performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas, according to their kinase domain taxonomy classification, and compared with kinome already described in other animal species. The C. gigas kinome consists of 371 protein kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases. The absence of gene redundancy in some groups of the C. gigas kinome may simplify functional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we identified part of the kinome which may be central during development and may play a role in response to various environmental factors. Overall, this work contributes to a better understanding of key sensing pathways that may be central for adaptation to a highly dynamic marine environment.
Collapse
Affiliation(s)
- Yanouk Epelboin
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Laure Quintric
- Ifremer, Service Ressources Informatiques et Communications, Plouzané, France
| | - Eric Guévélou
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Pierre Boudry
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Vianney Pichereau
- UBO, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Charlotte Corporeau
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| |
Collapse
|
13
|
A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion. Curr Biol 2015; 25:2701-8. [PMID: 26455305 DOI: 10.1016/j.cub.2015.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
Abstract
To form regulated barriers between body compartments, epithelial cells polarize into apical and basolateral domains and assemble adherens junctions (AJs). Despite close links with polarity networks that generate single polarized domains, AJs distribute isotropically around the cell circumference for adhesion with all neighboring cells [1-3]. How AJs avoid the influence of polarity networks to maintain their isotropy has been unclear. In established epithelia, trans cadherin interactions could maintain AJ isotropy [4], but AJs are dynamic during epithelial development and remodeling [5, 6], and thus specific mechanisms may control their isotropy. In Drosophila, aPKC prevents hyper-polarization of junctions as epithelia develop from cellularization to gastrulation [7]. Here, we show that aPKC does so by inhibiting a positive feedback loop between Bazooka (Baz)/Par-3, a junctional organizer [5, 8-10], and centrosomes. Without aPKC, Baz and centrosomes lose their isotropic distributions and recruit each other to single plasma membrane (PM) domains. Surprisingly, our loss- and gain-of-function analyses show that the Baz-centrosome positive feedback loop is driven by Par-1, a kinase known to phosphorylate Baz and inhibit its basolateral localization [8, 11, 12]. We find that Par-1 promotes the positive feedback loop through both centrosome microtubule effects and Baz phosphorylation. Normally, aPKC attenuates the circuit by expelling Par-1 from the apical domain at gastrulation. The combination of local activation and global inhibition is a common polarization strategy [13-16]. Par-1 seems to couple both effects for a potent Baz polarization mechanism that is regulated for the isotropy of Baz and AJs around the cell circumference.
Collapse
|
14
|
McDonald JA. Canonical and noncanonical roles of Par-1/MARK kinases in cell migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 312:169-99. [PMID: 25262242 DOI: 10.1016/b978-0-12-800178-3.00006-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The partitioning defective gene 1 (Par-1)/microtubule affinity-regulating kinase (MARK) family of serine-threonine kinases have diverse cellular roles. Primary among these roles are the establishment and maintenance of cell polarity and the promotion of microtubule dynamics. Par-1/MARK kinases also regulate a growing number of cellular functions via noncanonical protein targets. Recent studies have demonstrated that Par-1/MARK proteins are required for the migration of multiple cell types. This review outlines the current evidence for regulation of cell migration by Par-1/MARK through both canonical and noncanonical roles. Par-1/MARK canonical control of microtubules during nonneuronal and neuronal migration is described. Next, regulation of cell polarity by Par-1/MARK and its dynamic effect on the movement of migrating cells are discussed. As examples of recent research that have expanded, the roles of the Par-1/MARK in cell migration, noncanonical functions of Par-1/MARK in Wnt signaling and actomyosin dynamics are described. This review also highlights questions and current challenges to further understanding how the versatile Par-1/MARK proteins function in cell migration during development, homeostatic processes, and cancer.
Collapse
Affiliation(s)
- Jocelyn A McDonald
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
15
|
Deng SS, Wu LY, Wang YC, Cao PR, Xu L, Li QR, Liu M, Zhang L, Jiang YJ, Yang XY, Sun SN, Tan MJ, Qian M, Zang Y, Feng L, Li J. Protein kinase A rescues microtubule affinity-regulating kinase 2-induced microtubule instability and neurite disruption by phosphorylating serine 409. J Biol Chem 2014; 290:3149-60. [PMID: 25512381 DOI: 10.1074/jbc.m114.629873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubule affinity-regulating kinase 2 (MARK2)/PAR-1b and protein kinase A (PKA) are both involved in the regulation of microtubule stability and neurite outgrowth, but whether a direct cross-talk exists between them remains unclear. Here, we found the disruption of microtubule and neurite outgrowth induced by MARK2 overexpression was blocked by active PKA. The interaction between PKA and MARK2 was confirmed by coimmunoprecipitation and immunocytochemistry both in vitro and in vivo. PKA was found to inhibit MARK2 kinase activity by phosphorylating a novel site, serine 409. PKA could not reverse the microtubule disruption effect induced by a serine 409 to alanine (Ala) mutant of MARK2 (MARK2 S409A). In contrast, mutation of MARK2 serine 409 to glutamic acid (Glu) (MARK2 S409E) did not affect microtubule stability and neurite outgrowth. We propose that PKA functions as an upstream inhibitor of MARK2 in regulating microtubule stability and neurite outgrowth by directly interacting and phosphorylating MARK2.
Collapse
Affiliation(s)
- Si-Si Deng
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Le-Yu Wu
- Department of Neuropharmacology, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ya-Chao Wang
- School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Peng-Rong Cao
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Lei Xu
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Qian-Ru Li
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Meng Liu
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Lun Zhang
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Yue-Jing Jiang
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Xiao-Yu Yang
- Department of Neuropharmacology, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Sheng-Nan Sun
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China, and
| | - Min-jia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China, and
| | - Min Qian
- School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi Zang
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China,
| | - Linyin Feng
- Department of Neuropharmacology, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China,
| | - Jia Li
- From the National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
16
|
Mairet-Coello G, Polleux F. Involvement of 'stress-response' kinase pathways in Alzheimer's disease progression. Curr Opin Neurobiol 2014; 27:110-7. [PMID: 24709372 DOI: 10.1016/j.conb.2014.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia, affecting more than 25 million people worldwide. Current models of the pathophysiological mechanisms of AD suggest that the accumulation of soluble oligomeric forms of amyloid-β (Aβ) peptides causes early loss of excitatory synapses and impairs synaptic plasticity. The signaling pathways mediating Aβ oligomer-induced impairment of synaptic plasticity and loss of excitatory synapses are only beginning to be unraveled. Here, we review recent evidence supporting the critical contribution of conserved 'stress-response' kinase pathways in AD progression.
Collapse
Affiliation(s)
- Georges Mairet-Coello
- The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037-1000, USA
| | - Franck Polleux
- The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037-1000, USA.
| |
Collapse
|
17
|
Lu MS, Prehoda KE. A NudE/14-3-3 pathway coordinates dynein and the kinesin Khc73 to position the mitotic spindle. Dev Cell 2013; 26:369-80. [PMID: 23987511 DOI: 10.1016/j.devcel.2013.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/07/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
Mitotic spindle position is controlled by interactions of cortical molecular motors with astral microtubules. In animal cells, Partner of Inscuteable (Pins) acts at the cortex to coordinate the activity of Dynein and Kinesin-73 (Khc73; KIF13B in mammals) to orient the spindle. Though the two motors move in opposite directions, their synergistic activity is required for robust Pins-mediated spindle orientation. Here, we identify a physical connection between Dynein and Khc73 that mediates cooperative spindle positioning. Khc73's motor and MBS domains link Pins to microtubule plus ends, while its stalk domain is necessary for Dynein activation and precise positioning of the spindle. A motif in the stalk domain binds, in a phospho-dependent manner, 14-3-3ζ, which dimerizes with 14-3-3ε. The 14-3-3ζ/ε heterodimer binds the Dynein adaptor NudE to complete the Dynein connection. The Khc73 stalk/14-3-3/NudE pathway defines a physical connection that coordinates the activities of multiple motor proteins to precisely position the spindle.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
18
|
SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 2013; 454:13-30. [PMID: 23889253 DOI: 10.1042/bj20130219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly cerebral cavernous malformations.
Collapse
|
19
|
|
20
|
Nakano A, Takashima S. LKB1 and AMP-activated protein kinase: regulators of cell polarity. Genes Cells 2012; 17:737-47. [PMID: 22892070 PMCID: PMC3533759 DOI: 10.1111/j.1365-2443.2012.01629.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/25/2012] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), a metabolic protein kinase, and its upstream kinase LKB1 play crucial roles in the establishment and maintenance of cell polarity. Although the shapes of polarized cells display extraordinary diversity, the key molecules involved in cell polarity are relatively well conserved. Here, we review the mechanisms and factors responsible for organizing cell polarity and the role of LKB1 and AMPK in cell polarity.
Collapse
Affiliation(s)
- Atsushi Nakano
- Department of Molecular Cardiology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|