1
|
Wang L, Wu B, Ma Y, Ren Z, Li W. The blooming of an old story on the bouquet. Biol Reprod 2022; 107:289-300. [PMID: 35470849 DOI: 10.1093/biolre/ioac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily conserved process, the bouquet stage during meiosis was discovered over a century ago, and active research on this important stage continues. Since the discovery of the first bouquet-related protein Taz1p in 1998, several bouquet formation-related proteins have been identified in various eukaryotes. These proteins are involved in the interaction between telomeres and the inner nuclear membrane (INM), and once these interactions are disrupted, meiotic progression is arrested, leading to infertility. Recent studies have provided significant insights into the relationships and interactions among bouquet formation-related proteins. In this review, we summarize the components involved in telomere-INM interactions and focus on their roles in bouquet formation and telomere homeostasis maintenance. In addition, we examined bouquet-related proteins in different species from an evolutionary viewpoint, highlighting the potential interactions among them.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Respiratory, China National Clinical Research Center of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengxing Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| |
Collapse
|
2
|
ChroMo, an Application for Unsupervised Analysis of Chromosome Movements in Meiosis. Cells 2021; 10:cells10082013. [PMID: 34440781 PMCID: PMC8392469 DOI: 10.3390/cells10082013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Nuclear movements during meiotic prophase, driven by cytoskeleton forces, are a broadly conserved mechanism in opisthokonts and plants to promote pairing between homologous chromosomes. These forces are transmitted to the chromosomes by specific associations between telomeres and the nuclear envelope during meiotic prophase. Defective chromosome movements (CMs) harm pairing and recombination dynamics between homologues, thereby affecting faithful gametogenesis. For this reason, modelling the behaviour of CMs and their possible microvariations as a result of mutations or physico-chemical stress is important to understand this crucial stage of meiosis. Current developments in high-throughput imaging and image processing are yielding large CM datasets that are suitable for data mining approaches. To facilitate adoption of data mining pipelines, we present ChroMo, an interactive, unsupervised cloud application specifically designed for exploring CM datasets from live imaging. ChroMo contains a wide selection of algorithms and visualizations for time-series segmentation, motif discovery, and assessment of causality networks. Using ChroMo to analyse meiotic CMs in fission yeast, we found previously undiscovered features of CMs and causality relationships between chromosome morphology and trajectory. ChroMo will be a useful tool for understanding the behaviour of meiotic CMs in yeast and other model organisms.
Collapse
|
3
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
4
|
Hayles J, Nurse P. Introduction to Fission Yeast as a Model System. Cold Spring Harb Protoc 2018; 2018:pdb.top079749. [PMID: 28733415 DOI: 10.1101/pdb.top079749] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we briefly outline the history of fission yeast, its life cycle, and aspects of its biology that make it a useful model organism for studying problems of eukaryotic molecular and cell biology.
Collapse
Affiliation(s)
- Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
5
|
Hirano Y, Kinugasa Y, Asakawa H, Chikashige Y, Obuse C, Haraguchi T, Hiraoka Y. Lem2 is retained at the nuclear envelope through its interaction with Bqt4 in fission yeast. Genes Cells 2018; 23:122-135. [PMID: 29292846 DOI: 10.1111/gtc.12557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
Inner nuclear membrane (INM) proteins are thought to play important roles in modulating nuclear organization and function through their interactions with chromatin. However, these INM proteins share redundant functions in metazoans that pose difficulties for functional studies. The fission yeast Schizosaccharomyces pombe exhibits a relatively small number of INM proteins, and molecular genetic tools are available to separate their redundant functions. In S. pombe, it has been reported that among potentially redundant INM proteins, Lem2 displays a unique genetic interaction with another INM protein, Bqt4, which is involved in anchoring telomeres to the nuclear envelope. Double mutations in the lem2 and bqt4 genes confer synthetic lethality during vegetative growth. Here, we show that Lem2 is retained at the nuclear envelope through its interaction with Bqt4, as the loss of Bqt4 results in the exclusive accumulation of Lem2 to the spindle pole body (SPB). An N-terminal nucleoplasmic region of Lem2 bears affinity to both Bqt4 and the SPB in a competitive manner. In contrast, the synthetic lethality of the lem2 bqt4 double mutant is suppressed by the C-terminal region of Lem2. These results indicate that the N-terminal and C-terminal domains of Lem2 show independent functions with respect to Bqt4.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
6
|
Katsumata K, Nishi E, Afrin S, Narusawa K, Yamamoto A. Position matters: multiple functions of LINC-dependent chromosome positioning during meiosis. Curr Genet 2017; 63:1037-1052. [PMID: 28493118 DOI: 10.1007/s00294-017-0699-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/14/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
Abstract
Chromosome positioning is crucial for multiple chromosomal events, including DNA replication, repair, and recombination. The linker of nucleoskeleton and cytoskeleton (LINC) complexes, which consist of conserved nuclear membrane proteins, were shown to control chromosome positioning and facilitate various biological processes by interacting with the cytoskeleton. However, the precise functions and regulation of LINC-dependent chromosome positioning are not fully understood. During meiosis, the LINC complexes induce clustering of telomeres, forming the bouquet chromosome arrangement, which promotes homologous chromosome pairing. In fission yeast, the bouquet forms through LINC-dependent clustering of telomeres at the spindle pole body (SPB, the centrosome equivalent in fungi) and detachment of centromeres from the SPB-localized LINC. It was recently found that, in fission yeast, the bouquet contributes to formation of the spindle and meiotic centromeres, in addition to homologous chromosome pairing, and that centromere detachment is linked to telomere clustering, which is crucial for proper spindle formation. Here, we summarize these findings and show that the bouquet chromosome arrangement also contributes to nuclear fusion during karyogamy. The available evidence suggests that these functions are universal among eukaryotes. The findings demonstrate that LINC-dependent chromosome positioning performs multiple functions and controls non-chromosomal as well as chromosomal events, and that the chromosome positioning is stringently regulated for its functions. Thus, chromosome positioning plays a much broader role and is more strictly regulated than previously thought.
Collapse
Affiliation(s)
- Kazuhiro Katsumata
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Eriko Nishi
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sadia Afrin
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kaoru Narusawa
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ayumu Yamamoto
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
7
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
8
|
A Taz1- and Microtubule-Dependent Regulatory Relationship between Telomere and Centromere Positions in Bouquet Formation Secures Proper Meiotic Divisions. PLoS Genet 2016; 12:e1006304. [PMID: 27611693 PMCID: PMC5017736 DOI: 10.1371/journal.pgen.1006304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions. Meiosis is a type of cell division, that generates haploid gametes and is essential for sexual reproduction. During meiosis, telomeres cluster on a small region of the nuclear periphery, forming a conserved chromosome arrangement referred to as the “bouquet”. Because the bouquet arrangement facilitates homologous chromosome pairing, which is essential for proper meiotic chromosome segregation, it is of great importance to understand how the bouquet arrangement is formed. In fission yeast, the bouquet arrangement requires switching of telomere and centromere positions. During mitosis, centromeres are located at the fungal centrosome called the spindle pole body (SPB). Upon entering meiosis, telomeres cluster at the SPB, and centromeres become detached from the SPB, forming the bouquet arrangement. In this study, we show that centromere detachment is linked with telomere clustering. When telomere clustering was inhibited, centromere detachment was also inhibited. This regulatory relationship depended on a conserved telomere component, Taz1, and microtubules. Furthermore, we show that the regulatory relationship is crucial for proper meiotic divisions when telomere clustering is defective. Our findings reveal a hitherto unknown regulatory relationship between meiotic telomere and centromere positions in bouquet formation, which secures proper meiotic divisions.
Collapse
|
9
|
Fennell A, Fernández-Álvarez A, Tomita K, Cooper JP. Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation. ACTA ACUST UNITED AC 2015; 208:415-28. [PMID: 25688135 PMCID: PMC4332249 DOI: 10.1083/jcb.201409058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Both centromere–centrosome and telomere–centrosome contacts can promote spindle formation during meiosis. Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks.
Collapse
Affiliation(s)
- Alex Fennell
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Alfonso Fernández-Álvarez
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| |
Collapse
|
10
|
Klutstein M, Fennell A, Fernández-Álvarez A, Cooper JP. The telomere bouquet regulates meiotic centromere assembly. Nat Cell Biol 2015; 17:458-69. [PMID: 25774833 DOI: 10.1038/ncb3132] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
The role of the conserved meiotic telomere bouquet has been enigmatic for over a century. We showed previously that disruption of the fission yeast bouquet impairs spindle formation in approximately half of meiotic cells. Surprisingly, bouquet-deficient meiocytes with functional spindles harbour chromosomes that fail to achieve spindle attachment. Kinetochore proteins and the centromeric histone H3 variant Cnp1 fail to localize to those centromeres that exhibit spindle attachment defects in the bouquet's absence. The HP1 orthologue Swi6 also fails to bind these centromeres, suggesting that compromised pericentromeric heterochromatin underlies the kinetochore defects. We find that centromeres are prone to disassembly during meiosis, but this is reversed by localization of centromeres to the telomere-proximal microenvironment, which is conducive to heterochromatin formation and centromere reassembly. Accordingly, artificially tethering a centromere to a telomere rescues the tethered centromere but not other centromeres. These results reveal an unanticipated level of control of centromeres by telomeres.
Collapse
Affiliation(s)
- Michael Klutstein
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - Alex Fennell
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - Alfonso Fernández-Álvarez
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - Julia Promisel Cooper
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| |
Collapse
|
11
|
Ozaki K, Chikashige Y, Hiraoka Y, Matsumoto T. Fission yeast Scp3 potentially maintains microtubule orientation through bundling. PLoS One 2015; 10:e0120109. [PMID: 25767875 PMCID: PMC4359140 DOI: 10.1371/journal.pone.0120109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC), a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.
Collapse
Affiliation(s)
- Kanako Ozaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Matsumoto
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
- Radiation Biology Center, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail:
| |
Collapse
|