1
|
Doerder FP. Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena. BMC Evol Biol 2014; 14:112. [PMID: 24885485 PMCID: PMC4045964 DOI: 10.1186/1471-2148-14-112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND By segregating somatic and germinal functions into large, compound macronuclei and small diploid micronuclei, respectively, ciliates can explore sexuality in ways other eukaryotes cannot. Sex, for instance, is not for reproduction but for nuclear replacement in the two cells temporarily joined in conjugation. With equal contributions from both conjugants, there is no cost of sex which theory predicts should favor asexuality. Yet ciliate asexuality is rare. The exceptional Tetrahymena has abandoned sex through loss of the micronucleus; its amicronucleates are abundant in nature where they reproduce by binary fission but never form conjugating pairs. A possible reason for their abundance is that the Tetrahymena macronucleus does not accumulate mutations as proposed by Muller's ratchet. As such, Tetrahymena amicronucleates have the potential to be very old. This study used cytochrome oxidase-1 barcodes to determine the phylogenetic origin and relative age of amicronucleates isolated from nature. RESULTS Amicronucleates constituted 25% of Tetrahymena-like wild isolates. Of the 244 amicronucleates examined for cox1 barcodes, 237 belonged to Tetrahymena, seven to other genera. Sixty percent originated from 12 named species or barcoded strains, including the model Tetrahymena thermophila, while the remaining 40% represent 19 putative new species, eight of which have micronucleate counterparts and 11 of which are known only as amicronucleates. In some instances, cox1 haplotypes were shared among micronucleate and amicronucleates collected from the same source. Phylogenetic analysis showed that most amicronucleates belong to the "borealis" clade in which mating type is determined by gene rearrangement. Some amicronucleate species were clustered on the SSU phylogenetic tree and had longer branch lengths, indicating more ancient origin. CONCLUSIONS Naturally occurring Tetrahymena amicronucleates have multiple origins, arising from numerous species. Likely many more new species remain to be discovered. Shared haplotypes indicate that some are of contemporary origin, while phylogeny indicates that others may be millions of years old. The apparent success of amicronucleate Tetrahymena may be because macronuclear assortment and recombination allow them to avoid Muller's ratchet, incorporate beneficial mutations, and evolve independently of sex. The inability of amicronucleates to mate may be the result of error(s) in mating type gene rearrangement.
Collapse
Affiliation(s)
- F Paul Doerder
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| |
Collapse
|
2
|
Chen PF, Singhal S, Bushyhead D, Broder-Fingert S, Wolfe J. Colchicine-induced degeneration of the micronucleus during conjugation in Tetrahymena. Biol Open 2014; 3:353-61. [PMID: 24728958 PMCID: PMC4021357 DOI: 10.1242/bio.20147708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One of the most dramatic examples of nuclear morphogenesis occurs during conjugation in Tetrahymena when the micronucleus elongates to a size longer than the cell itself. After contraction to a spherical shape, the nucleus moves directly to chromosome separation in the first meiotic division. Here we investigate the consequences of interrupting the elongation process. Colchicine, a microtubule inhibitor, caused retraction of elongated structures. With time, cells began to lose their micronuclei, and by five hours more than half of the paired cells had at least one cell missing a micronucleus. After reversing the colchicine block, existing micronuclei did not undergo elongation again, nor did meiosis occur. These observations indicate that micronuclear elongation is critical to subsequent meiotic division. Further, nuclear elimination occurs, which could be due to meiotic failure or possibly a problem downstream from meiosis. An analysis of the process of colchicine-induced micronuclear degeneration indicated that it was regulated by a caspase-dependent mechanism, characteristic of apoptosis, and then resorbed by a lysosome-dependent autophagic mechanism. Amicronucleate cells failed to grow when returned to nutrient medium, likely because of a lesion in the post-conjugation reconstruction of a functioning oral apparatus. The ease by which a large number of nuclei are induced to "self-destruct" may make this system useful in investigating the link between colchicine treatment and nuclear death in Tetrahymena, and in investigating how nuclear death could be regulated in living cells more generally. Finally, we note that this phenomenon might relate to the evolution of amicronucleate species of Tetrahymena.
Collapse
Affiliation(s)
- Pin-Fang Chen
- Present address: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sita Singhal
- Present address: Internal Medicine Residency Program, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Daniel Bushyhead
- Present address: School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarabeth Broder-Fingert
- Present address: Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jason Wolfe
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA Present address: Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA. Present address: Internal Medicine Residency Program, University of Connecticut Health Center, Farmington, CT 06030, USA. Present address: School of Medicine, University of Washington, Seattle, WA 98195, USA. Present address: Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Wloga D, Frankel J. From Molecules to Morphology: Cellular Organization of Tetrahymena thermophila. Methods Cell Biol 2012; 109:83-140. [DOI: 10.1016/b978-0-12-385967-9.00005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Abstract
The ciliate Tetrahymena thermophila can be said to undergo a variety of developmental programs. During vegetative growth, cells coordinate a variety of cell-cycle operations including macronuclear DNA synthesis and a-mitotic fission, micronuclear DNA synthesis and mitosis, cytokinesis and an elaborate program of cortical morphogenesis that replicates the cortical organelles. When starved, cells undergo oral replacement, transformation into fast-swimming dispersal forms or, when encountering cells of a complementary mating type, conjugation. Conjugation involves a 12 hour program of meiosis, mitosis, nuclear exchange and karyogamy, and two postzygotic divisions of the fertilization nucleus. This chapter reviews experimental data exploring the developmental dependencies associated with both vegetative and conjugal development.
Collapse
|
5
|
Kaczanowski A, Kiersnowska M. Inactivation of a macronuclear intra-S-phase checkpoint in Tetrahymena thermophila with caffeine affects the integrity of the micronuclear genome. Protist 2011; 162:616-36. [PMID: 21601521 DOI: 10.1016/j.protis.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/23/2011] [Indexed: 01/16/2023]
Abstract
Aphidicolin (APH), an inhibitor of DNA polymerase α, arrested cell divisions in Tetrahymena thermophila. Surprisingly, low concentrations of APH induced an increase of macronuclear DNA content and cell size in non-dividing cells. In spite of the cell size increase, most proliferation of basal bodies, ciliogenesis and development of new oral primordia were prevented by the APH treatment. The division arrest induced by APH was partly overridden by caffeine (CAF) treatment, which caused the fragmentation ("pulverization") of the chromosomes in G2 micronuclei. Somatic progeny of dividers with pulverized micronuclei (APH+CAF strains) contained aneuploid and amicronucleate cells. The amicronucleate cells, after losing their oral structures and most of their cilia, and undergoing progressive disorganization of cortical structures, assumed an irregular shape ("crinkled") and were nonviable. "Crinkled" cells were not formed after APH + CAF treatment of the amicronuclear BI3840 strain, which contains some mic-specific sequences in its macronucleus. Most of the APH +CAF strains had a typical "*"- like conjugation phenotype: they did not produce pronuclei, but received them unilaterally from their mates and retained old macronuclei. However, 4 among 100 APH+CAF clones induced arrest at meiotic metaphase I in their wt mates. It is likely that the origin of such clones was enhanced by chromosome pulverization.
Collapse
|
6
|
Wloga D, Strzyzewska-Jówko I, Gaertig J, Jerka-Dziadosz M. Septins stabilize mitochondria in Tetrahymena thermophila. EUKARYOTIC CELL 2008; 7:1373-86. [PMID: 18586950 PMCID: PMC2519767 DOI: 10.1128/ec.00085-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 06/18/2008] [Indexed: 01/02/2023]
Abstract
We describe phylogenetic and functional studies of three septins in the free-living ciliate Tetrahymena thermophila. Both deletion and overproduction of septins led to vacuolization of mitochondria, destabilization of the nuclear envelope, and increased autophagy. All three green fluorescent protein-tagged septins localized to mitochondria. Specific septins localized to the outer mitochondrial membrane, to septa formed during mitochondrial scission, or to the mitochondrion-associated endoplasmic reticulum. The only other septins known to localize to mitochondria are human ARTS and murine M-septin, both alternatively spliced forms of Sep4 (S. Larisch, Cell Cycle 3:1021-1023, 2004; S. Takahashi, R. Inatome, H. Yamamura, and S. Yanagi, Genes Cells 8:81-93, 2003). It therefore appears that septins have been recruited to mitochondrial functions independently in at least two eukaryotic lineages and in both cases are involved in apoptotic events.
Collapse
Affiliation(s)
- D Wloga
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607, USA
| | | | | | | |
Collapse
|
7
|
Liu XY, Lee KLD, Mao YZ, Liu T, Jin LP. Differential gene expression during stationary phase between amicronucleates and micronucleates of the ciliated protist, Pseudourostyla cristata. Curr Genet 2005; 48:401-11. [PMID: 16283314 DOI: 10.1007/s00294-005-0026-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Ciliates are unicellular eukaryotic organisms with two types of nuclei, the 'germline' micronucleus (MIC) and the 'somatic' macronucleus (MAC). We previously reported that when the MIC of Pseudourostyla cristata was eliminated by amputation, the resultant amicronucleate organisms exhibited a lower viability and abnormal oral structures. To gain insight into the genetic reorganization involved in or induced by removal of the MIC and the mechanism by which nuclear dimorphism was established, we investigated gene expression differences between amicronucleates and micronucleates, using suppression subtractive hybridization (SSH) techniques. Approximately 250 clones from each library were screened by cDNA array dot blotting. Altogether, 22 unique genes from the forward-subtractive library (micronucleates as tester, amicronucleates as driver) and 23 unique genes from the reverse-subtractive library (micronucleates as driver and amicronucleates as tester) were shown to be differentially expressed. These 45 differentially expressed genes were found to be homologs of genes involved in various cellular processes including signal transduction, transcription, cell cycle accomplishment and general metabolism, cell structure, and stress response. We highlighted 14 genes, 7 that were unique from both the forward-subtractive and the reverse-subtractive libraries, using real time semi-quantitative RT-PCR. The characterization of these cDNAs represents a starting point in understanding the molecular mechanisms of amicronucleates disruption.
Collapse
Affiliation(s)
- Xing-Yin Liu
- School of Life Sciences, Sun Yat-Sen, Zhongshan University, 510275 Guangdong, China
| | | | | | | | | |
Collapse
|
8
|
Kaczanowski A, Kiersnowska M, Kaczanowska J. Isolation of a Tetrahymena thermophila Strain which Induced Metaphase I Meiotic Arrest: New Pathway of Abortive Conjugation. J Eukaryot Microbiol 2004; 51:351-63. [PMID: 15218706 DOI: 10.1111/j.1550-7408.2004.tb00579.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A hypodiploid strain of Tetrahymena thermophila has been obtained that shows arrest at the stage of condensed nuclei, corresponding to metaphase I of normal conjugants and induced arrest at meiotic metaphase I (i.e. at the stage of condensed, bivalent chromosomes) in its wt partner mate. The metaphase I arrested conjugants retained their old macronuclei and most of them underwent cell fusion, instead of separation of exconjugants. The doublets were viable and cortically integrated. When the arrest inducing strain was crossed to the haploid tester strain, the haploid micronuclei were arrested in the meiotic metaphase I as the diploid ones had been; the monovalent, chromosomes were condensed, the arms of sister chromatids were not separated, and they were not segregated. Separation of the arms of sister chromatids and disjunction of bivalent chromosomes were not prerequisite for the formation of microtubular spindles in those cells that were arrested in meiotic metaphase I. After re-feeding, the doublet cells resumed cell divisions, segregating two macronuclei and micronuclei at random. One macronucleus was derived from the arrest inducing strain and the other from the tester strain. Heterokaryon strains with macronuclei derived from the parental arrest inducing strain and with the micronucleus derived from the parental wt tester strain were obtained. Surprisingly, these heterokaryons did not induce meiotic arrest. Thus, the arrest in the melotic metaphase I was induced by the micronucleus and not by the macronucleus of the arrest inducing strain.
Collapse
|
9
|
Wilkes DE, Otto JJ. Profilin Functions in Cytokinesis, Nuclear Positioning, and Stomatogenesis in Tetrahymena thermophila. J Eukaryot Microbiol 2003; 50:252-62. [PMID: 15132168 DOI: 10.1111/j.1550-7408.2003.tb00130.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Expression of the actin-binding protein profilin was disrupted in the ciliate Tetrahymena thermophila by an antisense ribosome method. In cells with the antisense disruption no profilin protein was detected. Cultures of cells with the antisense disruption could be maintained, indicating that profilin was not essential for cytokinesis or vegetative growth. Disruption of the expression of profilin resulted in many cells that were large and abnormally shaped. Formation of multiple micronuclei, which divide mitotically, was observed in cells with a single macronucleus, indicating a defect in early cytokinesis. Some cells with the antisense disruption contained multiple macronuclei, which in Tetrahymena may indicate a function late in cytokinesis. The lack of profilin also affected cytokinesis in the cells that could divide. Normal-sized and normal-shaped cells with the antisense disruption took significantly longer to divide than control cell types. The profilin disruption revealed two new processes in which profilin functions. In cells lacking profilin, micronuclei were not positioned at their normal site on the surface of the macronucleus and phagocytosis was defective. The defect in phagocytosis appeared to be due to disruption of the formation of oral apparatuses (stomatogenesis) and a possible failure in the internalization of phagocytic vacuoles.
Collapse
Affiliation(s)
- David E Wilkes
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
10
|
Yang X, Takahashi M. Nuclei may anchor at specific locations during nuclear determination in Paramecium caudatum. Eur J Protistol 2002. [DOI: 10.1078/0932-4739-00863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Affiliation(s)
- K M Karrer
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
12
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
13
|
Yang X, Takahashi M. Disturbance of the determination of germinal and somatic nuclei by heat shock in Paramecium caudatum. J Eukaryot Microbiol 1999; 46:49-55. [PMID: 10188260 DOI: 10.1111/j.1550-7408.1999.tb04583.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During conjugation of Paramecium caudatum, nuclear determination occurs soon after the third postzygotic division: one of the four anterior nuclei becomes the micronucleus and the remaining three degenerate, while four posterior nuclei differentiate into macronuclear anlagen. Macronuclear differentiation is supposed to be dependent on a cytoplasmic differentiation factor. In this study, postzygotic cells were subjected to heat shock for 30 min and nuclear changes were observed by staining with carbol fuchsin solution. When heat shock was initiated during the period from metaphase to telophase of the third postzygotic division, cells showed an excess of macronuclear anlagen and were typically amicronucleate. Abnormal nuclear localization around the end of the third (last) postzygotic division may explain the origin of these kinds of cells. A similar phenomenon appeared after treatment with actinomycin D or emetine. Since heat shock did not inhibit macronuclear differentiation but destroyed the formation of micronuclei, some factor(s) probably plays an essential role in nuclear determination, especially in the protection of the micronuclei.
Collapse
Affiliation(s)
- X Yang
- Institute of Biological Sciences, University of Tsukuba, Japan
| | | |
Collapse
|