1
|
Fernández-Rojas B, Gómez-Sierra T, Medina-Campos O, Hernández-Juárez J, Hernández-Cruz P, Gallegos-Velasco I, Pérez-Cervera Y, Pedraza-Chaverri J. Antioxidant activity of glucosamine and its effects on ROS production, Nrf2, and O-GlcNAc expression in HMEC-1 cells. Curr Res Toxicol 2023; 5:100128. [PMID: 37808439 PMCID: PMC10558709 DOI: 10.1016/j.crtox.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Glucosamine (GlcN) is the most used supplement for osteoarthritis treatment. In vitro studies have related GlcN to beneficial and detrimental effects on health. The aim of this study was to evaluate the effects of O-linked-N-acetylglucosaminylation (O-GlcNAc) on GlcN-induced ROS production and Nrf2 expression in human dermal microvascular endothelial cells-1 (HMEC-1) and to evaluate the antioxidant capacity of GlcN compared to well-known antioxidants. For this, we evaluate the antioxidant capacity by in vitro assays. Besides, the GlcN (5-20 mM) effects on cell viability, reactive oxygen species (ROS) production, O-GlcNAc, and nuclear factor erythroid-2-related factor 2 (Nrf2) expression with and without the O-GlcNAc inhibitor OSMI-1 (10 μM) in HMEC-1 were evaluated. GlcN showed high inhibitory concentration (low scavenging activity) against superoxide (O2•─, IC20 = 47.67 mM), 2,2-diphenyl-1-picrylhydrazyl (DPPH•, IC50 = 21.32 mM), and hydroxyl (HO•, IC50 = 14.04 mM) radicals without scavenging activity against hydrogen peroxide (H2O2) and low antioxidant capacity determined by oxygen radical absorbance capacity (ORAC, 0.001 mM Trolox equivalent) and ferric reducing antioxidant power (FRAP, 0.046 mM Trolox equivalent). In cell culture, GlcN (20 mM) reduced cell viability up to 26 % and induced an increase in ROS production (up to 70 %), O-GlcNAc (4-fold-higher vs. control), and Nrf2 expression (56 %), which were prevented by OSMI-1. These data suggest an association between O-GlcNAc, ROS production, and Nrf2 expression in HMEC-1 cells stimulated with GlcN.
Collapse
Affiliation(s)
- B. Fernández-Rojas
- Laboratorio de Genómica, Proteómica y Glicobiología del Centro de Investigación, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca-Universidad Nacional Autónoma de México, Ex-Hacienda de Aguilera S/N, San Felipe del Agua, C.P. 68020, Oaxaca de Juárez, Oaxaca, México
| | - T. Gómez-Sierra
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, México
| | - O.N. Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, México
| | - J. Hernández-Juárez
- CONAHCYT-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Calle Hornos 1003, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, México
| | - P.A. Hernández-Cruz
- Laboratorio de Genómica, Proteómica y Glicobiología del Centro de Investigación, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca-Universidad Nacional Autónoma de México, Ex-Hacienda de Aguilera S/N, San Felipe del Agua, C.P. 68020, Oaxaca de Juárez, Oaxaca, México
| | - I.B. Gallegos-Velasco
- Laboratorio de Genómica, Proteómica y Glicobiología del Centro de Investigación, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca-Universidad Nacional Autónoma de México, Ex-Hacienda de Aguilera S/N, San Felipe del Agua, C.P. 68020, Oaxaca de Juárez, Oaxaca, México
| | - Y. Pérez-Cervera
- Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Avenida Universidad S/N, C.P. 68120, Oaxaca de Juárez, Oaxaca, México
| | - J. Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, México
| |
Collapse
|
2
|
Asif A, Ishtiaq S, Kamran SH, Youssef FS, Lashkar MO, Ahmed SA, Ashour ML. UHPLC-QTOF-MS Metabolic Profiling of Marchantia polymorpha and Evaluation of Its Hepatoprotective Activity Using Paracetamol-Induced Liver Injury in Mice. ACS OMEGA 2023; 8:19037-19046. [PMID: 37273612 PMCID: PMC10233839 DOI: 10.1021/acsomega.3c01867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Marchantia species were traditionally used to treat liver failure. Marchantia polymorpha chloroform extract showed a marked hepatoprotective activity in a dose-dependent manner in paracetamol-induced extensive liver damage in mice. At a dose of 500 mg/kg (MP-500), it resulted in a reduction in aspartate transaminase by 49.44%, alanine transaminase by 44.11%, and alkaline phosphatase by 24.4% with significant elevation in total proteins by 58.69% with respect to the diseased group. It showed significant reductions in total bilirubin, total cholesterol, triglycerides, low density lipoprotein (LDL), very LDL, total lipids, and to high density lipoprotein ratio (CH/HDL) by 53.42, 30.14, 35.02, 45.79, 34.74, 41.45, and 49.52%, respectively, together with a 37.69% increase in HDL with respect to the diseased group. It also showed an elevation of superoxide dismutase by 28.09% and in glutathione peroxidase by 81.83% in addition to the reduction of lipid peroxidation by 17.95% as compared to the paracetamol only treated group. This was further supported by histopathological examination that showed normal liver architecture and a normal sinusoidal gap. Metabolic profiling by ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF/MS) led to the tentative identification of 28 compounds belonging to phenols, quinolones, phenylpropanoid, acylaminosugars, terpenoids, lipids, and fatty acids to which the activity was attributed. Four compounds were detected in the negative ionization mode which are neoacrimarine J, marchantin A, chitobiose, and phellodensin F, while the rest were detected in the positive mode. Thus, it can be concluded that this plant could serve as a valuable choice for the treatment of hepatotoxicity that further consolidated its traditional use.
Collapse
Affiliation(s)
- Ayesha Asif
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Saiqa Ishtiaq
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Sairah Hafeez Kamran
- Institute
of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Fadia S. Youssef
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Abbasia, Cairo 11566, Egypt
| | - Manar O. Lashkar
- Department
of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Safwat A. Ahmed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Mohamed L. Ashour
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Abbasia, Cairo 11566, Egypt
- Pharmacy
Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
3
|
Pharmacological mechanisms of chitotriose as a redox regulator in the treatment of rat inflammatory bowel disease. Biomed Pharmacother 2022; 150:112988. [PMID: 35468583 DOI: 10.1016/j.biopha.2022.112988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/20/2022] Open
Abstract
Although extensive development has been made in the treatment of inflammatory bowel disease (IBD), adverse effects and incomplete efficacy of currently used medications are continuous challenge. Accumulated reports on the benefits of chitosan oligosaccharides in intestinal disorders make chitotriose (COS) a breakthrough in the development of new IBD drugs. This study aimed to investigate the biosafety, efficacy and pharmacological mechanisms of COS in the treatment of experimental IBD in compare with the commercial 5-Aminosalicylic acid (5-ASA). In this study, COS effectively relieved active inflammation, restored epithelial function, and reduced intestinal fibrosis. Further investigation demonstrated that COS treatment regulated redox state of the colon tissue by stimulating the transcription factor nuclear factor E2-related factor 2 (Nrf2), increasing production of endogenous antioxidants, and alleviating oxidative stress. The offset of oxidative stress shut down the nuclear factor kappa-B (NF-ĸB) inflammatory pathway, mitophagy of epithelial cells, M2 macrophage polarization in pre-fibrotic inflammation, and myofibroblast activation in intestinal fibrogenesis. In conclusion, COS is a safe and effective therapeutic agent for experimental IBD as a redox regulator. Our results expand the current understanding of the pharmacology of chitosan oligosaccharides for IBD treatment and provides experimental basis for the medicinal development of small molecule carbohydrates.
Collapse
|
4
|
Wang B, Wang L, Qu Y, Lu J, Xia W. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model. Food Funct 2022; 13:5838-5853. [PMID: 35545086 DOI: 10.1039/d1fo04374a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is a threat to patients due to the inability to prevent or decelerate disease progression. Currently, most clinical drugs for the treatment of PD are synthetic drugs that always present undesirable adverse or toxic effects. Chitosan oligosaccharide (COS) is a natural oligosaccharide that has been considered relatively safe and studied in the therapeutic effects on different types of neuronal disorders. In this study, we separated four COS monomers (COSs) including chitobiose (COS2), chitotriose (COS3), chitotetraose (COS4) and chitopentaose (COS5) to explore their structure-activity relationship in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Techniques including TLC, HPLC, MS, and NMR were applied to investigate the purity and structure of the COSs. After the oral administration of COSs, behavior indexes, pathological indexes, cytokines, and expression of proteins in the nigrostriatal pathway of the mice were analyzed. The results showed that the four COSs were fully deacetylated and the purity was >90%. Additionally, the neurobehavioral deficits of the PD mice were improved by treatment with COSs. The results further proved that COSs could protect the TH-labelled dopaminergic neurons via reducing the overexpression of α-synuclein, alleviating neuroinflammation, and activating the PI3K/Akt/Bcl-2 pathway to reduce apoptosis. COS3 exhibited a better effect on protecting dopaminergic neurons; however, COS2 provided a better effect on reducing the overexpression of α-synuclein. To conclude, the neuroprotective activity makes COSs a viable candidate as an ingredient for healthcare products.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ling Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yufei Qu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jingyu Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
5
|
Sorokina M, McCaffrey KS, Deaton EE, Ma G, Ordovás JM, Perkins-Veazie PM, Steinbeck C, Levi A, Parnell LD. A Catalog of Natural Products Occurring in Watermelon- Citrullus lanatus. Front Nutr 2021; 8:729822. [PMID: 34595201 PMCID: PMC8476801 DOI: 10.3389/fnut.2021.729822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.
Collapse
Affiliation(s)
- Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | | | - Erin E. Deaton
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Guoying Ma
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Penelope M. Perkins-Veazie
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | - Amnon Levi
- United States Department of Agriculture (USDA), Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, United States
| | - Laurence D. Parnell
- United States Department of Agriculture (USDA), Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
6
|
Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chitooligosaccharides (COS) are homo- or hetero-oligomers of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) that can be obtained by chitosan or chitin hydrolysis. Their enzymatic production is preferred over other methodologies (physical, chemical, etc.) due to the mild conditions required, the fewer amounts of waste and its efficiency to control product composition. By properly selecting the enzyme (chitinase, chitosanase or nonspecific enzymes) and the substrate properties (degree of deacetylation, molecular weight, etc.), it is possible to direct the synthesis towards any of the three COS types: fully acetylated (faCOS), partially acetylated (paCOS) and fully deacetylated (fdCOS). In this article, we review the main strategies to steer the COS production towards a specific group. The chemical characterization of COS by advanced techniques, e.g., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry, is critical for structure–function studies. The scaling of processes to synthesize specific COS mixtures is difficult due to the low solubility of chitin/chitosan, the heterogeneity of the reaction mixtures, and high amounts of salts. Enzyme immobilization can help to minimize such hurdles. The main bioactive properties of COS are herein reviewed. Finally, the anti-inflammatory activity of three COS mixtures was assayed in murine macrophages after stimulation with lipopolysaccharides.
Collapse
|
7
|
Li Y, Gou Y, Liu Z, Xie T, Wang G. Structure-based rational design of chitosanase CsnMY002 for high yields of chitobiose. Colloids Surf B Biointerfaces 2021; 202:111692. [PMID: 33744813 DOI: 10.1016/j.colsurfb.2021.111692] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Chitosan oligosaccharides (COS) are attractive active molecules for biomedical applications. Currently, the prohibitively high cost of producing fully defined COS hampers extensive studies on their biological activity and restricts their use in various industries. Thus, cost-effective production of pure COS is of major importance. In this report, chitosanase from Bacillus subtilis MY002 (CsnMY002) was prepared for COS production. The structure of apo CsnMY002 displayed an unexpected tunnel-like substrate-binding site and the structure of the CsnMY002_E19A/(GlcN)6 complex highlighted the "4 + 2″ splitting of hexaglucosamine even though the "3 + 3″ splitting is also observed in the TLC analysis of the enzyme products for hexaglucosamine. Structure based rational design was performed to generate mutants for chitobiose production. The CsnMY002_G21 K mutant produced chitobiose with a relative content > 87 % from chitosan with a low degree of acetylation, and 50.65 mg chitobiose with a purity > 98 % was prepared from 100 mg chitosan. The results provide insight on the catalytic mechanism of chitosanase and underpin future biomedical applications of pure chitobiose.
Collapse
Affiliation(s)
- Yubin Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Gou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China
| | - Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China; The Innovative Academy of Seed Design (INASEED), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Yousef MI, Abd HH, Helmy YM, Kamel MAN. Synergistic effect of curcumin and chitosan nanoparticles on nano-hydroxyapatite-induced reproductive toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9362-9376. [PMID: 33141380 DOI: 10.1007/s11356-020-11395-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity/biocompatibility of hydroxyapatite nanoparticles (HAPNPs), a prospective nano-biomaterial, is extensively studied, its interaction on the reproductive system following exposure is less exploited. In the present study, male rats were exposed to HAPNPs (300 mg/kg BW) to determine its possible reproductive toxicity. Also, the protective effects of chitosan (CSNPs, 280 mg/kg BW) and/or curcumin (CurNPs, 15 mg/kg BW) nanoparticles against HAPNPs-induced reproductive toxicity were studied. Animals were orally gavage daily with respective doses for 45 consecutive days. The obtained results indicated that HAPNPs caused a significant decrease in sperm count, sperm motility, testosterone hormone, steroidogenic enzymes (17-ketosteroid reductase and 17β-hydroxysteroid dehydrogenase), and antioxidant enzymes (glutathione peroxidase, glutathione S-transferase, catalase, and superoxide dismutase) in addition to total antioxidant capacity and reduced glutathione. LH and FSH, abnormal sperm, oxidative stress parameters (thiobarbituric acid-reactive substances (TBARS), nitric oxide (NO), and 8-hydroxy-deoxyguanosine (8-OHdG)), p53, TNFα, and interleukin-6 were significantly increased. The DNA damage was also analyzed by assaying 8-OHdG level which is considered as an indicator of genotoxicity and also suppression of the gene expression of mtTFA, induction of UCP2. Similarly, the histopathological evaluation was also changed following exposure to HAPNPs. The antioxidant activity of CSNPs and CurNPs showed mitigating effect against reproductive deterioration induced by HAPNPs throughout improvements in semen characteristics, sex hormones, inflammatory factors, and antioxidant status. The present study concluded that HAPNPs induced reproductive toxicity and it is important to use nano-antioxidants CSNPs and CurNPs as protective agents.
Collapse
Affiliation(s)
- Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby, PO Box 832, Alexandria, 21526, Egypt.
| | - Haitham Hassan Abd
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby, PO Box 832, Alexandria, 21526, Egypt
| | - Yasser Mohamed Helmy
- Scientific Consultant at Pharco Company for Pharmaceutical Products, Alexandria, Egypt
| | - Maher Abdel-Nabi Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Li M, Xie R, Liu J, Gan L, Long M. Preparation of chitooligosaccharide acetate salts with narrow molecular size distribution and the antioxidative activity. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Shahbaz U. Chitin, Characteristic, Sources, and Biomedical Application. Curr Pharm Biotechnol 2020; 21:1433-1443. [PMID: 32503407 DOI: 10.2174/1389201021666200605104939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitin stands at second, after cellulose, as the most abundant polysaccharide in the world. Chitin is found naturally in marine environments as it is a crucial structural component of various marine organisms. METHODS Different amounts of waste chitin and chitosan can be discovered in the environment. Chitinase producing microbes help to hydrolyze chitin waste to play an essential function for the removal of chitin pollution in the Marine Atmosphere. Chitin can be converted by using chemical and biological methods into prominent derivate chitosan. Numerous bacteria naturally have chitin degrading ability. RESULTS Chitin shows promise in terms of biocompatibility, low toxicity, complete biodegradability, nontoxicity, and film-forming capability. The application of these polymers in the different sectors of biomedical, food, agriculture, cosmetics, pharmaceuticals could be lucrative. Moreover, the most recent achievement in nanotechnology is based on chitin and chitosan-based materials. CONCLUSION In this review, we examine chitin in terms of its natural sources and different extraction methods, chitinase producing microbes and chitin, chitosan together with its derivatives for use in biomedical and agricultural applications.
Collapse
Affiliation(s)
- Umar Shahbaz
- Jiangnan University, School of Biotechnology, Jiangnan University Wuxi, Jiansu, China
| |
Collapse
|
11
|
Xu T, Qi M, Liu H, Cao D, Xu C, Wang L, Qi B. Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express 2020; 10:29. [PMID: 32036475 PMCID: PMC7007918 DOI: 10.1186/s13568-020-0963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801, which had been screened out in our previous work. The results of fermentation revealed that CS1801 can convert the chitin derived from crab shells, colloidal chitin and N-acetylglucosamine to chitooligosaccharide. Additional genome-wide analysis of CS1801 was also performed to explore the genomic basis for chitin degradation. The results showed that CS1801 possesses a chromosome with 5,611,479 bp (73% GC) and a plasmid with 1,388,284 bp (73% GC). The CS1801 genome consists of 7584 protein-coding genes, 90 tRNA and 21 rRNA operons. In addition, the results of genomic CAZyme analysis indicated that CS1801 comprises 103 glycoside hydrolase family genes, which could regulate the glycoside hydrolases that contribute to chitin degradation. The whole-genome information of CS1801 could highlight the mechanism underlying the chitin degradation activity of CS1801, strongly indicating that CS1801 is characterized by a substantial number of genes encoding chitinases and the complete metabolic pathway of chitin, conferring CS1801 with promising potential applicability in chitooligosaccharide production.
Collapse
|
12
|
Roman DL, Roman M, Som C, Schmutz M, Hernandez E, Wick P, Casalini T, Perale G, Ostafe V, Isvoran A. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Front Bioeng Biotechnol 2019; 7:214. [PMID: 31552240 PMCID: PMC6743017 DOI: 10.3389/fbioe.2019.00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Chitosan is a natural polymer revealing an increased potential to be used in different biomedical applications, including drug delivery systems, and tissue engineering. It implies the evaluation of the organism response to the biomaterial implantation. Low-molecular degradation products, the chito-oligomers, are resulting mainly from the influence of enzymes, which are found in the organism fluids. Within this study, we have performed the computational assessment of pharmacological profiles and toxicological effects on human health of small chito-oligomers with distinct molecular weights, deacetylation degrees, and acetylation patterns. Our approach is based on the fact that regulatory agencies and researchers in the drug development field rely on the use of modeling to predict biological effects and to guide decision making. To be considered as valid for regulatory purposes, every model that is used for predictions should be associated with a defined toxicological endpoint and has appropriate robustness and predictivity. Within this context, we have used FAF-Drugs4, SwissADME, and PreADMET tools to predict the oral bioavailability of chito-oligomers and SwissADME, PreADMET, and admetSAR2.0 tools to predict their pharmacokinetic profiles. The organs and genomic toxicities have been assessed using admetSAR2.0 and PreADMET tools but specific computational facilities have been also used for predicting different toxicological endpoints: Pred-Skin for skin sensitization, CarcinoPred-EL for carcinogenicity, Pred-hERG for cardiotoxicity, ENDOCRINE DISRUPTOME for endocrine disruption potential and Toxtree for carcinogenicity and mutagenicity. Our computational assessment showed that investigated chito-oligomers reflect promising pharmacological profiles and limited toxicological effects on humans, regardless of molecular weight, deacetylation degree, and acetylation pattern. According to our results, there is a possible inhibition of the organic anion transporting peptides OATP1B1 and/or OATP1B3, a weak potential of cardiotoxicity, a minor probability of affecting the androgen receptor, and phospholipidosis. Consequently, these results may be used to guide or to complement the existing in vitro and in vivo toxicity tests, to optimize biomaterials properties and to contribute to the selection of prototypes for nanocarriers.
Collapse
Affiliation(s)
- Diana Larisa Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Marin Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Claudia Som
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Mélanie Schmutz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Edgar Hernandez
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, St. Gallen, Switzerland
| | - Tommaso Casalini
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Giuseppe Perale
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adriana Isvoran
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
13
|
Chen J, Chen Q, Xie C, Ahmad W, Jiang L, Zhao L. Effects of simulated gastric and intestinal digestion on chitooligosaccharides in two
in vitro
models. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiayi Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Qiming Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Chuanqi Xie
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Waheed Ahmad
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) Shanghai 200237 China
| |
Collapse
|
14
|
Gibelin-Viala C, Amblard E, Puech-Pages V, Bonhomme M, Garcia M, Bascaules-Bedin A, Fliegmann J, Wen J, Mysore KS, le Signor C, Jacquet C, Gough C. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2019; 223:1516-1529. [PMID: 31058335 DOI: 10.1111/nph.15891] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 05/26/2023]
Abstract
Plant -specific lysin-motif receptor-like kinases (LysM-RLKs) are implicated in the perception of N-acetyl glucosamine-containing compounds, some of which are important signal molecules in plant-microbe interactions. Among these, both lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs) are proposed as arbuscular mycorrhizal (AM) fungal symbiotic signals. COs can also activate plant defence, although there are scarce data about CO production by pathogens, especially nonfungal pathogens. We tested Medicago truncatula mutants in the LysM-RLK MtLYK9 for their abilities to interact with the AM fungus Rhizophagus irregularis and the oomycete pathogen Aphanomyces euteiches. This prompted us to analyse whether A. euteiches can produce COs. Compared with wild-type plants, Mtlyk9 mutants had fewer infection events and were less colonised by the AM fungus. By contrast, Mtlyk9 mutants were more heavily infected by A. euteiches and showed more disease symptoms. Aphanomyces euteiches was also shown to produce short COs, mainly CO II, but also CO III and CO IV, and traces of CO V, both ex planta and in planta. MtLYK9 thus has a dual role in plant immunity and the AM symbiosis, which raises questions about the functioning and the ancestral origins of such a receptor protein.
Collapse
Affiliation(s)
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Magali Garcia
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Adeline Bascaules-Bedin
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Judith Fliegmann
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Jiangqi Wen
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Clare Gough
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| |
Collapse
|
15
|
Majerska J, Michalska A, Figiel A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Chen P, Zhao M, Chen Q, Fan L, Gao F, Zhao L. Absorption Characteristics of Chitobiose and Chitopentaose in the Human Intestinal Cell Line Caco-2 and Everted Gut Sacs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4513-4523. [PMID: 30929431 DOI: 10.1021/acs.jafc.9b01355] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The everted gut sacs and Caco-2 cell models were used to investigate the intestinal absorptive characteristics and subcellular localization of chitobiose and chitopentaose in this study. In everted gut sacs, the absorptive pattern showed no concentration-dependent manner when the concentration was lower than 10 mM. In the presence of phlorizin (100 μM) and phloretin (100 μM), the chitobiose absorption rates decreased by (4.97 ± 0.89)% and (19.2 ± 2.77)%, and they were (10.4 ± 2.43)% and (27.5 ± 1.68)% for chitopentaose. In Caco-2 cells, the concentration showed influences similar to those with the everted gut sacs results. After adding phlorizin and phloretin in the apical side, the PappAP-BL of chitobiose and chitopentaose significantly decreased. Considering the translocation, they were enriched in endoplasmic reticulum and mitochondrion. This study indicated that concentration and active transporter were capable of mediating the absorption of chitobiose and chitopentaose, and the subcellular localization of them could help to study the mechanisms of their effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Liming Zhao
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| |
Collapse
|
17
|
Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean? Appl Microbiol Biotechnol 2018; 102:9937-9948. [PMID: 30276711 DOI: 10.1007/s00253-018-9385-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.
Collapse
|
18
|
Nikapitiya C, Dananjaya SHS, De Silva BCJ, Heo GJ, Oh C, De Zoysa M, Lee J. Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:240-246. [PMID: 29510255 DOI: 10.1016/j.fsi.2018.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Chitosan nanoparticles (CNPs) were synthesized by ionic gelation method and its immunomodulatory properties were investigated in zebrafish larvae. Average particle size and zeta potential were 181.2 nm and +37.2 mv, respectively. Initially, toxicity profile was tested in zebrafish embryo at 96 h post fertilization (hpf) stage using medium molecular weight chitosan (MMW-C) and CNPs. At 5 μg/mL, the hatching rate was almost similar in both treatments, however, the survival rate was lower in MMW-C compared to CNPs exposure, suggesting that toxicity effect of CNPs in hatched larvae was minimal at 5 μg/mL compared to MMW-C. Quantitative real time PCR results showed that in CNPs exposed larvae at 5 days post fertilization (5 dpf) stage, immune related (il-1β, tnf-α, il-6, il-10, cxcl-18b, ccl34a.4, cxcl-8a, lyz-c, defβl-1, irf-1a, irf-3, MxA) and stress response (hsp-70) genes were induced. In contrast, basal or down regulated expression of antioxidant genes (gstp-1, cat, sod-1, prdx-4, txndr-1) were observed. Moreover, zebrafish larvae (at 5 dpf stage) exposed to CNPs (5 μg/mL) showed higher survival rate at 72 h post infection stage against pathogenic Aeromonas hydrophila challenge compared to controls. These results suggest that although CNPs can have toxic effects to the larvae at higher doses, CNPs exposure at 5 μg/mL could enhance the immune responses and develop the disease resistance against A. hydrophila, which could be attributed to its strong immune modulatory properties.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - B C J De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chulhong Oh
- Jeju International Marine Science Research and Education Center, Korea Institute of Ocean Science and Technology, Jeju Special Self-Governing Province, 63349, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Jehee Lee
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
19
|
Kidibule PE, Santos-Moriano P, Jiménez-Ortega E, Ramírez-Escudero M, Limón MC, Remacha M, Plou FJ, Sanz-Aparicio J, Fernández-Lobato M. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb Cell Fact 2018; 17:47. [PMID: 29566690 PMCID: PMC5863366 DOI: 10.1186/s12934-018-0895-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-d-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. Results Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5–6.5 and 30–40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the kcat/Km ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (d-glucosamine)1–8-GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. Conclusions Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated chitooligosaccharides, which have enormous biotechnological potential in medicine and food. Chit42 3D structure was characterized and analysed. Production and understanding of how the enzymes generating bioactive chito-oligomers work is essential for their biotechnological application, and paves the way for future work to take advantage of chitinolytic activities. Electronic supplementary material The online version of this article (10.1186/s12934-018-0895-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Elias Kidibule
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1, Cantoblanco, 28049, Madrid, Spain
| | - Paloma Santos-Moriano
- Institute of Catalysis and Petrochemistry, CSIC, C/ Marie Curie, 2, Cantoblanco, 28049, Madrid, Spain
| | - Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano (CSIC), C/ Serrano, 119, 28006, Madrid, Spain
| | - Mercedes Ramírez-Escudero
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano (CSIC), C/ Serrano, 119, 28006, Madrid, Spain
| | - M Carmen Limón
- Department of Genetic, University of Sevilla, Avenida Reina Mercedes s/n, 41012, Seville, Spain
| | - Miguel Remacha
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1, Cantoblanco, 28049, Madrid, Spain
| | - Francisco José Plou
- Institute of Catalysis and Petrochemistry, CSIC, C/ Marie Curie, 2, Cantoblanco, 28049, Madrid, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano (CSIC), C/ Serrano, 119, 28006, Madrid, Spain
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Zhang Y, Zhou X, Ji L, Du X, Sang Q, Chen F. Enzymatic single-step preparation and antioxidant activity of hetero-chitooligosaccharides using non-pretreated housefly larvae powder. Carbohydr Polym 2017; 172:113-119. [DOI: 10.1016/j.carbpol.2017.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
|
21
|
Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination. Food Microbiol 2017; 63:12-21. [DOI: 10.1016/j.fm.2016.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/28/2016] [Accepted: 10/20/2016] [Indexed: 01/17/2023]
|
22
|
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem Toxicol 2017; 99:209-221. [PMID: 27923682 DOI: 10.1016/j.fct.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate the protective role of chitosan nanoparticles (COS-NPs) singly or plus quercetin (Q) against OTA-induced oxidative stress and renal genotoxicity. Twelve groups of male Sprague-Dawley rats were treated orally for 3 weeks included the control group, animals fed OTA-contaminated diet (3 mg/kg diet); COS-NPs-treated groups at low (140 mg/kg b.w.) or high (280 mg/kg b.w.) dose, Q-treated group (50 mg/kg b.w.), Q plus low or high dose of COS-NPs-treated groups and OTA plus Q and/or COS-NPs at the two tested doses-treated groups. The results indicated that COS-NPs were roughly rod in shape with average particle size of 200 nm and zeta potential 31.4 ± 2.8 mV. Animals fed OTA-contaminated diet showed significant changes in serum biochemical parameters, increase kidney MDA and DNA fragmentation and decreased GPx and SOD gene expression accompanied with severe histological changes. Q and/or COS-NPs at the two tested doses induced significant improvements in all tested parameters and succeeded to overcome these effects especially in the animals treated with Q plus the high dose of COS-NPs. It could be concluded that COS-NPs are promise candidate to enhance the antioxidant effect of Q and protect against the nephrotoxicity of OTA in high endemic areas.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt.
| | - Abdulhadi Aljawish
- Laboratory of Nutrition and Toxicology (NUTox), INSERM UMR 866, Bourgogne University, 1 Esplanade Erasme, 21000 Dijon, France
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Dept., National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
23
|
Salgaonkar NA, Thakare PM, Junnarkar MV, Kapadnis BP, Mandal A, Eriksson C, Nawani NN. Use of N,N’-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Il’ina AV, Varlamov VP. Neutralization of reactive oxygen species by chitosan and its derivatives in vitro/in vivo (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Santos-Moriano P, Woodley JM, Plou FJ. Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Li K, Xing R, Liu S, Li P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr Polym 2016; 139:178-90. [DOI: 10.1016/j.carbpol.2015.12.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
|
27
|
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aiezm SH, Abdel-Kader HAM, Rihn BH, Joubert O. Chitosan nanoparticles and quercetin modulate gene expression and prevent the genotoxicity of aflatoxin B 1 in rat liver. Toxicol Rep 2015; 2:737-747. [PMID: 28962409 PMCID: PMC5598511 DOI: 10.1016/j.toxrep.2015.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 11/30/2022] Open
Abstract
The aims of the current study were to prepare chitosan nanoparticles (CNPs) and to evaluate its protective role alone or in combination with quercetin (Q) against AFB1-induce cytotoxicity in rats. Male Sprague-Dawley rats were divided into 12 groups and treated orally for 4 weeks as follow: the control group, the group treated with AFB1 (80 μg/kg b.w.) in corn oil, the groups treated with low (140 mg/kg b.w.) or high (280 mg/kg b.w.) dose of CNPs, the group treated with Q (50 mg/kg b.w.), the groups treated with Q plus the low or the high dose of CNPs and the groups treated with AFB1 plus Q and/or CNPs at the two tested doses. The results also revealed that administration of AFB1 resulted in a significant increase in serum cytokines, Procollagen III, Nitric Oxide, lipid peroxidation and DNA fragmentation accompanied with a significant decrease in GPx I and Cu–Zn SOD-mRNA gene expression. Q and/or CNPs at the two tested doses overcome these effects especially in the group treated with the high dose of CNPs plus Q. It could be concluded that CNPs is a promise candidate as drug delivery enhances the protective effect of Q against the cytogenetic effects of AFB1 in high endemic areas.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Abdulhadi Aljawish
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules (LIBio), 2 avenue de la Forêt de Haye, TSA40602-F-54518 Vandœuvre-lès-Nancy, France
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | | | - Bertrand H Rihn
- Faculty of Pharmacy, EA 3452 CITHEFOR, Lorraine University, 54001 Nancy Cedex, France
| | - Olivier Joubert
- Faculty of Pharmacy, EA 3452 CITHEFOR, Lorraine University, 54001 Nancy Cedex, France
| |
Collapse
|
28
|
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13:2158-82. [PMID: 25871293 PMCID: PMC4413205 DOI: 10.3390/md13042158] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.
Collapse
Affiliation(s)
- Garry Kerch
- Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, LV-1048, Latvia.
| |
Collapse
|
29
|
Chitosan oligosaccharides reduce acetaminophen-induced hepatotoxicity by suppressing CYP-mediated bioactivation. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr Polym 2014; 113:490-9. [DOI: 10.1016/j.carbpol.2014.07.032] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022]
|
31
|
Konyalioglu S, Armagan G, Yalcin A, Atalayin C, Dagci T. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells. Neural Regen Res 2014; 8:485-95. [PMID: 25206691 PMCID: PMC4146049 DOI: 10.3969/j.issn.1673-5374.2013.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/05/2013] [Indexed: 12/26/2022] Open
Abstract
Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antioxidant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment. Nitric oxide synthase activity and concomitant nitric oxide levels increased in response to hydrogen peroxide treatment. Conversely, resveratrol treatment decreased nitric oxide synthase activity and nitric oxide levels. Resveratrol also attenuated hydrogen peroxide-induced nuclear or mitochondrial DNA damage. We propose that resveratrol may be a promising agent for protecting embryonic neural stem cells because of its potential to decrease oxidative stress by inducing higher activity of antioxidant enzymes, decreasing nitric oxide production and nitric oxide synthase activity, and alleviating both nuclear and mitochondrial DNA damage.
Collapse
Affiliation(s)
- Sibel Konyalioglu
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova-Izmir 35100, Turkey
| | - Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova-Izmir 35100, Turkey
| | - Ayfer Yalcin
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova-Izmir 35100, Turkey
| | - Cigdem Atalayin
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, Ege University, Bornova-Izmir 35100, Turkey
| | - Taner Dagci
- Department of Physiology, School of Medicine, Ege University, Bornova-Izmir 35100, Turkey ; Center for Brain Research, Ege University, Bornova-Izmir 35100, Turkey
| |
Collapse
|
32
|
Size and pH effects of chitooligomers on antibacterial activity against Staphylococcus aureus. Int J Biol Macromol 2014; 64:302-5. [DOI: 10.1016/j.ijbiomac.2013.11.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/18/2022]
|
33
|
Li K, Liu S, Xing R, Qin Y, Li P. Preparation, characterization and antioxidant activity of two partially N-acetylated chitotrioses. Carbohydr Polym 2013; 92:1730-6. [DOI: 10.1016/j.carbpol.2012.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
34
|
Li K, Xing R, Liu S, Qin Y, Li B, Wang X, Li P. Separation and scavenging superoxide radical activity of chitooligomers with degree of polymerization 6-16. Int J Biol Macromol 2012; 51:826-30. [PMID: 22884433 DOI: 10.1016/j.ijbiomac.2012.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 07/17/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
Abstract
The separation of chitooligomers (COS) with well-defined degree of polymerization (DP) is of interest to further study their bioactivity. However, there has been no report on separation of chitooligomers with DP>6 and the activity of these oligomers is unknown. This paper focuses on separating COS with DP>6 and five fractions were separated from the prepared fully deacetylated chitooligomers mixture by CM Sepharose Fast Flow column and analyzed by HPLC, which mainly contained glucosamine oligomers with DP6-7 (41.31%, 50.22%), DP7-8 (22.47%, 70.13%), DP9-10 (53.06%, 27.99%), DP10-12 (18.45%, 49.36%, 22.31%), and DP>12, respectively. The superoxide radical scavenging activity of each fraction was investigated. The oligomers with DP ranging from 10 to 12 exhibited higher scavenging activity than other fractions and in combination with the DP distribution of fractions, it was further concluded that the chitooligomers with DP11 was likely to be optimal for scavenging superoxide radical activity.
Collapse
Affiliation(s)
- Kecheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Pahwa R, Saini N, Kumar V, Kohli K. Chitosan-based gastroretentive floating drug delivery technology: an updated review. Expert Opin Drug Deliv 2012; 9:525-39. [DOI: 10.1517/17425247.2012.673581] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Yao HT, Luo MN, Hung LB, Chiang MT, Lin JH, Lii CK, Huang CY. Effects of chitosan oligosaccharides on drug-metabolizing enzymes in rat liver and kidneys. Food Chem Toxicol 2012; 50:1171-7. [PMID: 22386817 DOI: 10.1016/j.fct.2012.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/25/2012] [Accepted: 02/13/2012] [Indexed: 01/10/2023]
Abstract
To investigate the effect of chitosan oligosaccharides (COS) on drug-metabolizing enzymes in rat liver and kidneys, male Spraque-Dawley rats were fed a diet containing 1% or 3% COS for 5 weeks. The activities of cytochrome P450 (CYP) enzymes, UDP-glucurosyltransferase (UGT) and glutathione S-transferase (GST) in the liver and kidneys were determined. Significant decreases in microsomal CYP3A-catalyzed testosterone 6β-hydroxylation, CYP2C-catalyzed diclofenac 4-hydroxylation, and CYP4A-catalyzed lauric acid 12-hydroxylation in the liver of rats fed the COS diets were observed compared with those rats fed the control diet. Immunoblot analyses of CYP proteins showed the same trend as with enzyme activities. Increased glutathione content in liver was found in rats fed the 1% COS diet. Increased hepatic NADPH: quinone oxidoreductase 1 (NQO1) activity was found in rats fed the COS diets. In kidneys, COS had little or no effect on CYP enzyme activities. However, increased GST activity was observed in rats fed the COS diets. Moreover, a higher UGT activity was found in rats fed the 1% COS diet. Our results indicate that COS may suppress hepatic CYP enzymes and induce phase II detoxifying reactions in the liver and kidneys of rats.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
38
|
Olennikov DN, Agafonova SV, Stolbikova AV, Rokhin AV. Melanin of Laetiporus sulphureus (Bull.: Fr.) Murr sterile form. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Park BK, Kim MM. Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 2010; 11:5152-64. [PMID: 21614199 PMCID: PMC3100826 DOI: 10.3390/ijms11125152] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 02/07/2023] Open
Abstract
Chitin and its derivatives-as a potential resource as well as multiple functional substrates-have generated attractive interest in various fields such as biomedical, pharmaceutical, food and environmental industries, since the first isolation of chitin in 1811. Moreover, chitosan and its chitooligosaccharides (COS) are degraded products of chitin through enzymatic and acidic hydrolysis processes; and COS, in particular, is well suited for potential biological application, due to the biocompatibility and nontoxic nature of chitosan. In this review, we investigate the current bioactivities of chitin derivatives, which are all correlated with their biomedical properties. Several new and cutting edge insights here may provide a molecular basis for the mechanism of chitin, and hence may aid its use for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Bae Keun Park
- Institute of Basic Medical Science, Yonsei University Wonju College of Medicine, Wonju 220-701, Korea; E-Mail:
| | | |
Collapse
|
40
|
Xu Q, Ma P, Yu W, Tan C, Liu H, Xiong C, Qiao Y, Du Y. Chitooligosaccharides protect human embryonic hepatocytes against oxidative stress induced by hydrogen peroxide. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:292-298. [PMID: 19690919 DOI: 10.1007/s10126-009-9222-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
Chitooligosaccharides (COS) has many biological activities, such as antitumor activity and hepatoprotective effect. Herein, we investigated the protective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress on human embryonic hepatocytes (L02 cells) and its scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical in vitro. The results showed that the lost cell viability induced by H2O2 was markedly restored after 24 h pre-incubation with COS (0.1-0.4 mg/ml). This rescue effect could be related to the antioxidant property of COS, in which we showed that the radical scavenging activity of COS reached 80% at concentration of 2 mg/ml. In addition, COS could prevent cell apoptosis induced by H2O2, as shown by the inhibition of the cleavage of poly (adenosine diphosphate-ribose) polymerase and increased expression of the anti-apoptotic protein Bcl-xL. Furthermore, we have utilized confocal laser microscopy to observe cellular uptake of COS, an important step for COS to exert its effects on target cells. Taken together, our findings suggested that COS could effectively protect L02 cells against oxidative stress, which might be useful in clinical setting during the treatment of oxidative stress-related liver damages.
Collapse
Affiliation(s)
- Qingsong Xu
- Dalian Institute of Chemical Physics, Chinese Academy Sciences, Zhongshan Street 457, Dalian 116023, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Extraction, purification and characterization of an antioxidant from marine waste using protease and chitinase cocktail. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0327-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Li WM, Liu HT, Li XY, Wu JY, Xu G, Teng YZ, Ding ST, Yu C. The effect of tetramethylpyrazine on hydrogen peroxide-induced oxidative damage in human umbilical vein endothelial cells. Basic Clin Pharmacol Toxicol 2009; 106:45-52. [PMID: 19821832 DOI: 10.1111/j.1742-7843.2009.00470.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tetramethylpyrazine has been widely used in traditional Chinese medicine to treat cardiovascular diseases such as atherosclerosis and hypertension. The underlying mechanism of cardioprotective effects, however, remains to be elucidated. Here, using human umbilical vein endothelial cells (HUVECs), we have assessed the protective effect of tetramethylpyrazine on H(2)O(2)-induced oxidative damage. After pre-incubation with tetramethylpyrazine (50, 100 and 150 microg/ml) for 24 hr., viability loss in H(2)O(2)-induced HUVECs (76.5% of the control level, p < 0.05, at 400 microM of H(2)O(2) for 12 hr.) was restored in a concentration-dependent manner, and the maximal recovery (88.7% of the control level, p < 0.05) was achieved with tetramethylpyrazine at 150 microg/ml. The production of reactive oxygen species was suppressed by measuring fluorescent intensity of 2',7'-dichorofluorescein (83.1% of the H(2)O(2)-treated group, p < 0.05, at 150 microg/ml of tetramethylpyrazine). Tetramethylpyrazine also increased activities of superoxide dismutase and glutathione peroxidase (144.1% and 118.3% of the H(2)O(2)-treated group, respectively, p < 0.05, at 150 microg/ml of tetramethylpyrazine). In addition, tetramethylpyrazine reduced levels of malonaldehyde, intracellular nitric oxide and nitric oxide synthase (83.8%, 91.2% and 78.7% of the H(2)O(2)-treated group, respectively, p < 0.05, at 150 microg/ml of tetramethylpyrazine). Furthermore, pre-incubation of tetramethylpyrazine with HUVECs for 24 hr. resulted in reduction of apoptosis and removal of cell cycle arrest in the S phase (56.6% and 59.7% of the H(2)O(2)-treated group, respectively, p < 0.01, at 150 microg/ml of tetramethylpyrazine). Altogether, these results suggest that tetramethylpyrazine has a protective effect on H(2)O(2)-induced oxidative damage in HUVECs due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Wen-Ming Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 2009; 47:1864-71. [PMID: 19427889 DOI: 10.1016/j.fct.2009.04.044] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/21/2009] [Accepted: 04/28/2009] [Indexed: 11/23/2022]
Abstract
Chitooligosaccharides (COS) are hydrolyzed products of chitosan and have been proven to exhibit various biological functions. The objectives of this study were to evaluate the anti-tumor growth, anti-metastatic potency and related pathways of COS extracted from fungi. In in vitro studies, we found that COS significantly inhibited human hepatocellular carcinoma (HepG2) cell proliferation, reduced the percentage of S-phase and decreased DNA synthesis rate in COS-treated HepG2 cells. Expressions of cell cycle-related genes were analyzed and the results indicated that p21 was up-regulated, while PCNA, cyclin A and cdk-2 were down-regulated. Moreover, we also found that the activity of metastatic related protein (MMP-9) could be inhibited by COS in Lewis lung carcinoma (LLC) cells. In in vivo studies, we found that COS inhibited the tumor growth of HepG2 xenografts in severe combined immune deficient (SCID) mice. In a LLC-bearing mouse tumor growth and lung metastasis model, COS inhibited tumor growth and the number of lung colonies in LLC-bearing mice as well as the lung metastasis, and it prolonged the survival time of the LLC-mice. These results suggest a potential anti-tumor growth and anti-metastatic potency of COS in cancer chemoprevention.
Collapse
|
44
|
Ajisaka K, Agawa S, Nagumo S, Kurato K, Yokoyama T, Arai K, Miyazaki T. Evaluation and comparison of the antioxidative potency of various carbohydrates using different methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3102-3107. [PMID: 19309147 DOI: 10.1021/jf804020u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A detailed analysis of the antioxidative activity of 12 carbohydrates including chondroitin sulfate, fucoidan, agaro-oligosaccharide, 2-deoxy-scyllo-inosose (DOI), Galbeta1-4DOI, D-glucuronic acid, chitobiose, D-mannosamine, D-galactosamine, D-glucosamine, heparin, and colominic acid was performed using four established methods: 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, ferric reducing antioxidant power (FRAP) assay, superoxide dismutase (SOD) activity assay, and the deoxyribose method. Ascorbic acid and/or catechin were used as positive standards. In the DPPH radical scavenging activity measurements, fucoidan, DOI, and Galbeta1-4DOI showed remarkable levels of activity, although at lower levels than ascorbic acid. The SOD assay revealed that DOI, Galbeta1-4DOI, and agaro-oligosaccharide had high antioxidant activity, with DOI and Galbeta1-4DOI notably showing almost half of the antioxidative potency of ascorbic acid. Using the deoxyribose method, chitobiose and heparin showed the highest hydroxyl radical scavenging activity, followed by chondroitin sulfate, colominic acid, Galbeta1-4DOI, and d-glucosamine. Given that 11 of the carbohydrates analyzed share a common structure, agaro-oligosaccharide being the exception, we propose from our current results that at least one amino, carboxyl, carbonyl, or sulfonyl group is required, but is not in itself sufficient, for carbohydrates to function as antioxidants.
Collapse
Affiliation(s)
- Katsumi Ajisaka
- Department of Food Science, Niigata University of Pharmacy and Applied Life Sciences, Akiha-ku, Niigata 956-8603, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Murakami S, Ono T, Sakai S, Ijima H, Kawakami K. Effect of Diglucosamine on the Entrapment of Protein into Liposomes. J Liposome Res 2008; 16:103-12. [PMID: 16753965 DOI: 10.1080/08982100600680667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Liposomes, which had entrapped bovine serum albumin (BSA), were modified with diglucosamine by two methods. The liposome was prepared by a freeze-thawing method in the presence of the disaccharide, or the disaccharide was added to the liposome prepared in advance without it. To examine the effects of diglucosamine, the morphology, mean particle size, and zeta potential of both liposomes were compared with those of BSA-entrapping liposome prepared without the disaccharide. Diglucosamine caused no remarkable change in shape and no aggregation of the liposome. The presence of the disaccharide was confirmed on the surfaces of modified liposomes, and the entrapment of BSA into the liposomes was increased by the disaccharide. The entrapment behavior was affected by the way the disaccharide was added, and the difference in the way the BSA was entrapped was also indicated.
Collapse
Affiliation(s)
- S Murakami
- Department of Materials Process Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
46
|
Yang X, Zhao Y, Lv Y, Yang Y, Ruan Y. Protective effect of polysaccharide fractions from Radix A. sinensis against tert-butylhydroperoxide induced oxidative injury in murine peritoneal macrophages. BMB Rep 2008; 40:928-35. [PMID: 18047788 DOI: 10.5483/bmbrep.2007.40.6.928] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Three Angelica sinensis polysaccharide fractions (APFs), named APF1, APF2 and APF3, were isolated and purified from Radix A. sinensis and their antioxidant activities were evaluated in isolated mouse peritoneal macrophages by pretreatment with APFs before exposure to 0.2 mM tertbutylhydroperoxide (t-BHP). The results showed that pretreatment of the macrophages with APFs as low as 10 microg/ml could significantly enhance t-BHP-decreased cell survival, intracellular glutathione (GSH) content and superoxide dismutase (SOD) activity, and also inhibited t-BHP-increased lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) formation (p < 0.05), and APF3 was the most active fraction, followed by APF2 and APF1 in decreasing order. Furthermore, we found for the first time that the bound-protein in APF3 was associated closely with the protective effects and the polysaccharide inhibited the excess NO release from t-BHP-activated macrophages to protect host cells.
Collapse
Affiliation(s)
- Xingbin Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | | | |
Collapse
|
47
|
Li Q, Xiao X, Wang F. Screening of genes involved in chitinase production in Aeromonas caviae CB101 via transposon mutagenesis. J Appl Microbiol 2007; 102:640-9. [PMID: 17309612 DOI: 10.1111/j.1365-2672.2006.03132.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS To find genes involved in chitinase production in chitinolytic bacterium Aeromonas caviae CB101. METHODS AND RESULTS By transposome mutagenesis, a high-quality mutant library containing around 20,000 insertion mutants was constructed in A. caviae CB101. Mutants with higher, lower and delayed chitinase-producing abilities were identified and analysed further. Genomic sequences flanking the insertion sites of these mutants were amplified by thermal asymmetric interlaced-PCR, cloned and sequenced. The mutated genes involved in chitinase production and/or secretion in CB101 include (i) nagA and nagB gene homologues that are related to the metabolism of the chitin digestion product GlcNAc; (ii) ftsX and exeL gene homologues that are related to transport or secretion systems; (iii) varA and rpoH gene homologues that are related to transcriptional regulator sequences; (iv) other genes with unknown functions. CONCLUSIONS Transposome mutagenesis is an efficient method to identify genes involved in the chitinase production in CB101. Chitinase production in CB101 is a complex system, and genes with various functions were identified in this study. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding regulation of chitinase production in CB101 would make molecular engineering of the bacterium for higher enzyme production possible.
Collapse
Affiliation(s)
- Q Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | | | | |
Collapse
|
48
|
Yan Y, Wanshun L, Baoqin H, Changhong W, Chenwei F, Bing L, Liehuan C. The antioxidative and immunostimulating properties of d-glucosamine. Int Immunopharmacol 2007; 7:29-35. [PMID: 17161814 DOI: 10.1016/j.intimp.2006.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 06/12/2006] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate the antioxidant activity and immunostimulating property of glucosamine (GlcN) using various in vitro and in vivo tests. Results showed that GlcN possessed excellent antioxidant activities as manifested by strong chelating effect on ferrous ions and protection of macromolecules such as protein, lipid, and deoxyribose from oxidative damage induced by hydroxyl radicals. The immunostimulating effects of GlcN were further evaluated through various immunological tests. GlcN showed excellent activity of enhancing splenocyte proliferation. Neutral red pinocytosis and NO production in mouse peritoneal macrophages were significantly augmented. Oral administration of GlcN to mice for 20 days significantly enhanced the serum antibody level in mice in response to sheep red blood cells (SRBC), increased the relative organ weight of spleen and thymus tissue, and promoted the delayed-type hypersensitivity (DTH) against SRBC as compared with control group. In conclusion, the present investigation reveals GlcN is biologically functional in antioxidative activities and immunostimulating properties.
Collapse
Affiliation(s)
- Yang Yan
- Biochemistry Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Je JY, Kim SK. Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation. Bioorg Med Chem 2006; 14:5989-94. [PMID: 16725329 DOI: 10.1016/j.bmc.2006.05.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/24/2022]
Abstract
Chitosans with different degree of deacetylation were prepared from crab shell chitin in the presence of alkali. Aminoderivatized chitosan derivatives were prepared in addition of amino functional groups at a hydroxyl site in the chitosan backbone. Six kinds of aminoderivatized chitosan such as aminoethyl-chitosan (AEC90), dimethylaminoethyl-chitosan (DMAEC90), and diethylaminoethyl-chitosan (DEAEC90), which were prepared from 90% deacetylated chitosan, and AEC50, DMAEC50 and DEAEC50, which were prepared from 50% deacetylated chitosan, were prepared and their reactive oxygen species (ROS) scavenging activities were investigated against hydroxyl radical, superoxide anion radical and hydrogen peroxide. The electron spin resonance (ESR) spectrum revealed that AEC90 showed the highest scavenging effects against hydroxyl and superoxide anion radical, the effects were 91.67% and 65.34% at 0.25 and 5 mg/mL, respectively. For hydrogen peroxide scavenging effect, DEAEC90 exhibited the strongest activity. These results suggest that the scavenging effect depends on their degree of deacetylation and substituted group.
Collapse
Affiliation(s)
- Jae-Young Je
- Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | |
Collapse
|
50
|
Yang Y, Shu R, Shao J, Xu G, Gu X. Radical scavenging activity of chitooligosaccharide with different molecular weights. Eur Food Res Technol 2005. [DOI: 10.1007/s00217-005-0028-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|