1
|
Luba R, Martinez S, Jones J, Pravetoni M, Comer SD. Immunotherapeutic strategies for treating opioid use disorder and overdose. Expert Opin Investig Drugs 2023; 32:77-87. [PMID: 36696567 PMCID: PMC10035039 DOI: 10.1080/13543784.2023.2173062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Development and implementation of effective treatments for opioid use disorder (OUD) and prevention of overdose are urgent public health needs. Though existing medications for OUD (MOUD) are effective, barriers to initiation and retention in treatment persist. Therefore, development of novel treatments, especially those may complement existing treatments, is needed. AREAS COVERED This review provides an overview of vaccines for substance use disorders (SUD) and mechanisms underlying their function and efficacy. Next, we focus on existing preclinical and clinical trials of SUD vaccines. We focus briefly on related strategies before providing an expert opinion on prior, current, and future work on vaccines for OUD. We included published findings from preclinical and clinical trials found on PubMed and ScienceDirect as well as ongoing or initiated trials listed on ClinicalTrials.gov. EXPERT OPINION The present opioid overdose and OUD crises necessitate urgent development and implementation of effective treatments, especially those that offer protection from overdose and can serve as adjuvants to existing medications. Promising preclinical trial results paired with careful efforts to develop vaccines that account for prior SUD vaccine shortcomings offer hope for current and future clinical trials of opioid vaccines. Clinical advantages of opioid vaccines appear to outnumber disadvantages, which may result in improved treatment options.
Collapse
Affiliation(s)
- Rachel Luba
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Suky Martinez
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Jermaine Jones
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Marco Pravetoni
- University of Washington, School of Medicine, Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, Center for Medication Development for Substance Use Disorders and Overdose, Seattle, WA
| | - Sandra D Comer
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| |
Collapse
|
2
|
Stone AE, Scheuermann SE, Haile CN, Cuny GD, Velasquez ML, Linhuber JP, Duddupudi AL, Vigliaturo JR, Pravetoni M, Kosten TA, Kosten TR, Norton EB. Fentanyl conjugate vaccine by injected or mucosal delivery with dmLT or LTA1 adjuvants implicates IgA in protection from drug challenge. NPJ Vaccines 2021; 6:69. [PMID: 33986280 PMCID: PMC8119695 DOI: 10.1038/s41541-021-00329-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fentanyl is a major contributor to the devastating increase in overdose deaths from substance use disorders (SUD). A vaccine targeting fentanyl could be a powerful immunotherapeutic. Here, we evaluated adjuvant and delivery strategies for conjugate antigen vaccination with fentanyl-based haptens. We tested adjuvants derived from the heat-labile toxin of E. coli including dmLT and LTA1 by intramuscular, sublingual or intranasal delivery. Our results show anti-fentanyl serum antibodies and antibody secreting cells in the bone-marrow after vaccination with highest levels observed with an adjuvant (alum, dmLT, or LTA1). Vaccine adjuvanted with LTA1 or dmLT elicited the highest levels of anti-fentanyl antibodies, whereas alum achieved highest levels against the carrier protein. Vaccination with sublingual dmLT or intranasal LTA1 provided the most robust blockade of fentanyl-induced analgesia and CNS penetration correlating strongly to anti-FEN IgA. In conclusion, this study demonstrates dmLT or LTA1 adjuvant as well as mucosal delivery may be attractive strategies for improving the efficacy of vaccines against SUD.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah E Scheuermann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Colin N Haile
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Marcela Lopez Velasquez
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joshua P Linhuber
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anantha L Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.,Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
3
|
Xu A, Kosten TR. Current status of immunotherapies for addiction. Ann N Y Acad Sci 2020; 1489:3-16. [PMID: 32147860 DOI: 10.1111/nyas.14329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
The treatment of substance use disorders has always been challenging because multiple neurotransmitters mediate addiction. However, with smoking being the leading cause of preventable death and the recent opioid epidemic in the United States, the search for novel solutions becomes more imperative. In this review, we discuss the use of antibodies to treat addictions and highlight areas of success and areas that require improvement, using examples from cocaine, nicotine, and opioid vaccines. Through each example, we examine creative problem-solving strategies for developing future vaccines, such as using an adenovirus vector as a carrier, designing bivalent vaccines, stimulating Toll-like receptors for adjuvant effects, and altering the route of administration. Our review also covers passive immunization alone to override or prevent drug toxicity as well as in combination with vaccines for more rapid and potentially greater efficacy.
Collapse
Affiliation(s)
- Ashley Xu
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| | - Thomas R Kosten
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Lockner JW, Eubanks LM, Choi JL, Lively JM, Schlosburg JE, Collins KC, Globisch D, Rosenfeld-Gunn RJ, Wilson IA, Janda KD. Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm 2015; 12:653-62. [PMID: 25531528 PMCID: PMC4319694 DOI: 10.1021/mp500520r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cocaine abuse is problematic, directly and indirectly impacting the lives of millions, and yet existing therapies are inadequate and usually ineffective. A cocaine vaccine would be a promising alternative therapeutic option, but efficacy is hampered by variable production of anticocaine antibodies. Thus, new tactics and strategies for boosting cocaine vaccine immunogenicity must be explored. Flagellin is a bacterial protein that stimulates the innate immune response via binding to extracellular Toll-like receptor 5 (TLR5) and also via interaction with intracellular NOD-like receptor C4 (NLRC4), leading to production of pro-inflammatory cytokines. Reasoning that flagellin could serve as both carrier and adjuvant, we modified recombinant flagellin protein to display a cocaine hapten termed GNE. The resulting conjugates exhibited dose-dependent stimulation of anti-GNE antibody production. Moreover, when adjuvanted with alum, but not with liposomal MPLA, GNE-FliC was found to be better than our benchmark GNE-KLH. This work represents a new avenue for exploration in the use of hapten-flagellin conjugates to elicit antihapten immune responses.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Departments of Chemistry, Integrative Structural and Computational Biology, and Immunology and Microbial Science, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ramakrishnan M, Kinsey BM, Singh RA, Kosten TR, Orson FM. Hapten optimization for cocaine vaccine with improved cocaine recognition. Chem Biol Drug Des 2014; 84:354-63. [PMID: 24803171 DOI: 10.1111/cbdd.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 11/27/2022]
Abstract
In the absence of any effective pharmacotherapy for cocaine addiction, immunotherapy is being actively pursued as a therapeutic intervention. While several different cocaine haptens have been explored to develop anticocaine antibodies, none of the hapten was successfully designed, which had a protonated tropane nitrogen as is found in native cocaine under physiological conditions, including the succinyl norcocaine (SNC) hapten that has been tested in phase II clinical trials. Herein, we discuss three different cocaine haptens: hexyl norcocaine (HNC), bromoacetamido butyl norcocaine (BNC), and succinyl butyl norcocaine (SBNC), each with a tertiary nitrogen structure mimicking that of native cocaine which could optimize the specificity of anticocaine antibodies for better cocaine recognition. Mice immunized with these haptens conjugated to immunogenic proteins produced high titre anticocaine antibodies. However, during chemical conjugation of HNC and BNC haptens to carrier proteins, the 2β methyl ester group is hydrolyzed, and immunizing mice with these conjugate vaccines in mice produced antibodies that bound both cocaine and the inactive benzoylecgonine metabolite. While in the case of the SBNC conjugate, vaccine hydrolysis of the methyl ester did not appear to occur, leading to antibodies with high specificity to cocaine over BE. Although we observed similar specificity with a SNC hapten, the striking difference is that SBNC carries a positive charge on the tropane nitrogen atom, and therefore, it is expected to have better binding of cocaine. The 50% cocaine inhibitory concentration (IC50 ) value for SBNC antibodies (2.8 μm) was significantly better than the SNC antibodies (9.4 μm) when respective hapten-BSA was used as a substrate. In addition, antibodies from both sera had no inhibitory effect from BE. In contrast to BNC and HNC, the SBNC conjugate was also found to be highly stable without any noticeable hydrolysis for several months at 4 °C and 2-3 days in pH 10 buffer at 37 °C.
Collapse
Affiliation(s)
- Muthu Ramakrishnan
- Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, 77030, TX, USA; Department of Medicine and Clinical Immunology, Baylor College of Medicine, Houston, 77030, TX, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
The pharmacokinetic approach to treatment targets the drug molecules themselves, aiming to reduce their concentration at the site of action, thereby reducing or preventing any pharmacodynamic effect. This approach might be useful in the treatment of acute drug toxicity/overdose and in the long-term treatment of addiction. Early clinical trials with anticocaine and antinicotine vaccines have shown reduced drug use and good tolerability. Also showing promise in animal studies are monoclonal antibodies against cocaine, methamphetamine and phencyclidine, as well as the enhancment of cocaine metabolism with genetic variants of human butyrylcholinesterase, using a bacterial esterase or catalytic monoclonal antibodies. Pharmacokinetic treatments offer potential advantages in terms of patient compliance, absence of medication interactions and benefit for patients who cannot take standard medications.
Collapse
Affiliation(s)
- David A Gorelick
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
de Villiers SHL, Cornish KE, Troska AJ, Pravetoni M, Pentel PR. Increased efficacy of a trivalent nicotine vaccine compared to a dose-matched monovalent vaccine when formulated with alum. Vaccine 2013; 31:6185-93. [PMID: 24176492 DOI: 10.1016/j.vaccine.2013.10.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/11/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Vaccination against nicotine is a potential treatment for tobacco smoking. Clinical trials show effect only in high antibody responders; therefore it is necessary to increase the effectiveness of nicotine vaccines. The use of a multivalent vaccine that activates several B cell populations is a possible approach to increase antibody response. The aim of this study was to investigate whether three different nicotine immunogens could be mixed to generate independent responses resulting in additive antibody titers, and whether this would alter nicotine distribution to a greater extent than antibodies generated by a monovalent vaccine. When immunogens were administered s.c. with alum adjuvant, the trivalent vaccine generated significantly higher titers and prevented the distribution of an i.v. nicotine dose to brain to a greater extent than an equivalent dose of a monovalent vaccine. The number of rats with antibody titers >1:10,000 was significantly increased in the trivalent group compared to the monovalent group. There were no correlations between the titers generated by the different nicotine immunogens in the trivalent vaccine, supporting the hypothesis that the immunogens generated independent responses from distinct populations of B cells. In contrast, when administered i.p. in Freund's adjuvant, the trivalent nicotine vaccine was not more immunogenic than its component monovalent vaccine. Vaccine immunogenicity was suppressed if unconjugated protein was added to the monovalent vaccine formulated in Freund's adjuvant, compared to monovalent vaccine alone. These data suggest a protein-protein interaction that affects titers negatively and is apparent when the vaccines are formulated with Freund's adjuvant. In summary, a trivalent nicotine vaccine formulated with alum showed significantly higher efficacy than a dose-matched monovalent vaccine and may offer a strategy for increasing nicotine vaccine immunogenicity. This approach may be generalizable to other nicotine immunogens or vaccines for other addictive drugs.
Collapse
Affiliation(s)
- Sabina H L de Villiers
- Center of Global Health and Social Responsibility, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA.
| | | | | | | | | |
Collapse
|
8
|
Ramakrishnan M, Alves De Melo F, Kinsey BM, Ladbury JE, Kosten TR, Orson FM. Probing cocaine-antibody interactions in buffer and human serum. PLoS One 2012; 7:e40518. [PMID: 22859949 PMCID: PMC3409241 DOI: 10.1371/journal.pone.0040518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 06/08/2012] [Indexed: 11/29/2022] Open
Abstract
Background Despite progress in cocaine immunotherapy, the kinetic and thermodynamic properties of antibodies which bind to cocaine and its metabolites are not well understood. It is also not clear how the interactions between them differ in a complex matrix such as the serum present in the human body. In the present study, we have used microscale thermophoresis (MST), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) we have evaluated the affinity properties of a representative mouse monoclonal (mAb08) as well as those of polyclonal antibodies purified from vaccinated mouse and human patient serum. Results MST analysis of fluorescently tagged mAb08 binding to cocaine reveals an approximately 15 fold decrease in its equilibrium dissociation constant in 20–50% human serum compared with that in saline buffer. A similar trend was also found using enriched polyclonal antibodies purified from vaccinated mice and patient serum, for which we have used fluorescently tagged bovine serum albumin conjugated to succinyl norcocaine (BSA-SNC). This conjugate closely mimics both cocaine and the hapten used to raise these antibodies. The ITC data also revealed that cocaine has a moderate affinity of about 2 µM to 20% human serum and very little interaction with human serum albumin or nonspecific human IgG at that concentration range. In a SPR inhibition experiment, the binding of mAb08 to immobilized BSA-SNC was inhibited by cocaine and benzoylecgonine in a highly competitive manner, whereas the purified polyclonal antibodies from vaccinated humans and mice, revealed preferential selectivity to pharmacologically active cocaine but not to the inactive metabolite benzoylecgonine. We have also developed a simple binding model to simulate the challenges associated with cocaine immunotherapy using the variable quantitative and kinetic properties of the antibodies. Conclusions High sensitivity calorimetric determination of antibody binding to cocaine and its metabolites provide valuable information for characterization of their interactions and thermodynamic properties. In addition MST measurements of antibody affinity in the presence of biological fluids will provide a better opportunity to make reliable decisions and facilitate the design of cocaine vaccines and immunization conditions. The methods should be more widely adopted in characterization of antibody complexes.
Collapse
Affiliation(s)
- Muthu Ramakrishnan
- Veterans Affairs Medical Center, Houston, Texas, United States of America
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fernando Alves De Melo
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
- Center for Biomolecular Structure and Function, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Berma M. Kinsey
- Veterans Affairs Medical Center, Houston, Texas, United States of America
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - John E. Ladbury
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
- Center for Biomolecular Structure and Function, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Thomas R. Kosten
- Veterans Affairs Medical Center, Houston, Texas, United States of America
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank M. Orson
- Veterans Affairs Medical Center, Houston, Texas, United States of America
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
The pharmacokinetic treatment strategy targets the drug molecule itself, aiming to reduce drug concentration at the site of action, thereby minimizing any pharmacodynamic effect. This approach might be useful in the treatment of acute drug toxicity/overdose and in the long-term treatment of addiction. Phase IIa controlled clinical trials with anticocaine and antinicotine vaccines have shown good tolerability and some efficacy, but Phase IIb and III trials have been disappointing because of the failure to generate adequate antibody titers in most participants. Monoclonal antibodies against cocaine, methamphetamine and phencyclidine have shown promise in animal studies, as has enhancing cocaine metabolism with genetic variants of human butyrylcholinesterase, with a bacterial esterase, and with catalytic monoclonal antibodies. Pharmacokinetic treatments offer potential advantages in terms of patient adherence, absence of medication interactions and benefit for patients who cannot take standard medications.
Collapse
Affiliation(s)
- David A Gorelick
- Chemistry & Drug Metabolism Section Intramural Research Program, National Institute on Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
10
|
Abstract
Cocaine abuse is an ongoing and serious problem that has led to the growth of a brutal criminal enterprise, particularly in the Americas and Europe. At present, there are no effective pharmacological agents available to treat the addiction by blocking cocaine or reversing its effects. In order to help motivated addicts conquer their addiction, vaccines against cocaine are being developed and one has progressed to clinical trials. This article will discuss the concept of antidrug vaccines in general, the successes and limitations of the various anti-cocaine vaccine approaches, the results of the clinical trials with an anti-cocaine vaccine and some new vaccine-mediated approaches to combat cocaine addiction.
Collapse
|
11
|
Kinsey BM, Kosten TR, Orson FM. Active immunotherapy for the Treatment of Cocaine Dependence. DRUG FUTURE 2010; 35:301-306. [PMID: 21796226 DOI: 10.1358/dof.2010.035.04.1474292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although cocaine is illegal in most countries of the world, addiction is common and increasing in many populations, and the effectiveness of current treatment options for those afflicted has been very limited. The availability of an anti-cocaine vaccine could offer help to those who wish to quit their addiction. A number of vaccines differing in their chemical nature have been developed, and one has advanced into clinical trials. This review will discuss the successes and limitations of the various vaccines and the results of clinical trials of the vaccine using succinyl norcocaine conjugated to cholera toxin B. This latter vaccine shows considerable promise for those individuals whose antibody response is adequate..
Collapse
|
12
|
Charles-Nicolas A, Lacoste J, Ballon N. Le point sur l’addiction à la cocaïne et au crack. ANNALES MEDICO-PSYCHOLOGIQUES 2009. [DOI: 10.1016/j.amp.2009.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Orson FM, Kinsey BM, Singh RAK, Wu Y, Kosten TR. Vaccines for cocaine abuse. HUMAN VACCINES 2009; 5:194-9. [PMID: 19276665 DOI: 10.4161/hv.5.4.7457] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Treatments for cocaine abuse have been disappointingly ineffective, especially in comparison with those for some other abused substances. A new approach, using vaccination to elicit specific antibodies to block the access of cocaine to the brain, has shown considerable promise in animal models, and more recently in human trials. The mechanism of action for the antibody effect on cocaine is very likely to be the straightforward and intuitive result of the binding of the drug in circulation by antibodies, thereby reducing its entry into the central nervous system and thus its pharmacological effects. The effectiveness of such antibodies on drug pharmacodynamics is a function of both the quantitative and the qualitative properties of the antibodies, and this combination will determine the success of the clinical applications of anti-cocaine vaccines in helping addicts discontinue cocaine abuse. This review will discuss these issues and present the current developmental status of cocaine conjugate vaccines.
Collapse
Affiliation(s)
- Frank M Orson
- Veterans Affairs Medical Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
14
|
Hrafnkelsdottir K, Valgeirsson J, Bjarnadottir S, Olafsdottir S, Olafsdottir K, Hedinsdottir ST, Magnusdottir EV, Gizurarson S. Immunization prevents DDT buildup in mouse tissues. Int Immunopharmacol 2007; 7:1179-84. [PMID: 17630196 DOI: 10.1016/j.intimp.2007.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
DDT is used for pest control, causing health and environmental hazards in some parts of the world. The goal of this study was to assess whether immunization against a toxic compound could reduce the toxicant uptake of an organism, specifically to develop a DDT immunization that promotes the production of specific antibodies and assess whether it reduces DDT levels in the bodies of mice that are exposed to DDT by intake. BALB/c mice were immunized with DDT-keyhole limpet hemocyanine (DDT-KLH) conjugate (n=10) or unconjugated KLH (n=10), which was used as a control. After the immunization specific DDT antibodies in the mouse serum were determined by ELISA and then the mice were fed chow containing 40 mg/kg of DDT for 45 days. Finally, the concentration of DDT and its metabolites, DDE and DDD, in various tissues was measured by gas chromatography. Specific DDT antibody levels were significantly higher in the DDT immunized group than in the control group. DDT, DDE and DDD levels in adipose tissue, blood, brain and spleen were significantly reduced in the DDT immunized animals relative to control animals. However, DDT and DDD levels were higher in the liver compared to the control group. The findings indicate that the DDT immunization reduces the total uptake of DDT in animal tissues, which is reflected by the lower levels in adipose tissue, blood, brain and spleen. The elevated levels in liver suggest that DDT-antibody complexes in mouse serum are delivered to the liver.
Collapse
|