1
|
Zhao P, Qi Y. Exploring the pharmacokinetics and tolerability of cyclooxygenase inhibitor ampiroxicam: a phase I study on single and multiple oral doses. Front Pharmacol 2024; 15:1429971. [PMID: 38974039 PMCID: PMC11224448 DOI: 10.3389/fphar.2024.1429971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction: Ampiroxicam is a long-acting, non-steroidal anti-inflammatory drug that selectively inhibits human cyclooxygenase, effectively mitigating fever, pain, and inflammation. This study evaluated the drug's tolerability and pharmacokinetics to support personalized dosing strategies. Methods: The study involved healthy participants and focused on the pharmacokinetics of ampiroxicam. Plasma levels of piroxicam, a key metabolite of ampiroxicam, were measured using ultra-performance liquid chromatography. Piroxicam was chosen due to its integral role in ampiroxicam's metabolic pathway. The analytical method underwent rigorous validation to ensure precision and accuracy, addressing potential interference from endogenous plasma substances. Results: Participants received ampiroxicam in single doses (low, medium, and high) and multiple doses. Pharmacokinetic parameters, including AUC0-216, AUC0-∞, and Cmax, exhibited a dose-dependent increase. No significant differences were noted across the dosage groups, and sex-specific differences were minimal, with the exception of mean residence time (MRT) in the multiple-dose group, which appeared influenced by body weight variations. Discussion: The findings affirm the safety and efficacy of ampiroxicam across different dosing regimens, validating its clinical utility and potential for personalized medicine in the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ying Qi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Lautz LS, Jeddi MZ, Girolami F, Nebbia C, Dorne JLCM. Metabolism and pharmacokinetics of pharmaceuticals in cats (Felix sylvestris catus) and implications for the risk assessment of feed additives and contaminants. Toxicol Lett 2020; 338:114-127. [PMID: 33253781 DOI: 10.1016/j.toxlet.2020.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/25/2023]
Abstract
In animal health risk assessment, hazard characterisation of feed additives has been often using the default uncertainty factor (UF) of 100 to translate a no-observed-adverse-effect level in test species (rat, mouse, dog, rabbit) to a 'safe' level of chronic exposure in farm and companion animal species. Historically, both 10-fold factors have been further divided to include chemical-specific data in both dimensions when available. For cats (Felis Sylvestris catus), an extra default UF of 5 is applied due to the species' deficiency in particularly glucuronidation and glycine conjugation. This paper aims to assess the scientific basis and validity of the UF for inter-species differences in kinetics (4.0) and the extra UF applied for cats through a comparison of kinetic parameters between rats and cats for 30 substrates of phase I and phase II metabolism. When the parent compound undergoes glucuronidation the default factor of 4.0 is exceeded, with exceptions for zidovudine and S-carprofen. Compounds that were mainly renally excreted did not exceed the 4.0-fold default. Mixed results were obtained for chemicals which are metabolised by CYP3A in rats. When chemicals were administered intravenously the 4.0-fold default was not exceeded with the exception of clomipramine, lidocaine and alfentanil. The differences seen after oral administration might be due to differences in first-pass metabolism and bioavailability. Further work is needed to further characterise phase I, phase II enzymes and transporters in cats to support the development of databases and in silico models to support hazard characterisation of chemicals particularly for feed additives.
Collapse
Affiliation(s)
- L S Lautz
- Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - M Z Jeddi
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - F Girolami
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - C Nebbia
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy.
| |
Collapse
|
3
|
Zayed A, Babaresh WM, Darweesh RS, El-Elimat T, Hawamdeh SS. Piperine Alters the Pharmacokinetics and Anticoagulation of Warfarin in Rats. J Exp Pharmacol 2020; 12:169-179. [PMID: 32607007 PMCID: PMC7311098 DOI: 10.2147/jep.s257919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/06/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Piperine, the bioactive compound of black pepper, and warfarin are metabolized by cytochrome P450 enzymes and are both highly plasma protein-bound compounds. In this study, we evaluated the effect of co-administered piperine on the pharmacokinetics and anticoagulation of warfarin in rats. Methods We studied four Sprague-Dawley rat groups: a negative control group receiving only oral warfarin, a test group receiving warfarin plus piperine, a positive control group receiving warfarin plus sulfaphenazole (CYP2C inhibitor), and another positive control group receiving warfarin plus ketoconazole (CYP3A inhibitor). We also analyzed plasma concentrations of warfarin and its major metabolite, 7-hydoxywarfarin. Blood clotting time, calculated as international normalized ratio (INR), was also measured. Results Our results showed that although co-administration of piperine produced a non-significant decrease in warfarin concentrations, it resulted in significantly lower 7-hydroxywarfarin metabolite concentrations. Piperine significantly decreased, by sixfold, AUC0–∞, by eightfold, Cmax, but significantly increased, by fivefold, CL/F and, by sixfold, Vd/F of 7-hydroxywarfarin. The INR values were consistent with the decrease in warfarin concentration in the presence of piperine and showed a significant decrease at 24 h after warfarin dose. Conclusion We conclude that piperine could be a potent inhibitor of cytochrome P450 metabolism of warfarin in vivo and, contrary to the expectation, may reduce the plasma concentration and anticoagulation of warfarin. This interaction could have a clinical significance and should be investigated in patients.
Collapse
Affiliation(s)
- Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Wahby M Babaresh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sahar S Hawamdeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
4
|
Kaur G, Chaudhary M, Jena KC, Singh N. Terbium(iii)-coated carbon quantum dots for the detection of clomipramine through aggregation-induced emission from the analyte. NEW J CHEM 2020. [DOI: 10.1039/d0nj01814g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CQD-Tb: a selective chemosensor for detecting the antidepressant drug clomipramine in aqueous media.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Post Graduate Department of Chemistry
- Sri Guru Gobind Singh College
- Chandigarh
- India
| | - Monika Chaudhary
- Centre for Biomedical Engineering
- Indian Institute of Technology Ropar
- Roopnagar
- India
| | - Kailash C. Jena
- Centre for Biomedical Engineering
- Indian Institute of Technology Ropar
- Roopnagar
- India
- Department of Physics
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar
- Roopnagar
- India
| |
Collapse
|
5
|
Lee JS, Kim SH. Dose-Dependent Pharmacokinetics of Tofacitinib in Rats: Influence of Hepatic and Intestinal First-Pass Metabolism. Pharmaceutics 2019; 11:E318. [PMID: 31284540 PMCID: PMC6681021 DOI: 10.3390/pharmaceutics11070318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
This study investigated the pharmacokinetics of tofacitinib in rats and the effects of first-pass metabolism on tofacitinib pharmacokinetics. Intravenous administration of 5, 10, 20, and 50 mg/kg tofacitinib showed that the dose-normalized area under the plasma concentration-time curve from time zero to infinity (AUC) was significantly higher at 50 mg/kg than at lower doses, a difference possibly due to saturation of the hepatic metabolism of tofacitinib. Oral administration of 10, 20, 50, and 100 mg/kg tofacitinib showed that the dose-normalized AUC was significantly higher at 100 mg/kg than at lower doses, a difference possibly due to saturation of the intestinal metabolism of tofacitinib. Following oral administration of 10 mg/kg tofacitinib, the unabsorbed fraction from the rat intestine was 3.16% and the bioavailability (F) was 29.1%. The AUC was significantly lower (49.3%) after intraduodenal, compared to intraportal, administration, but did not differ between intragastric and intraduodenal administration, suggesting that approximately 46.1% of orally administered tofacitinib was metabolized through an intestinal first-pass effect. The AUC was also significantly lower (42%) after intraportal, compared to intravenous, administration, suggesting that the hepatic first-pass effect on tofacitinib after entering the portal vein was approximately 21.3% of the oral dose. Taken together, these findings suggest that the low F of tofacitinib is due primarily to intestinal first-pass metabolism.
Collapse
Affiliation(s)
- Ji Sang Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - So Hee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea.
| |
Collapse
|
6
|
Bae SK, Lee SJ, Kim YH, Kim T, Lee MG. Effect of enzyme inducers and inhibitors on the pharmacokinetics of oltipraz in rats. J Pharm Pharmacol 2010; 57:443-52. [PMID: 15831204 DOI: 10.1211/0022357055704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
A series of in-vitro and in-vivo experiments, using various inducers and inhibitors of hepatic microsomal cytochrome P450 (CYP) isozymes, was conducted to study oltipraz pharmacokinetics in rats. In in-vivo studies, oltipraz at a dose of 10 mg kg−1 was administered intravenously to rats. In rats pretreated with SKF 525-A (a nonspecific CYP isozyme inhibitor in rats; n = 9), the time-averaged total body clearance (CL) of oltipraz was significantly slower (56.6% decrease) than that in untreated rats (n = 9). This indicated that oltipraz is metabolized via CYP isozymes in rats. Hence, various enzyme inducers or inhibitors were used in in-vitro and in-vivo studies in rats. In rats pretreated with 3-methylcholanthrene (n = 9 and 8 for untreated and treated groups, respectively), phenobarbital (n = 7 and 10 for untreated and treated groups, respectively) or dexamethasone (n = 7 and 12 for untreated and treated groups, respectively) (main inducers of CYP1A1/2, 2B1/2 and 3A1/2 in rats, respectively), the CL values were significantly faster (38.4, 94.4 and 33.6% increase, respectively). In rats pretreated with sulfaphenazole (n = 8 and 9 for untreated and treated groups, respectively), quinine (n = 7 and 9 for untreated and treated groups, respectively) or troleandomycin (n = 8 and 9 for untreated and treated groups, respectively) (main inhibitors of CYP2C11, 2D1 and 3A1/2 in rats, respectively), the CL values were significantly slower (31.0, 27.6 and 36.3% decrease, respectively). The in-vivo results with various enzyme inhibitors correlated well with the in-vitro intrinsic clearance for disappearance of oltipraz (CLint) (n = 5, each). The above data suggested that oltipraz could be metabolized in male rats mainly via CYP1A1/2, 2B1/2, 2C11, 3A1/2 and 2D1.
Collapse
Affiliation(s)
- Soo Kyung Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
7
|
Yang SH, Lee MG. Effects of cytochrome P450 (CYP) inducers and inhibitors on ondansetron pharmacokinetics in rats: involvement of hepatic CYP2D subfamily and 3A1/2 in ondansetron metabolism. J Pharm Pharmacol 2010; 60:853-61. [DOI: 10.1211/jpp.60.7.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The types of hepatic microsomal cytochrome P450 (CYP) isozymes responsible for the in-vivo metabolism of ondansetron in rats have not been reported. In this study, ondansetron at a dose of 8 mg kg−1 was administered intravenously to rats pretreated with various inducers of CYP isozymes, such as 3-methylcholanthrene, orphenadrine citrate, isoniazid and dexamethasone phosphate (the main inducers of CYP1A1/2, 2B1/2, 2E1 and 3A1/2 in rats, respectively), and inhibitors, such as SKF-525A (a non-specific inhibitor of CYP isozymes), sulfaphenazole, quinine hydrochloride and troleandomycin (the main inhibitors of CYP2C6, 2D subfamily and 3A1/2 in rats, respectively). In rats pretreated with quinine hydrochloride and troleandomycin, the time-averaged non-renal clearance of ondansetron was significantly slower (48.9 and 13.2% decrease, respectively) than that in control rats. In rats pretreated with dexamethasone phosphate, the time-averaged non-renal clearance was significantly faster (18.2% increase) than that in control rats. The results suggest that ondansetron is primarily metabolized via the CYP2D subfamily and 3A1/2 in rats.
Collapse
Affiliation(s)
- Si H Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Gwanak-Gu, Seoul 151-742, South Korea
| | - Myung G Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Gwanak-Gu, Seoul 151-742, South Korea
| |
Collapse
|
8
|
Chung HJ, Choi YH, Kim SH, Lee MG. Effects of enzyme inducers and inhibitors on the pharmacokinetics of intravenous ipriflavone in rats. J Pharm Pharmacol 2010; 58:449-57. [PMID: 16597362 DOI: 10.1211/jpp.58.4.0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
In order to find out what types of the hepatic microsomal cytochrome P450 (CYP) isozymes are involved in the metabolism of ipriflavone, ipriflavone at a dose of 20 mg kg−1 (or 15 mg kg−1) was infused in male Sprague—Dawley rats. In rats pretreated with SKF 525-A (a non-specific CYP isozyme inhibitor in rats), the total body clearance (CL) of ipriflavone was significantly slower (29.9% decrease) than that in control rats. This indicates that ipriflavone is metabolized via CYP isozymes in rats, hence various enzyme inducers and inhibitors were used in in-vitro or in-vivo studies in rats. In rats pretreated with 3-methylcholanthrene and phenobarbital (main inducers of CYP1A1/2 and 2B1/2 in rats, respectively), the CL values were significantly higher (153 and 67.2% increases, respectively). In rats pretreated with sulfaphenazole (a main inhibitor of CYP2C11 in rats), the CL was significantly slower (22.5% decrease) than that in control rats. On addition of furafylline (a main inhibitor of CYP1A2 in rats), the in-vitro intrinsic clearance for the disappearance of ipriflavone was significantly slower (50.8% decrease) than that without furafylline. However, the CL values were not significantly different in rats pretreated with orphenadrine and isoniazid (a main inducer of CYP2E1 in rats), and quinine and troleandomycin (main inhibitors of CYP2D1 and 3A23/2 in rats, respectively) compared to controls. These data suggest that ipriflavone could be metabolized mainly via CYP1A1/2, 2B1/2 and 2C11 in rats.
Collapse
Affiliation(s)
- Hye J Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
9
|
Bae SH, Bae SK, Lee MG. Effect of hepatic CYP inhibitors on the metabolism of sildenafil and formation of its metabolite, N-desmethylsildenafil, in rats in vitro and in vivo. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.12.0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
It has been reported that hepatic cytochrome P450 (CYP)2C9 and CYP3A4 are responsible for the metabolism of sildenafil and formation of its metabolite, N-desmethylsildenafil, in humans. However, in-vivo studies in rats have not been reported.
Methods
Sildenafil (20 mg/kg) was administered intravenously to rats pretreated with sulfaphenazole, cimetidine, quinine hydrochloride or troleandomycin, inhibitors of CYP2C6, CYP2C11, CYP2D subfamily and CYP3A1/2, respectively. In-vitro studies using rat liver microsomes were also performed.
Key findings
The area under the plasma-concentration time curve (AUC) was increased and clearance of sildenafil decreased in rats pretreated with cimetidine or troleandomycin. The AUC ratio for N-desmethylsildenafil (0–4 h): sildenafil (0–∞) was significantly decreased only in rats pretreated with cimetidine. Similar results were obtained in the in-vitro study using rat liver microsomes.
Conclusions
Sildenafil is metabolised via hepatic CYP2C11 and 3A1/2, and N-desmethylsildenafil is mainly formed via hepatic CYP2C11 in rats. Thus, rats could be a good model for pharmacokinetic studies of sildenafil and N-desmethylsildenafil in humans.
Collapse
Affiliation(s)
- Soo H Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Soo K Bae
- Department of Clinical Pharmacology, Busan Paik Hospital, Inje University, Busan, South Korea
| | - Myung G Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Yang KH, Choi YH, Lee U, Lee JH, Lee MG. Effects of cytochrome P450 inducers and inhibitors on the pharmacokinetics of intravenous furosemide in rats: involvement of CYP2C11, 2E1, 3A1 and 3A2 in furosemide metabolism. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.01.0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
It has been reported that the non-renal clearance of furosemide was significantly faster in rats pretreated with phenobarbital but was not altered in rats pretreated with 3-methylcholanthrene. However, no studies on other cytochrome P450 (CYP) isozymes have yet been reported in rats.
Method
Furosemide 20 mg/kg was administered intravenously to rats pretreated with various CYP inducers –3-methylcholanthrene, orphenadrine citrate and isoniazid, inducers of CYP1A1/2, 2B1/2 and 2E1, respectively, in rats – and inhibitors – SKF-525A (a nonspecific inhibitor of CYP isozymes), sulfaphenazole, cimetidine, quinine hydrochloride and troleandomycin, inhibitors of CYP2C6, 2C11, 2D and 3A1/2, respectively, in rats.
Key findings
The non-renal clearance of furosemide was significantly faster (55.9% increase) in rats pretreated with isoniazid, but slower in those pretreated with cimetidine or troleandomycin (38.5% and 22.7% decreases, respectively), than controls. After incubation of furosemide with baculovirus-infected insect cells expressing CYP2C11, 2E1, 3A1 or 3A2, furosemide was metabolized via CYP2C11, 2E1, 3A1 and 3A2.
Conclusions
These findings could help explain possible pharmacokinetic changes of furosemide in various rat disease models (where CYP2C11, 2E1, 3A1 and/or CYP3A2 are altered) and drug–drug interactions between furosemide and other drugs (mainly metabolized via CYP2C11, 2E1, 3A1 and/or 3A2).
Collapse
Affiliation(s)
- Kyung H Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Young H Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Unji Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Joo H Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Myung G Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Bathelt CM, Mulholland AJ, Harvey JN. QM/MM Modeling of Benzene Hydroxylation in Human Cytochrome P450 2C9. J Phys Chem A 2008; 112:13149-56. [DOI: 10.1021/jp8016908] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine M. Bathelt
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks’ Close, Bristol BS8 1TS, U.K
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks’ Close, Bristol BS8 1TS, U.K
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantocks’ Close, Bristol BS8 1TS, U.K
| |
Collapse
|
12
|
Yang KH, Lee JH, Lee MG. Effects of CYP inducers and inhibitors on the pharmacokinetics of intravenous theophylline in rats: involvement of CYP1A1/2 in the formation of 1,3-DMU. J Pharm Pharmacol 2008; 60:45-53. [PMID: 18088504 DOI: 10.1211/jpp.60.1.0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The types of hepatic cytochrome P450 (CYP) isozymes responsible for the metabolism of theophylline and for the formation of 1,3-dimethyluric acid (1,3-DMU) in rats in-vivo does not seem to have been studied at the dose ranges of dose-independent metabolic disposition of theophylline in rats (up to 10 mg kg(-1)). Therefore, theophylline (5 mg kg(-1)) was administered i.v. to male Sprague-Dawley rats pretreated with various inducers and inhibitors of CYP isozymes. In rats pretreated with 3-methylcholanthrene (3-MC), orphenadrine or dexamethasone (main inducers of CYP1A1/2, CYP2B1/2 and CYP3A1/2, respectively, in rats), the time-averaged non-renal clearance (CLNR) of theophylline was significantly faster than in their respective controls (1260, 42.7 and 69.0% increases, respectively). However, in rats pretreated with troleandomycin (a major inhibitor of CYP3A1/2 in rats), CLNR was significantly slower than in the controls (50.7% decrease). The 24 h urinary excretion of 1,3-DMU was increased significantly only in rats pretreated with 3-MC. The ratio of area under the curve for 1,3-DMU and theophylline (AUC1,3-DMU/AUCtheophylline) was increased significantly in rats pretreated with 3-MC (160% increase) and decreased significantly in rats pretreated with troleandomycin (50.1% decrease); however, the ratio was not increased in rats pretreated with dexamethasone. These data suggest that theophylline is primarily metabolized via CYP1A1/2, CYP2B1/2, and CYP3A1/2, and that 1,3-DMU is primarily formed via CYP1A1/2, and possibly CYP3A1/2, in rats.
Collapse
Affiliation(s)
- Kyung H Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | |
Collapse
|
13
|
Kim YC, Kang HE, Lee MG. Pharmacokinetics of phenytoin and its metabolite, 4'-HPPH, after intravenous and oral administration of phenytoin to diabetic rats induced by alloxan or streptozotocin. Biopharm Drug Dispos 2008; 29:51-61. [PMID: 18022993 DOI: 10.1002/bdd.591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been reported that diabetic patients have an increased risk of developing epileptic convulsions compared with the non-diabetic population, and phenytoin has widely been used for neuralgia in diabetic neuropathy. It has also been reported that in both diabetic rats induced by alloxan (DMIA rats) and by streptozotocin (DMIS rats), the protein expression and mRNA level of 2C11 decreased, but in DMIS rats, the protein expression of CYP2C6 increased. Thus, the pharmacokinetics of phenytoin and 4'-HPPH were investigated after intravenous or oral administration of phenytoin at a dose of 25 mg/kg to DMIA and DMIS rats. After intravenous or oral administration of phenytoin, the AUC (or AUC(0-12 h)) values of both phenytoin and 4'-HPPH were comparable (not significantly different) between each diabetic and the respective control rats. Although the exact reason is not clear, this could have been due to opposite protein expression (and/or mRNA levels) of CYP2C6 and 2C11 in diabetic rats.
Collapse
Affiliation(s)
- Yu C Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
14
|
Choi YH, Lee MG. Effects of enzyme inducers and inhibitors on the pharmacokinetics of metformin in rats: involvement of CYP2C11, 2D1 and 3A1/2 for the metabolism of metformin. Br J Pharmacol 2006; 149:424-30. [PMID: 16940989 PMCID: PMC1978432 DOI: 10.1038/sj.bjp.0706875] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The types of hepatic microsomal cytochrome P450 (CYP) isozymes responsible for the metabolism of metformin in humans and rats have not been published to date. Therefore, a series of experiments using various inducers and inhibitors of CYP isozymes was conducted to find out what types of CYP isozymes are involved in the metabolism of metformin in rats. EXPERIMENTAL APPROACH Metformin at a dose of 100 mg kg(-1) was administered intravenously to rats. The rats were pretreated with CYP inducers such as 3-methylcholanthrene, orphenadrine, isoniazid, and dexamethasone (major inducers of CYP1A1/2, 2B1/2, 2E1, and 3A1/2, respectively, in rats), or CYP inhibitors such as SKF-525 (a non-specific inhibitor of CYP isozymes), and sulfaphenazole, quinine, and troleandomycin (major inhibitors of CYP2C11, 2D1, and 3A1/2, respectively, in rats). The time-averaged non-renal clearance (CLNR) of metformin was compared with that of controls. KEY RESULTS In rats pretreated with dexamethasone, the CLNR was significantly faster (57% increase) than for the controls. In rats pretreated with SKF-525-A, sulfaphenazole, quinine, and troleandomycin, the CLNR was significantly slower (24.3, 62.9, 77.6, and 78.7% decrease, respectively) than for the controls. However, the CLNR values did not significantly different in the rats pretreated with 3-methylencholanthrene, orphenadrine, and isoniazid compared with the controls. CONCLUSIONS AND IMPLICATIONS Our data suggest that metformin was metabolized mainly via CYP2C11, 2D1, and 3A1/2 in rats. This result could contribute to understanding of the possible changes in metformin pharmacokinetics in disease models where CYP2C11 and/or 3A1/2 are altered.
Collapse
Affiliation(s)
- Y H Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University Kwanak-Gu, Seoul, South Korea
| | - M G Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University Kwanak-Gu, Seoul, South Korea
- Author for correspondence:
| |
Collapse
|
15
|
Lee DY, Shin HS, Bae SK, Lee MG. Effects of enzyme inducers and inhibitors on the pharmacokinetics of intravenous omeprazole in rats. Biopharm Drug Dispos 2006; 27:209-18. [PMID: 16586464 DOI: 10.1002/bdd.502] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A series of experiments using various inducers and inhibitors of the hepatic microsomal cytochrome P450 (CYP) isozymes were conducted to find CYP isozymes responsible for the metabolism of omeprazole in male Sprague-Dawley rats. Omeprazole, 20 mg/kg, was administered intravenously. In rats pretreated with SKF 525-A (a nonspecific CYP isozyme inhibitor in rats), the time-averaged nonrenal clearance (Cl(nr)) was significantly slower (77.1% decrease) than that in untreated rats. This indicated that omeprazole is metabolized via CYP isozymes in rats. Hence, rats were pretreated with various enzyme inducers and inhibitors. In rats pretreated with 3-methylcholanthrene and dexamethasone (main inducers of CYP1A1/2 and 3A1/2 in rats, respectively), the Cl(nr) values were significantly faster (43.8% and 26.3% increase, respectively). In rats pretreated with troleandomycin and quinine (main inhibitors of CYP3A1/2 and 2D1 in rats, respectively), the Cl(nr) values were significantly slower (20.9% and 12.9% decrease, respectively). However, the Cl(nr) values were not significantly different in rats pretreated with orphenadrine, isoniazid and sulfaphenazole (main inducers of CYP2B1/2 and 2E1, and a main inhibitor of 2C11, respectively, in rats) compared with those of respective control rats. The above data suggested that omeprazole could be mainly metabolized via CYP1A1/2, 3A1/2 and 2D1 in male rats.
Collapse
Affiliation(s)
- Dae Y Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Mohamed FA, Mohamed HA, Hussein SA, Ahmed SA. A validated spectrofluorimetric method for determination of some psychoactive drugs. J Pharm Biomed Anal 2005; 39:139-46. [PMID: 16085135 DOI: 10.1016/j.jpba.2005.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/30/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
Five psychoactive drugs namely, chlorpromazine HCl, thioridazine HCl, clomipramine HCl, imipramine HCl and desipramine HCl were analyzed by a simple spectrofluorimetric method. The method is based on oxidation of the studied drugs using cerium(IV) in presence of sulphuric acid and monitoring the fluorescence of the formed cerium(III) at lambda(ex.) = 254 nm and lambda(em.) = 355 nm. All variables affecting the reaction conditions such as; cerium(IV) concentration, sulphuric acid concentration, heating time, temperature and dilution solvents were carefully studied. The effect of potential interference due to common ingredients as glucose, sucrose, lactose, citric acid and propylene glycol were investigated. A validation study of the proposed method was carried out according to USP 2002. Beer's law was obeyed for all the studied drugs in the concentration range of 0.05-1.3 microg/ml. Limits of detection range was 0.035-0.038 microg/ml and limits of quantitation of 0.116-0.125 microg/ml were obtained. The method was successfully applied for the assay of the studied drugs in pure form and in pharmaceutical dosage forms. Results were compared with official methods. The t- and F-values were calculated and compared with the theoretical values, which indicate high accuracy and good precision of the proposed method.
Collapse
Affiliation(s)
- Fardous A Mohamed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Egypt
| | | | | | | |
Collapse
|
17
|
Lee DY, Lee SJ, Lee MG. Effects of enzyme inducers and inhibitors on the pharmacokinetics of intravenous torasemide in rats. Int J Pharm 2005; 298:38-46. [PMID: 15890479 DOI: 10.1016/j.ijpharm.2005.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 03/16/2005] [Accepted: 03/25/2005] [Indexed: 11/13/2022]
Abstract
In order to find whether torasemide is metabolized via CYP isozymes in rats, torasemide at a dose of 2mg/kg was infused in rats pretreated with SKF 525-A, a non-specific CYP isozyme inhibitor in male Sprague-Dawley rats. The total area under the plasma concentration-time curve from time zero to time infinity (AUC) of torasemide was significantly greater in rats pretreated with SKF 525-A (a non-specific CYP isozyme inhibitor in rats) than that in control rats (3570 versus 1350 microg min/ml). This indicated that torasemide is metabolized via CYP isozymes in rats. Hence, torasemide was infused in rats pretreated with various enzyme inducers and inhibitors to find what types of CYP isozymes are involved in the metabolism of torasemide in rats. The AUC values were not significantly different in rats pretreated with 3-methylcholanthrene, phenobarbital, isoniazid, quinine and troleandomycin (main inducers of CYP1A1/2, CYP2B1/2, and CYP2E1, and main inhibitors of CYP2D1 and CYP3A1/2 in rats, respectively) compared with those in respective control rats. However, in rats pretreated with dexamethasone (a main inducer of CYP3A1/2 in rats), the AUC was significantly smaller than that in control rats (1290 versus 1590 microg min/ml). Dexamethasone probably also induces rat CYP2C11; this could be due to an increase in CYP2C11 in rats pretreated with dexamethasone. It has been reported from our laboratories that in rats pretreated with sulfaphenazole (a main inhibitor of CYP2C11 in rats) the AUC was significantly greater than that in control rats (2970 versus 1610 microg min/ml). The above data suggested that torasemide could be metabolized in male rats mainly via CYP2C11.
Collapse
Affiliation(s)
- Dae Y Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | |
Collapse
|
18
|
Bae SK, Lee DY, Lee AK, Kwon JW, Lee I, Chung SJ, Kim SG, Shim CK, Lee MG. Effects of cysteine on the pharmacokinetics of intravenous torasemide in rats with protein−calorie malnutrition. J Pharm Sci 2004; 93:2388-98. [PMID: 15295798 DOI: 10.1002/jps.20151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Effects of cysteine on the pharmacokinetics of torasemide were investigated after intravenous administration at a dose of 2 mg/kg to control rats and rats with PCM and PCMC. Torasemide was reported to be mainly metabolized via hepatic CYP2C9 in humans, and human CYP2C9 and male rat CYP2C11 proteins have 77% homology. It has also been reported that in male rats with PCM, the CYP2C11 level decreased to approximately 20% of the control level, but the decreased CYP2C11 level in rats with PCM partially returned to the control level by oral cysteine supplementation (rats with PCMC). Hence, it could be expected that in rats with PCM, some pharmacokinetic parameters of torasemide could be significantly different compared with those in control rats and rats with PCMC; however, they could be not significantly different between control rats and rats with PCMC. This was proven by the following parameters; the AUC (1880, 4080, and 2290 microg x min/mL for control rats and rats with PCM and PCMC, respectively), terminal half-life (188, 277, and 139 min), MRT (154, 323, and 155 min), CL (1.06, 0.491, and 0.943 mL/min/kg), CL(NR) (0.992, 0.430, and 0.874 mL/min/kg), and in vitro intrinsic torasemide disappearance clearance, CL(int) (0.102, 0.0842, and 0.0997 mL/min/mg protein).
Collapse
Affiliation(s)
- Soo K Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee JH, Suh OK, Lee MG. Pharmacokinetic changes in drugs during protein-calorie malnutrition: correlation between drug metabolism and hepatic microsomal cytochrome p450 isozymes. Arch Pharm Res 2004; 27:693-712. [PMID: 15356995 DOI: 10.1007/bf02980136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rats with protein-calorie malnutrition (PCM, 5% casein diet for a period of 4-week) were reported to exhibit 60 and 80% suppression in the hepatic microsomal cytochrome P450 (CYP) 1A2 and CYP2C11 levels, respectively, and 40-50% decreases in CYP2E1 and CYP3A1/2 levels compared to control (23% casein diet for a period of 4-week) based on Western blot analysis. In addition, Northern blot analysis showed that CYP1A2, CYP2E1, CYP2C11, and CYP3A1/2 mRNAs decreased in the state of PCM as well. Hence, pharmacokinetic changes of the drugs in rats with PCM [especially the area under the plasma concentration-time curve from time zero to time infinity (AUC) changes of metabolite(s)] reported from literatures were tried to explain in terms of CYP isozyme changes in the rats. Otherwise, the time-averaged nonrenal clearance (CL NR) of parent drug was compared. Pharmacokinetic changes of the drugs in other types of malnutritional state, such as kwashiorkor and marasmus, in both human and animal models were also compared. The drugs reviewed are as follows: diuretics, antibiotics, anticancer agents, antiepileptics, antiarrythmics, analgesics, xanthines, antimalarials, and miscellaneous.
Collapse
Affiliation(s)
- Joo Hyun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | |
Collapse
|