1
|
Ruhland E, Siemers M, Gerst R, Späth F, Vogt LN, Figge MT, Papenfort K, Fröhlich KS. The global RNA-RNA interactome of Klebsiella pneumoniae unveils a small RNA regulator of cell division. Proc Natl Acad Sci U S A 2024; 121:e2317322121. [PMID: 38377209 PMCID: PMC10907235 DOI: 10.1073/pnas.2317322121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The ubiquitous RNA chaperone Hfq is involved in the regulation of key biological processes in many species across the bacterial kingdom. In the opportunistic human pathogen Klebsiella pneumoniae, deletion of the hfq gene affects the global transcriptome, virulence, and stress resistance; however, the ligands of the major RNA-binding protein in this species have remained elusive. In this study, we have combined transcriptomic, co-immunoprecipitation, and global RNA interactome analyses to compile an inventory of conserved and species-specific RNAs bound by Hfq and to monitor Hfq-mediated RNA-RNA interactions. In addition to dozens of RNA-RNA pairs, our study revealed an Hfq-dependent small regulatory RNA (sRNA), DinR, which is processed from the 3' terminal portion of dinI mRNA. Transcription of dinI is controlled by the master regulator of the SOS response, LexA. As DinR accumulates in K. pneumoniae in response to DNA damage, the sRNA represses translation of the ftsZ transcript by occupation of the ribosome binding site. Ectopic overexpression of DinR causes depletion of ftsZ mRNA and inhibition of cell division, while deletion of dinR antagonizes cell elongation in the presence of DNA damage. Collectively, our work highlights the important role of RNA-based gene regulation in K. pneumoniae and uncovers the central role of DinR in LexA-controlled division inhibition during the SOS response.
Collapse
Affiliation(s)
- Eric Ruhland
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| | - Malte Siemers
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| | - Ruman Gerst
- Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena07745, Germany
| | - Felix Späth
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
| | - Laura Nicole Vogt
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
| | - Marc Thilo Figge
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena07745, Germany
| | - Kai Papenfort
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| | - Kathrin Sophie Fröhlich
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
2
|
Pariseau DA, Ring BE, Khadka S, Mike LA. Cultivation and Genomic DNA Extraction of Klebsiella pneumoniae. Curr Protoc 2024; 4:e932. [PMID: 38279957 PMCID: PMC11407547 DOI: 10.1002/cpz1.932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Klebsiella pneumoniae is a Gram-negative, rod-shaped bacterium of medical significance. It typically exists as part of the normal flora of the human intestine but can cause severe infections in the healthcare setting due to its rapid acquisition of antibiotic resistance. Cultivating and extracting genomic DNA from this bacterium is crucial for downstream characterization and comparative analyses. To provide a standardized approach for growing K. pneumoniae in the laboratory setting, this collection of protocols provides step-by-step procedures for routine culturing, generating growth curves, storing bacteria, and extracting genomic DNA. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Reviving K. pneumoniae from frozen stocks Basic Protocol 2: Cultivating K. pneumoniae in rich growth medium Alternate Protocol: Cultivating in minimal liquid growth medium Basic Protocol 3: Enumerating K. pneumoniae colony forming units Basic Protocol 4: Growth curves Basic Protocol 5: Genomic DNA extraction Basic Protocol 6: Characterizing K. pneumoniae strains based on genomic sequence Basic Protocol 7: Storage of K. pneumoniae frozen stocks in glycerol Basic Protocol 8: Storage of K. pneumoniae in agar stabs.
Collapse
Affiliation(s)
- Drew A Pariseau
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Brooke E Ring
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Saroj Khadka
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Laura A Mike
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
3
|
Huang M, He P, He P, Wu Y, Munir S, He Y. Novel Virulence Factors Deciphering Klebsiella pneumoniae KpC4 Infect Maize as a Crossing-Kingdom Pathogen: An Emerging Environmental Threat. Int J Mol Sci 2022; 23:ijms232416005. [PMID: 36555647 PMCID: PMC9785288 DOI: 10.3390/ijms232416005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae is not only a human and animal opportunistic pathogen, but a food-borne pathogen. Cross-kingdom infection has been focused on since K. pneumoniae was identified as the pathogen of maize, banana, and pomegranate. Although the pathogenicity of K. pneumoniae strains (from ditch water, maize, and human) on plant and mice has been confirmed, there are no reports to explain the molecular mechanisms of the pathogen. This study uncovered the K. pneumoniae KpC4 isolated from maize top rot for the determination of various virulence genes and resistance genes. At least thirteen plant disease-causing genes are found to be involved in the disruption of plant defense. Among them, rcsB is responsible for causing disease in both plants and animals. The novel sequence types provide solid evidence that the pathogen invades plant and has robust ecological adaptability. It is imperative to perform further studies on the verification of these KpC4 genes’ functions to understand the molecular mechanisms involved in plant−pathogen interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences and Engineering Research Center for Urban Modern Agriculture of Higher Education in Yunnan Province, Kunming University, Kunming 650214, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| |
Collapse
|
4
|
Chromosomal studies on drug resistance genes in extended spectrum β-lactamases producing-Klebsiella pneumoniae isolated from equine. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
K. pneumoniae is one of the most virulent and multidrug resistant bacteria, of great concern in both human and veterinary medicine. Studies conducted on the drug resistance of Klebsiella pneumoniae in equine are lack in Egypt.
Results
The distribution pattern of ten drug resistance genes were investigated and analyzed among fifteen Klebsiella isolates (previously isolated, identified and antibiogram tested). The targeted determinant genes were coded on the chromosomes, conferring the resistance against β-lactams, carbapenems, fluoroquinolones and aminoglycosides, in addition to the gene determinants of porin protein and efflux pump. The study revealed an incidence rate of 86.7, 100, 23, 7.7, 0, 0, 73.3, 40, 100 and 0% for the genes blaCTX-M, blaTEM, blaKPC, blaNDM-1, blaVIM, qnrB, qnrS, aadA1, AcrAB and ompK35 respectively. The Extended Spectrum β-lactamase-production coding genes were detected in all strains with at least one of their genes. In addition, the efflux pump codding gene and mutation in porin protein gene, which are two important co-factors in the drug resistance mechanism were also detected in all strains. By investigating the association of the drug resistance determinants within a single strain, it was showed that 40% (6/15) of the strains harbored 5 associated genes, 27.7% (4/15) harbored 6 associated genes, 13.3% (2/15) harbored 4 and 7 genes as well and finally only 1 isolate harbored 3 determinants, with complete absence of strains having sole existence of one gene or even two. Pareto chart elucidated that the association of β-lactamases, AcrAB and Qnr with the mutation of the porin protein was the most existed (26.7%). Interestingly, the sequencing results of the CTX-M PCR amplicons were typed as OXY-5 (50%), CTX-M-15 (40%) and CTX-M-27 (10%).
Conclusions
The current study represented the first record of the drug resistance genes’ predominance and their association among the K. pneumoniae strains; recovered from equine in Egypt, offering a helpful guide for scientists seeking new alternatives other-than antibiotics.
Collapse
|
5
|
Brennan-Krohn T, Grote A, Rodriguez S, Kirby JE, Earl AM. Transcriptomics Reveals How Minocycline-Colistin Synergy Overcomes Antibiotic Resistance in Multidrug-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2022; 66:e0196921. [PMID: 35041511 PMCID: PMC8923212 DOI: 10.1128/aac.01969-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria are a rapidly growing public health threat, and the development of novel antimicrobials has failed to keep pace with their emergence. Synergistic combinations of individually ineffective drugs present a potential solution, yet little is understood about the mechanisms of most such combinations. Here, we show that the combination of colistin (polymyxin E) and minocycline has a high rate of synergy against colistin-resistant and minocycline-intermediate or -resistant strains of Klebsiella pneumoniae. Furthermore, using transcriptome sequencing (RNA-Seq), we characterized the transcriptional profiles of these strains when treated with the drugs individually and in combination. We found a striking similarity between the transcriptional profiles of bacteria treated with the combination of colistin and minocycline at individually subinhibitory concentrations and those of the same isolates treated with minocycline alone. We observed a similar pattern with the combination of polymyxin B nonapeptide (a polymyxin B analogue that lacks intrinsic antimicrobial activity) and minocycline. We also found that genes involved in polymyxin resistance and peptidoglycan biosynthesis showed significant differential gene expression in the different treatment conditions, suggesting possible mechanisms for the antibacterial activity observed in the combination. These findings suggest that the synergistic activity of this combination against bacteria resistant to each drug alone involves sublethal outer membrane disruption by colistin, which permits increased intracellular accumulation of minocycline.
Collapse
Affiliation(s)
- Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Grote
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shade Rodriguez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ashlee M. Earl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Dera AA, Ahmad I, Rajagopalan P, Shahrani MA, Saif A, Alshahrani MY, Alraey Y, Alamri AM, Alasmari S, Makkawi M, Alkhathami AG, Zaman G, Hakami A, Alhefzi R, Alfhili MA. Synergistic efficacies of thymoquinone and standard antibiotics against multi-drug resistant isolates. Saudi Med J 2021; 42:196-204. [PMID: 33563739 PMCID: PMC7989283 DOI: 10.15537/smj.2021.2.25706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023] Open
Abstract
Objectives: To explore the antibacterial activity of thymoquinone (TQ), a quinone extracted from Nigella sativa. Methods: This study was conducted from May 2019 to March 2020 at the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia. The antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of TQ were determined using an agar well diffusion method and broth microdilution assays, and the synergistic effect was evaluated using antibiotics in parallel. The disruptive effect of TQ on bacterial cell membranes was determined using scanning electron microscopy. The antivirulence properties of TQ, which include adherence and biofilm formation, were also investigated using adherence and biofilm formation assays, respectively. Results: Thymoquinone demonstrated bactericidal efficacy against 4/14 bacterial strains, with MIC range of 1.04-8.3 µg/mL and and MBC range of 10.41–66.66 µg/mL. Thymoquinone showed synergism against Klebsiella pneumoniae, Staphylococcus epidermidis (American Type Culture Collection 12228), Staphylococcus aureus, and Staphylococcus epidermidis in combination with the tested antibiotics. Thymoquinone inhibited bacterial adhesion by 39%-54%, 48%-68%, and 61%-81% at 0.5 × MIC, 1 × MIC, and 2 × MIC, respectively. The tested bacterial strains significantly inhibited biofilm formation after treatment with various concentrations of TQ for 24 and 48 hours. Conclusion: The combinatory effect of TQ with antimicrobials should be considered when developing new antimicrobial therapy regimens to overcome multidrug-resistant.
Collapse
Affiliation(s)
- Ayed A. Dera
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Irfan Ahmad
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Prasanna Rajagopalan
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mesfer Al Shahrani
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ahmed Saif
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammad Y. Alshahrani
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Yasser Alraey
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ahmad M. Alamri
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Sultan Alasmari
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed Makkawi
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ali G. Alkhathami
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Gaffar Zaman
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Abdulrahim Hakami
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Razan Alhefzi
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammad A. Alfhili
- From the Department of Clinical Laboratory Sciences, Central Research Laboratory (Dera, Ahmad, Rajagopalan, Al Shahrani, Alshahrani, Alraey, Alamri, Alasmari, Makkawi, Alkhathami, Zaman, Hakami, Alhefzi), College of Applied Medical Sciences, King Khalid University, and From the Department of Clinical Laboratory Sciences, Central Research Laboratory (AlAmri), College of Applied Medical Sciences, and Cancer Research Unit, King Khalid University, Abha; from the Department of Clinical Laboratory Sciences (Saif), College of Applied Medical Sciences, Najran University, Najran; and the Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences (Alfhili), College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. mBio 2021; 12:e0086721. [PMID: 34098732 PMCID: PMC8262902 DOI: 10.1128/mbio.00867-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP+) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae.
Collapse
|
8
|
Pareek V, Devineau S, Sivasankaran SK, Bhargava A, Panwar J, Srikumar S, Fanning S. Silver Nanoparticles Induce a Triclosan-Like Antibacterial Action Mechanism in Multi-Drug Resistant Klebsiella pneumoniae. Front Microbiol 2021; 12:638640. [PMID: 33658987 PMCID: PMC7917072 DOI: 10.3389/fmicb.2021.638640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Infections associated with antimicrobial-resistant bacteria now represent a significant threat to human health using conventional therapy, necessitating the development of alternate and more effective antibacterial compounds. Silver nanoparticles (Ag NPs) have been proposed as potential antimicrobial agents to combat infections. A complete understanding of their antimicrobial activity is required before these molecules can be used in therapy. Lysozyme coated Ag NPs were synthesized and characterized by TEM-EDS, XRD, UV-vis, FTIR spectroscopy, zeta potential, and oxidative potential assay. Biochemical assays and deep level transcriptional analysis using RNA sequencing were used to decipher how Ag NPs exert their antibacterial action against multi-drug resistant Klebsiella pneumoniae MGH78578. RNAseq data revealed that Ag NPs induced a triclosan-like bactericidal mechanism responsible for the inhibition of the type II fatty acid biosynthesis. Additionally, released Ag+ generated oxidative stress both extra- and intracellularly in K. pneumoniae. The data showed that triclosan-like activity and oxidative stress cumulatively underpinned the antibacterial activity of Ag NPs. This result was confirmed by the analysis of the bactericidal effect of Ag NPs against the isogenic K. pneumoniae MGH78578 ΔsoxS mutant, which exhibits a compromised oxidative stress response compared to the wild type. Silver nanoparticles induce a triclosan-like antibacterial action mechanism in multi-drug resistant K. pneumoniae. This study extends our understanding of anti-Klebsiella mechanisms associated with exposure to Ag NPs. This allowed us to model how bacteria might develop resistance against silver nanoparticles, should the latter be used in therapy.
Collapse
Affiliation(s)
- Vikram Pareek
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | | | | | - Arpit Bhargava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | - Shabarinath Srikumar
- Department of Food, Nutrition and Health, College of Food and Agriculture, UAE University, Al Ain, United Arab Emirates
| | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Tian X, Wang Q, Perlaza-Jiménez L, Zheng X, Zhao Y, Dhanasekaran V, Fang R, Li J, Wang C, Liu H, Lithgow T, Cao J, Zhou T. First description of antimicrobial resistance in carbapenem-susceptible Klebsiella pneumoniae after imipenem treatment, driven by outer membrane remodeling. BMC Microbiol 2020; 20:218. [PMID: 32689945 PMCID: PMC7372807 DOI: 10.1186/s12866-020-01898-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a looming threat to human health. Although there are numerous studies regarding porin alteration in association with the production of ESBLs and/or AmpC β-lactamase, a systematic study on the treatment-emergence of porins alteration in antibiotic resistance does not yet exist. The aim of this study was to investigate the underlying mechanism of resistance of K. pneumoniae during carbapenem treatment. RESULTS Here, we report three strains (FK-2624, FK-2723 and FK-2820) isolated from one patient before and after imipenem treatment during hospitalization. Antibiotic susceptibility testing indicated that that the first isolate, FK-2624, was susceptible to almost all tested antimicrobials, being resistant only to fosfomycin. The subsequent isolates FK-2723 and FK-2820 were multidrug resistant (MDR). After imipenem therapy, FK-2820 was found to be carbapenem-resistant. PCR and Genome Sequencing analysis indicated that oqxA, and fosA5, were identified in all three strains. In addition, FK-2624 also harbored blaSHV-187 and blaTEM-116. The blaSHV-187 and blaTEM-116 genes were not detected in FK-2723 and FK-2820. blaDHA-1, qnrB4, aac (6')-IIc, and blaSHV-12, EreA2, CatA2, SulI, and tetD, were identified in both FK-2723 and FK-2820. Moreover, the genes blaDHA-1, qnrB4, aac (6')-IIc were co-harbored on a plasmid. Of the virulence factors found in this study, ybtA, ICEKp6, mrkD, entB, iroN, rmpA2-6, wzi16 and capsular serotype K57 were found in the three isolates. The results of pairwise comparisons, multi-locus sequencing typing (MLST) and pulsed-field gel electrophoresis (PFGE) revealed high homology among the isolates. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that isolate FK-2820 lacked OmpK36, with genome sequence data validating that there was a premature stop codon in the ompK36 gene and real-time RT-PCR suggesting high turnover of the ompK36 non-sense transcript in FK-2820, with the steady-state mRNA level 0.007 relative to the initial isolate. CONCLUSION This study in China highlight that the alteration of outer membrane porins due to the 14-day use of imipenem play a potential role in leading to clinical presentation of carbapenem-resistance. This is the first description of increased resistance developing from a carbapenem-susceptible K. pneumoniae with imipenem treatment driven by outer membrane remodeling.
Collapse
Affiliation(s)
- Xuebin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiongdan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Laura Perlaza-Jiménez
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Xiangkuo Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Vijay Dhanasekaran
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiyang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Niestępski S, Harnisz M, Korzeniewska E, Osińska A, Dziuba B. BACTEROIDES SPP. - CLINICAL SIGNIFICANCE, ANTIBIOTIC RESISTANCE AND IDENTIFICATION METHODS. POSTĘPY MIKROBIOLOGII - ADVANCEMENTS OF MICROBIOLOGY 2019. [DOI: 10.21307/pm-2017.56.1.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Ishima Y, Watanabe K, Chuang VTG, Takeda I, Kuroda T, Ogawa W, Watanabe H, Iwao Y, Ishida T, Otagiri M, Maruyama T. S-Nitrosated alpha-1-acid glycoprotein exhibits antibacterial activity against multidrug-resistant bacteria strains and synergistically enhances the effect of antibiotics. FASEB Bioadv 2019; 1:137-150. [PMID: 32123826 PMCID: PMC6996401 DOI: 10.1096/fba.1018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/13/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Alpha-1-acid glycoprotein (AGP) is a major acute-phase protein. Biosynthesis of AGP increases markedly during inflammation and infection, similar to nitric oxide (NO) biosynthesis. AGP variant A (AGP) contains a reduced cysteine (Cys149). Previously, we reported that S-nitrosated AGP (SNO-AGP) synthesized by reaction with a NO donor, possessed very strong broad-spectrum antimicrobial activity (IC50 = 10-9-10-6 M). In this study, using a cecal ligation and puncture animal model, we confirmed that AGP can be endogenously S-nitrosated during infection. Furthermore, we examined the antibacterial property of SNO-AGP against multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa to investigate the involvement of SNO-AGP in the host defense system. Our results showed that SNO-AGP could inhibit multidrug efflux pump, AcrAB-TolC, a major contributor to bacterial multidrug resistance. In addition, SNO-AGP decreased biofilm formation and ATP level in bacteria, indicating that SNO-AGP can revert drug resistance. It was also noteworthy that SNO-AGP showed synergistic effects with the existing antibiotics (oxacillin, imipenem, norfloxacin, erythromycin, and tetracycline). In conclusion, SNO-AGP participated in the host defense system and has potential as a novel agent for single or combination antimicrobial therapy.
Collapse
Affiliation(s)
- Yu Ishima
- Department of Pharmacokinetics and BiopharmaceuticsInstitute of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Kaori Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | | | - Iyo Takeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Teruo Kuroda
- Department of MicrobiologyInstitute of Biomedical & Health Sciences, Hiroshima UniversityHiroshimaJapan
| | - Wakano Ogawa
- Department of Microbiology and BiochemistryDaiichi University of PharmacyFukuokaJapan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Yasunori Iwao
- Department of Pharmaceutical Engineering, Graduate School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and BiopharmaceuticsInstitute of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Masaki Otagiri
- Faculty of Pharmaceutical SciencesSojo UniversityKumamotoJapan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
12
|
Anes J, Sivasankaran SK, Muthappa DM, Fanning S, Srikumar S. Exposure to Sub-inhibitory Concentrations of the Chemosensitizer 1-(1-Naphthylmethyl)-Piperazine Creates Membrane Destabilization in Multi-Drug Resistant Klebsiella pneumoniae. Front Microbiol 2019; 10:92. [PMID: 30814979 PMCID: PMC6381021 DOI: 10.3389/fmicb.2019.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023] Open
Abstract
Antimicrobial efflux is one of the important mechanisms causing multi-drug resistance (MDR) in bacteria. Chemosensitizers like 1-(1-naphthylmethyl)-piperazine (NMP) can inhibit an efflux pump and therefore can overcome MDR. However, secondary effects of NMP other than efflux pump inhibition are rarely investigated. Here, using phenotypic assays, phenotypic microarray and transcriptomic assays we show that NMP creates membrane destabilization in MDR Klebsiella pneumoniae MGH 78578 strain. The NMP mediated membrane destabilization activity was measured using β-lactamase activity, membrane potential alteration studies, and transmission electron microscopy assays. Results from both β-lactamase and membrane potential alteration studies shows that both outer and inner membranes are destabilized in NMP exposed K. pneumoniae MGH 78578 cells. Phenotypic Microarray and RNA-seq were further used to elucidate the metabolic and transcriptional signals underpinning membrane destabilization. Membrane destabilization happens as early as 15 min post-NMP treatment. Our RNA-seq data shows that many genes involved in envelope stress response were differentially regulated in the NMP treated cells. Up-regulation of genes encoding the envelope stress response and repair systems show the distortion in membrane homeostasis during survival in an environment containing sub-inhibitory concentration of NMP. In addition, the lsr operon encoding the production of autoinducer-2 responsible for biofilm production was down-regulated resulting in reduced biofilm formation in NMP treated cells, a phenotype confirmed by crystal violet-based assays. We postulate that the early membrane disruption leads to destabilization of inner membrane potential, impairing ATP production and consequently resulting in efflux pump inhibition.
Collapse
Affiliation(s)
- João Anes
- School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | | | - Dechamma M Muthappa
- School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Shabarinath Srikumar
- School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Mouwakeh A, Telbisz Á, Spengler G, Mohácsi-Farkas C, Kiskó G. Antibacterial and Resistance Modifying Activities of Nigella sativa Essential Oil and its Active Compounds Against Listeria monocytogenes. In Vivo 2018; 32:737-743. [PMID: 29936453 PMCID: PMC6117775 DOI: 10.21873/invivo.11302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM N. sativa essential oil (EO) and its compounds (thymoquinone, carvacrol and p-cymene) have a broad antimicrobial spectrum. The aim of this study was to investigate the antimicrobial and resistance modifying activity of N. sativa EO, thymoquinone, carvacrol and p-cymene against Listeria monocytogenes. MATERIALS AND METHODS N. sativa EO, thymoquinone, carvacrol and p-cymene was assessed for its antimicrobial activity, modulation of antimicrobial resistance, inhibition of antimicrobial efflux and membrane integrity by broth microdilution, ethidium bromide accumulation and LIVE/DEAD BacLight™ assays. RESULTS L. monocytogenes showed substantial susceptibility toward N. sativa EO, thymoquinone, and carvacrol. A significant reduction in MIC's of EtBr and ciprofloxacin was noticed when tested in combination with N. sativa EO, thymoquinone, carvacrol and reserpine. In the presence of each compound the membrane integrity was disintegrated, and the EtBr accumulation increased which was comparable to positive control reserpine. CONCLUSION N. sativa EO might have a potential for controlling the antibiotic resistance in Listeria.
Collapse
Affiliation(s)
- Ahmad Mouwakeh
- Department of Microbiology and Biotechnology, Szent Istvan University, Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, Hungarian Academy of Science, Budapest, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Csilla Mohácsi-Farkas
- Department of Microbiology and Biotechnology, Szent Istvan University, Budapest, Hungary
| | - Gabriella Kiskó
- Department of Microbiology and Biotechnology, Szent Istvan University, Budapest, Hungary
| |
Collapse
|
14
|
Gomez-Simmonds A, Uhlemann AC. Clinical Implications of Genomic Adaptation and Evolution of Carbapenem-Resistant Klebsiella pneumoniae. J Infect Dis 2017; 215:S18-S27. [PMID: 28375514 DOI: 10.1093/infdis/jiw378] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae poses a major challenge to healthcare worldwide as an important cause of multidrug-resistant infections. Nosocomial clones, including epidemic sequence type 258 (ST258), have shown an affinity for acquiring and disseminating resistance plasmids, particularly variants of the K. pneumoniae carbapenemase. By comparison, the resurgence of severe community-associated K. pneumoniae infections has led to increased recognition of hypervirulent strains belonging to the K1 and K2 capsular serotypes, predominantly in eastern Asia. Genomic and functional studies suggest that a variety of virulence and immune evasive factors contribute to the success of nosocomial and community-associated clonal lineages, aided by mechanisms of genetic plasticity that contribute to uptake of genes associated with antimicrobial resistance and pathogenicity. While there currently appears to be limited overlap between resistant and hypervirulent lineages, specific bacterial and host factors contributing to the emergence of dominant clones remain incompletely understood. This review summarizes recent advances in our understanding of the molecular epidemiology, virulence potential, and host-pathogen interactions of K. pneumoniae.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|
15
|
Salloum T, Arabaghian H, Alousi S, Abboud E, Tokajian S. Genome sequencing and comparative analysis of an NDM-1-producing Klebsiella pneumoniae ST15 isolated from a refugee patient. Pathog Glob Health 2017; 111:166-175. [PMID: 28395597 DOI: 10.1080/20477724.2017.1314069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The escalating problem of antibiotic resistance, specifically cabarpenemase and extended-spectrum β-lacatamase (ESBL) producing K. pneumoniae strains, is directly correlated with increased patient morbidity and mortality and prolonged hospitalization and costs. In this study, a comprehensive genomic analysis encompassing the resistomics, virulence repertoire and mobile genetic elements of an NDM-1 positive ESBL-producing K. pneumoniae EA-MEH ST15 isolated from a urine sample collected from a Syrian refugee was conducted. Illumina paired-end libraries were prepared and sequenced resulting in 892,300 high-quality reads. The initial assembly produced 329 contigs with a combined 5,954,825 bp and a 56.5% G+C content. Resistome analysis revealed the presence of several β-lactamases including NDM-1, SHV-28, CTX-M-15 and OXA-1 in addition to 18 other genes encoding for resistance, among which are aph(3')-Ia, aac(6')Ib-cr, armA, strB, strA and aadA2 genes. Additionally, five plasmids IncFIB(Mar), IncHI1B, IncFIB(pKPHS1), IncFIB(K) and IncFII(K) and four integrated phages were detected. In silico MLST analysis revealed that the isolate was of sequence type ST15. To our knowledge this is the first in-depth genomic analysis of a NDM-1 positive K. pneumoniae ST15 in Lebanon associated with the recent population migration. The potential dissemination of such MDR strains is an important public health concern.
Collapse
Affiliation(s)
- Tamara Salloum
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| | - Harout Arabaghian
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| | - Sahar Alousi
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| | - Edmond Abboud
- b Clinical Laboratory , The Middle East Institute of Health , Bsalim , Lebanon
| | - Sima Tokajian
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| |
Collapse
|
16
|
Scavuzzi AML, Maciel MAV, de Melo HRL, Alves LC, Brayner FA, Lopes ACS. Occurrence of qnrB1 and qnrB12 genes, mutation in gyrA and ramR, and expression of efflux pumps in isolates of Klebsiella pneumoniae carriers of bla
KPC-2. J Med Microbiol 2017; 66:477-484. [DOI: 10.1099/jmm.0.000452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alexsandra Maria Lima Scavuzzi
- Centro de Pesquisas Aggeu Magalhães (CPqAM-Fiocruz), Recife-PE, Brazil
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| | - Maria Amélia Vieira Maciel
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| | - Heloísa Ramos Lacerda de Melo
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
- Departamento de Clínica Médica, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| | - Luiz Carlos Alves
- Centro de Pesquisas Aggeu Magalhães (CPqAM-Fiocruz), Recife-PE, Brazil
| | - Fábio André Brayner
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
- Centro de Pesquisas Aggeu Magalhães (CPqAM-Fiocruz), Recife-PE, Brazil
| | - Ana Catarina Souza Lopes
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), 50.732-970, Recife-PE, Brazil
| |
Collapse
|
17
|
Henry CS, Rotman E, Lathem WW, Tyo KEJ, Hauser AR, Mandel MJ. Generation and Validation of the iKp1289 Metabolic Model for Klebsiella pneumoniae KPPR1. J Infect Dis 2017; 215:S37-S43. [PMID: 28375518 PMCID: PMC5790149 DOI: 10.1093/infdis/jiw465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae has a reputation for causing a wide range of infectious conditions, with numerous highly virulent and antibiotic-resistant strains. Metabolic models have the potential to provide insights into the growth behavior, nutrient requirements, essential genes, and candidate drug targets in these strains. Here we develop a metabolic model for KPPR1, a highly virulent strain of K. pneumoniae. We apply a combination of Biolog phenotype data and fitness data to validate and refine our KPPR1 model. The final model displays a predictive accuracy of 75% in identifying potential carbon and nitrogen sources for K. pneumoniae and of 99% in predicting nonessential genes in rich media. We demonstrate how this model is useful in studying the differences in the metabolic capabilities of the low-virulence MGH 78578 strain and the highly virulent KPPR1 strain. For example, we demonstrate that these strains differ in carbohydrate metabolism, including the ability to metabolize dulcitol as a primary carbon source. Our model makes numerous other predictions for follow-up verification and analysis.
Collapse
Affiliation(s)
- Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne
| | | | | | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Alan R Hauser
- Department of Microbiology-Immunology
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, and
| | | |
Collapse
|
18
|
Karampatakis T, Antachopoulos C, Iosifidis E, Tsakris A, Roilides E. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in Greece. Future Microbiol 2016; 11:809-23. [PMID: 27206024 DOI: 10.2217/fmb-2016-0042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hospital infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) constitute a worldwide problem associated with high rates of treatment failure and mortality. In Greece, CRKP have emerged in 2002 due to VIM carbapenemase production and later due to KPC, NDM and OXA-48-like carbapenemases that have become endemic. The molecular epidemiology of CRKP strains is dynamic, as antibiotic consumption and worldwide traveling are strongly associated with global spread of CRKP isolates. Lately, porin defects, such as disruption of OmpK35 and production of OmpK36 variant, have also contributed to carbapenem resistance. In the coming years, the high prevalence of CRKP will require intense infection control measures, while novel molecular patterns may appear. To our knowledge, this is the first review analyzing the molecular epidemiology of CRKP strains in Greece.
Collapse
Affiliation(s)
- Theodoros Karampatakis
- Infectious Diseases Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Aristotle University, Hippokration General Hospital, Thessaloniki, Greece
| | - Charalampos Antachopoulos
- Infectious Diseases Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Aristotle University, Hippokration General Hospital, Thessaloniki, Greece
| | - Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Aristotle University, Hippokration General Hospital, Thessaloniki, Greece
| | - Athanassios Tsakris
- Microbiology Department, Athens University School of Medicine, Athens, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Aristotle University, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
19
|
Kaplan E, Sela N, Doron-Faigenboim A, Navon-Venezia S, Jurkevitch E, Cytryn E. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates. Front Microbiol 2015; 6:1354. [PMID: 26696974 PMCID: PMC4672061 DOI: 10.3389/fmicb.2015.01354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like plasmids concomitant to phylogenetic analysis of housekeeping genes from host Klebsiella strains, revealed that these plasmids are limited to a predominantly human-associated sub-clade of Klebsiella, suggesting that their host range is very narrow. Conversely, the pGNB2-like plasmids had a much broader host range and appeared to be associated with Klebsiella residing in natural environments. This study suggests that: (A) qnrB-harboring multidrug-resistant pKPN3-like plasmids can endure the rigorous wastewater treatment process and may therefore be disseminated to downstream environments; and (B) that small qnrS-harboring pGNB2-like plasmids are ubiquitous in wastewater treatment facilities and are most likely environmental in origin.
Collapse
Affiliation(s)
- Ella Kaplan
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization Beit Dagan, Israel ; Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Noa Sela
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization Beit Dagan, Israel
| | - Adi Doron-Faigenboim
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization Beit Dagan, Israel ; Department of Plant Pathology, The Volcani Center, Agricultural Research Organization Beit Dagan, Israel
| | | | - Edouard Jurkevitch
- Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization Beit Dagan, Israel
| |
Collapse
|
20
|
Bruchmann S, Muthukumarasamy U, Pohl S, Preusse M, Bielecka A, Nicolai T, Hamann I, Hillert R, Kola A, Gastmeier P, Eckweiler D, Häussler S. Deep transcriptome profiling of clinicalKlebsiella pneumoniaeisolates reveals strain and sequence type-specific adaptation. Environ Microbiol 2015; 17:4690-710. [DOI: 10.1111/1462-2920.13016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian Bruchmann
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Uthayakumar Muthukumarasamy
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Sarah Pohl
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Agata Bielecka
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Tanja Nicolai
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Isabell Hamann
- Medizinisches Labor Ostsachsen; Mikrobiologie; Görlitz Germany
| | - Roger Hillert
- Medizinisches Labor Ostsachsen; Mikrobiologie; Görlitz Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine; Charité University Medicine Berlin; Berlin Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine; Charité University Medicine Berlin; Berlin Germany
| | - Denitsa Eckweiler
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| |
Collapse
|
21
|
Ogawa W, Minato Y, Dodan H, Onishi M, Tsuchiya T, Kuroda T. Characterization of MATE-type multidrug efflux pumps from Klebsiella pneumoniae MGH78578. PLoS One 2015; 10:e0121619. [PMID: 25807080 PMCID: PMC4373734 DOI: 10.1371/journal.pone.0121619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023] Open
Abstract
We previously described the cloning of genes related to drug resistance from Klebsiella pneumoniae MGH78578. Of these, we identified a putative gene encoding a MATE-type multidrug efflux pump, and named it ketM. Escherichia coli KAM32 possessing ketM on a plasmid showed increased minimum inhibitory concentrations for norfloxacin, ciprofloxacin, cefotaxime, acriflavine, Hoechst 33342, and 4',6-diamidino-2-phenyl indole (DAPI). The active efflux of DAPI was observed in E. coli KAM32 possessing ketM on a plasmid. The expression of mRNA for ketM was observed in K. pneumoniae cells, and we subsequently disrupted ketM in K. pneumoniae ATCC10031. However, no significant changes were observed in drug resistance levels between the parental strain ATCC10031 and ketM disruptant, SKYM. Therefore, we concluded that KetM was a multidrug efflux pump, that did not significantly contribute to intrinsic resistance to antimicrobial chemicals in K. pneumoniae. MATE-type transporters are considered to be secondary transporters; therefore, we investigated the coupling cations of KetM. DAPI efflux by KetM was observed when lactate was added to produce a proton motive force, indicating that KetM effluxed substrates using a proton motive force. However, the weak efflux of DAPI by KetM was also noted when NaCl was added to the assay mixture without lactate. This result suggests that KetM may utilize proton and sodium motive forces.
Collapse
Affiliation(s)
- Wakano Ogawa
- Department of Microbiology and Biochemistry, Daiichi University of Pharmacy, Fukuoka, Japan
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- * E-mail:
| | - Yusuke Minato
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hayata Dodan
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Motoyasu Onishi
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomofusa Tsuchiya
- Department of Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
22
|
Ramos PIP, Picão RC, Almeida LGPD, Lima NCB, Girardello R, Vivan ACP, Xavier DE, Barcellos FG, Pelisson M, Vespero EC, Médigue C, Vasconcelos ATRD, Gales AC, Nicolás MF. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 2014; 15:54. [PMID: 24450656 PMCID: PMC3904158 DOI: 10.1186/1471-2164-15-54] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/26/2013] [Indexed: 11/24/2022] Open
Abstract
Background Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. K. pneumoniae Kp13 is a multidrug-resistant strain responsible for causing a large nosocomial outbreak in a teaching hospital located in Southern Brazil. Kp13 produces K. pneumoniae carbapenemase (KPC-2) but is unrelated to isolates belonging to ST 258 and ST 11, the main clusters associated with the worldwide dissemination of KPC-producing K. pneumoniae. In this report, we perform a genomic comparison between Kp13 and each of the following three K. pneumoniae genomes: MGH 78578, NTUH-K2044 and 342. Results We have completely determined the genome of K. pneumoniae Kp13, which comprises one chromosome (5.3 Mbp) and six plasmids (0.43 Mbp). Several virulence and resistance determinants were identified in strain Kp13. Specifically, we detected genes coding for six beta-lactamases (SHV-12, OXA-9, TEM-1, CTX-M-2, SHV-110 and KPC-2), eight adhesin-related gene clusters, including regions coding for types 1 (fim) and 3 (mrk) fimbrial adhesins. The rmtG plasmidial 16S rRNA methyltransferase gene was also detected, as well as efflux pumps belonging to five different families. Mutations upstream the OmpK35 porin-encoding gene were evidenced, possibly affecting its expression. SNPs analysis relative to the compared strains revealed 141 mutations falling within CDSs related to drug resistance which could also influence the Kp13 lifestyle. Finally, the genetic apparatus for synthesis of the yersiniabactin siderophore was identified within a plasticity region. Chromosomal architectural analysis allowed for the detection of 13 regions of difference in Kp13 relative to the compared strains. Conclusions Our results indicate that the plasticity occurring at many hierarchical levels (from whole genomic segments to individual nucleotide bases) may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens. The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains.
Collapse
|
23
|
Onishi M, Mizusawa M, Tsuchiya T, Kuroda T, Ogawa W. Suppression of stop codon UGA in acrB can contribute to antibiotic resistance in Klebsiella pneumoniae ATCC10031. Gene 2014. [DOI: 10.1016/j.gene.2013.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Molecular characterization of multidrug resistant hospital isolates using the antimicrobial resistance determinant microarray. PLoS One 2013; 8:e69507. [PMID: 23936031 PMCID: PMC3723915 DOI: 10.1371/journal.pone.0069507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular methods that enable the detection of antimicrobial resistance determinants are critical surveillance tools that are necessary to aid in curbing the spread of antibiotic resistance. In this study, we describe the use of the Antimicrobial Resistance Determinant Microarray (ARDM) that targets 239 unique genes that confer resistance to 12 classes of antimicrobial compounds, quaternary amines and streptothricin for the determination of multidrug resistance (MDR) gene profiles. Fourteen reference MDR strains, which either were genome, sequenced or possessed well characterized drug resistance profiles were used to optimize detection algorithms and threshold criteria to ensure the microarray's effectiveness for unbiased characterization of antimicrobial resistance determinants in MDR strains. The subsequent testing of Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae hospital isolates revealed the presence of several antibiotic resistance genes [e.g. belonging to TEM, SHV, OXA and CTX-M classes (and OXA and CTX-M subfamilies) of β-lactamases] and their assemblages which were confirmed by PCR and DNA sequence analysis. When combined with results from the reference strains, ∼25% of the ARDM content was confirmed as effective for representing allelic content from both Gram-positive and –negative species. Taken together, the ARDM identified MDR assemblages containing six to 18 unique resistance genes in each strain tested, demonstrating its utility as a powerful tool for molecular epidemiological investigations of antimicrobial resistance in clinically relevant bacterial pathogens.
Collapse
|
25
|
KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57:4449-62. [PMID: 23836167 DOI: 10.1128/aac.02284-12] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae has been frequently associated with nosocomial infections. Efflux systems are ubiquitous transporters that also function in drug resistance. Genome analysis of K. pneumoniae strain NTUH-K2044 revealed the presence of ∼15 putative drug efflux systems. We discuss here for the first time the characterization of a putative SMR-type efflux pump, an ebrAB homolog (denoted here as kpnEF) with respect to Klebsiella physiology and the multidrug-resistant phenotype. Analysis of hypermucoviscosity revealed direct involvement of kpnEF in capsule synthesis. The ΔkpnEF mutant displayed higher sensitivity to hyperosmotic (∼2.8-fold) and high bile (∼4.0-fold) concentrations. Mutation in kpnEF resulted in increased susceptibility to cefepime, ceftriaxone, colistin, erythromycin, rifampin, tetracycline, and streptomycin; mutated strains changed from being resistant to being susceptible, and the resistance was restored upon complementation. The ΔkpnEF mutant displayed enhanced sensitivity toward structurally related compounds such as sodium dodecyl sulfate, deoxycholate, and dyes, including clinically relevant disinfectants such as benzalkonium chloride, chlorhexidine, and triclosan. The prevalence of kpnEF in clinical strains broadens the diversity of antibiotic resistance in K. pneumoniae. Experimental evidence of CpxR binding to the efflux pump promoter and quantification of its expression in a cpxAR mutant background demonstrated kpnEF to be a member of the Cpx regulon. This study helps to elucidate the unprecedented biological functions of the SMR-type efflux pump in Klebsiella spp.
Collapse
|
26
|
Srinivasan VB, Mondal A, Venkataramaiah M, Chauhan NK, Rajamohan G. Role of oxyR KP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae. Microbiology (Reading) 2013; 159:1301-1314. [DOI: 10.1099/mic.0.065052-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vijaya Bharathi Srinivasan
- Council of Scientific Industrial Research – Institute of Microbial Technology, Sector 39 A, Chandigarh-160036, India
| | - Amitabha Mondal
- Council of Scientific Industrial Research – Institute of Microbial Technology, Sector 39 A, Chandigarh-160036, India
| | - Manjunath Venkataramaiah
- Council of Scientific Industrial Research – Institute of Microbial Technology, Sector 39 A, Chandigarh-160036, India
| | - Neeraj Kumar Chauhan
- Council of Scientific Industrial Research – Institute of Microbial Technology, Sector 39 A, Chandigarh-160036, India
| | - Govindan Rajamohan
- Council of Scientific Industrial Research – Institute of Microbial Technology, Sector 39 A, Chandigarh-160036, India
| |
Collapse
|
27
|
Fahnoe KC, Flanagan ME, Gibson G, Shanmugasundaram V, Che Y, Tomaras AP. Non-traditional antibacterial screening approaches for the identification of novel inhibitors of the glyoxylate shunt in gram-negative pathogens. PLoS One 2012; 7:e51732. [PMID: 23240059 PMCID: PMC3519852 DOI: 10.1371/journal.pone.0051732] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/08/2012] [Indexed: 01/06/2023] Open
Abstract
Antibacterial compounds that affect bacterial viability have traditionally been identified, confirmed, and characterized in standard laboratory media. The historical success of identifying new antibiotics via this route has justifiably established a traditional means of screening for new antimicrobials. The emergence of multi-drug-resistant (MDR) bacterial pathogens has expedited the need for new antibiotics, though many in the industry have questioned the source(s) of these new compounds. As many pharmaceutical companies' chemical libraries have been exhaustively screened via the traditional route, we have concluded that all compounds with any antibacterial potential have been identified. While new compound libraries and platforms are being pursued, it also seems prudent to screen the libraries we currently have in hand using alternative screening approaches. One strategy involves screening under conditions that better reflect the environment pathogens experience during an infection, and identifying in vivo essential targets and pathways that are dispensable for growth in standard laboratory media in vitro. Here we describe a novel screening strategy for identifying compounds that inhibit the glyoxylate shunt in Pseudomonas aeruginosa, a pathway that is required for bacterial survival in the pulmonary environment. We demonstrate that these compounds, which were not previously identified using traditional screening approaches, have broad-spectrum antibacterial activity when they are tested under in vivo-relevant conditions. We also show that these compounds have potent activity on both enzymes that comprise the glyoxylate shunt, a feature that was supported by computational homology modeling. By dual-targeting both enzymes in this pathway, we would expect to see a reduced propensity for resistance development to these compounds. Taken together, these data suggest that understanding the in vivo environment that bacterial pathogens must tolerate, and adjusting the antibacterial screening paradigm to reflect those conditions, could identify novel antibiotics for the treatment of serious MDR pathogens.
Collapse
Affiliation(s)
- Kelly C. Fahnoe
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Mark E. Flanagan
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Glenn Gibson
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Veerabahu Shanmugasundaram
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Ye Che
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Andrew P. Tomaras
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
28
|
Srinivasan VB, Vaidyanathan V, Mondal A, Venkataramaiah M, Rajamohan G. Functional characterization of a novel Mn2+ dependent protein serine/threonine kinase KpnK, produced by Klebsiella pneumoniae strain MGH78578. FEBS Lett 2012; 586:3778-86. [PMID: 23010593 DOI: 10.1016/j.febslet.2012.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae MGH78578 contains ~500 uncharacterized signaling proteins and in this study, we characterized the biological functions of a novel eukaryotic-like serine/threonine kinase; ESTK (KpnK). Studies demonstrated that KpnK undergoes autophosphorylation within the pH range 7.0-7.5 at 37°C in a time- and concentration- dependent manner, with Mn(2+) as its cofactor. The ΔkpnK mutant exhibited higher sensitivity to gastrointestinal and oxidative stresses. Deletion of kpnK resulted in a two to threefold increased susceptibility towards imipenem, cefepime, ceftriaxone and ceftazidime. Our study has provided overall evidence for the involvement of ESTK in regulating bacterial physiology, stress response and drug resistance. This report has unmasked the occurrence of Ser/Thr kinase mediated signaling for the first time in K. pneumoniae.
Collapse
Affiliation(s)
- Vijaya Bharathi Srinivasan
- Council of Scientific Industrial Research (CSIR), Institute of Microbial Technology, Bacterial Signaling and Drug Resistance Laboratory, Chandigarh 160036, India
| | | | | | | | | |
Collapse
|
29
|
Kim D, Hong JSJ, Qiu Y, Nagarajan H, Seo JH, Cho BK, Tsai SF, Palsson BØ. Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling. PLoS Genet 2012; 8:e1002867. [PMID: 22912590 PMCID: PMC3415461 DOI: 10.1371/journal.pgen.1002867] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 06/14/2012] [Indexed: 01/08/2023] Open
Abstract
Genome-wide transcription start site (TSS) profiles of the enterobacteria Escherichia coli and Klebsiella pneumoniae were experimentally determined through modified 5′ RACE followed by deep sequencing of intact primary mRNA. This identified 3,746 and 3,143 TSSs for E. coli and K. pneumoniae, respectively. Experimentally determined TSSs were then used to define promoter regions and 5′ UTRs upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence, reflecting conserved gene expression apparatuses between the two species. In both species, over 70% of primary transcripts were expressed from operons having orthologous genes during exponential growth. However, expressed orthologous genes in E. coli and K. pneumoniae showed a strikingly different organization of upstream regulatory regions with only 20% identical promoters with TSSs in both species. Over 40% of promoters had TSSs identified in only one species, despite conserved promoter sequences existing in the other species. 662 conserved promoters having TSSs in both species resulted in the same number of comparable 5′ UTR pairs, and that regulatory element was found to be the most variant region in sequence among promoter, 5′ UTR, and ORF. In K. pneumoniae, 48 sRNAs were predicted and 36 of them were expressed during exponential growth. Among them, 34 orthologous sRNAs between two species were analyzed in depth, and the analysis showed that many sRNAs of K. pneumoniae, including pleiotropic sRNAs such as rprA, arcZ, and sgrS, may work in the same way as in E. coli. These results reveal a new dimension of comparative genomics such that a comparison of two genomes needs to be comprehensive over all levels of genome organization. In order to investigate similarities and differences of closely related species, most of the comparative genomics studies focus on comparing the gene contents either shared or specific for each genome. However, it is also important to investigate the differences in non-coding regulatory elements because they influence the transcriptional and post-transcriptional processes. Thus, we performed a genome-wide profiling of transcription start sites (TSSs) in two species, E. coli K-12 MG1655 and K. pneumoniae MGH78578. Experimental identification of TSSs is important for precise definition of promoter regions and 5′ untranslated regions upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence. However, we observed that the upstream regulatory regions of the majority of operons having orthologous genes were organized with different usage of promoters and TSSs, resulting in diverse and complex gene regulation. We also found that the 5′ UTR is the least conserved regulatory element in sequence between the two species. Moreover, 34 orthologous sRNAs between E. coli and K. pneumoniae were analyzed in depth. The analysis suggested many of K. pneumoniae sRNAs might regulate the target genes as in E. coli.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jay Sung-Joong Hong
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Yu Qiu
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Harish Nagarajan
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Joo-Hyun Seo
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Byung-Kwan Cho
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Shih-Feng Tsai
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Bernhard Ø. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ogawa W, Onishi M, Ni R, Tsuchiya T, Kuroda T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene 2012; 498:177-82. [PMID: 22391093 DOI: 10.1016/j.gene.2012.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
We cloned a gene, kexD, that provides a multidrug-resistant phenotype from multidrug-resistant Klebsiella pneumoniae MGH78578. The deduced amino acid sequence of KexD is similar to that of the inner membrane protein, RND-type multidrug efflux pump. Introduction of the kexD gene into Escherichia coli KAM32 resulted in a MIC that was higher for erythromycin, novobiocin, rhodamine 6G, tetraphenylphosphonium chloride, and ethidium bromide than that of the control. Intracellular ethidium bromide levels in E. coli cells carrying the kexD gene were lower than that in the control cells under energized conditions, suggesting that KexD is a component of an energy-dependent efflux pump. RND-type pumps typically consist of three components: an inner membrane protein, a periplasmic protein, and an outer membrane protein. We discovered that KexD functions with a periplasmic protein, AcrA, from E. coli and K. pneumoniae, but not with the periplasmic proteins KexA and KexG from K. pneumoniae. KexD was able to utilize either TolC of E. coli or KocC of K. pneumoniae as an outer membrane component. kexD mRNA was not detected in K. pneumoniae MGH78578 or ATCC10031. We isolated erythromycin-resistant mutants from K. pneumoniae ATCC10031, and some showed a multidrug-resistant phenotype similar to the drug resistance pattern of KexD. Two strains of multidrug-resistant mutants were investigated for kexD expression; kexD mRNA levels were increased in these strains. We conclude that changing kexD expression can contribute to the occurrence of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Wakano Ogawa
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | | | | | | | | |
Collapse
|
31
|
Findlay J, Hamouda A, Dancer S, Amyes S. Rapid acquisition of decreased carbapenem susceptibility in a strain of Klebsiella pneumoniae arising during meropenem therapy. Clin Microbiol Infect 2012; 18:140-6. [DOI: 10.1111/j.1469-0691.2011.03515.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Klebsiella pneumoniae yggG gene product: a zinc-dependent metalloprotease. Int J Mol Sci 2011; 12:4441-55. [PMID: 21845088 PMCID: PMC3155361 DOI: 10.3390/ijms12074441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae causes neonatal sepsis and nosocomial infections. One of the strains, K. pneumoniae MGH 78578, shows high level of resistance to multiple microbial agents. In this study, domain family, amino acid sequence and topology analyses were performed on one of its hypothetical protein, YggG (KPN_03358). Structural bioinformatics approaches were used to predict the structure and functionality of YggG protein. The open reading frame (ORF) of yggG, which was a putative metalloprotease gene, was also cloned, expressed and characterized. The ORF was PCR amplified from K. pneumoniae MGH 78578 genomic DNA and cloned into a pET14-b vector for heterologous expression in Escherichia coli. The purified YggG protein was subsequently assayed for casein hydrolysis under different conditions. This protein was classified as peptidase M48 family and subclan gluzincin. It was predicted to contain one transmembrane domain by TMpred. Optimal protein expression was achieved by induction with 0.6 mM isopropyl thiogalactoside (IPTG) at 25 °C for six hours. YggG was purified as soluble protein and confirmed to be proteolytically active under the presence of 1.25 mM zinc acetate and showed optimum activity at 37 °C and pH 7.4. We confirmed for the first time that the yggG gene product is a zinc-dependent metalloprotease.
Collapse
|
33
|
Kouidhi B, Zmantar T, Jrah H, Souiden Y, Chaieb K, Mahdouani K, Bakhrouf A. Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Ann Clin Microbiol Antimicrob 2011; 10:29. [PMID: 21707998 PMCID: PMC3146813 DOI: 10.1186/1476-0711-10-29] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The discovery of a new efflux pump inhibitor could extend the useful lifetime of some antibiotics. METHODS In this study, the MICs of thymoquinone (TQ), tetracycline and benzalkonium chloride (BC) were determined in absence and in presence of a sub-MIC doses of thymoquinone (1/2 MIC). In addition the 4,6-diamidino-2-phenylindole (DAPI) efflux assay was carried out to determine the effect of TQ on DAPI cells accumulation. RESULTS TQ induced a selective antimicrobial activity. Its synergic effect resulted in at least a 4-fold potentiation of the tested antibiotics and antiseptic. In addition, TQ inhibited the DAPI efflux activity in a concentration-dependent manner. The rate of DAPI accumulation in clinical isolates was enhanced with TQ (0 to 200 μg/ml). There is also a decrease in loss of DAPI from bacteria in the presence of TQ. The concentration causing 50% of DAPI efflux inhibition after 15 minutes was approximately 59 μg/ml for Pseudomonas aeroginosa and 100 μg/ml and Staphylococcus aureus respectively. CONCLUSIONS TQ possesses a selective antibacterial activity against oral bacteria. It is therefore suggested that TQ could be used as a source of natural products with resistance-modifying activity. Further investigation is needed to assess their clinical relevance.
Collapse
Affiliation(s)
- Bochra Kouidhi
- Laboratory of Analyses, Treatments and Valorisation of Environmental Wastes and Products, Faculty of Pharmacy, Monastir University, Avicenne Street 5000, Monastir, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
34
|
In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother 2011; 55:2795-802. [PMID: 21464248 DOI: 10.1128/aac.00156-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between efflux system overexpression and cross-resistance to cefoxitin, quinolones, and chloramphenicol has recently been reported in Klebsiella pneumoniae. In 3 previously published clinical isolates and 17 in vitro mutants selected with cefoxitin or fluoroquinolones, mutations in the potential regulator genes of the AcrAB efflux pump (acrR, ramR, ramA, marR, marA, soxR, soxS, and rob) were searched, and their impacts on efflux-related antibiotic cross-resistance were assessed. All mutants but 1, and 2 clinical isolates, overexpressed acrB. No mutation was detected in the regulator genes studied among the clinical isolates and 8 of the mutants. For the 9 remaining mutants, a mutation was found in the ramR gene in 8 of them and in the soxR gene in the last one, resulting in overexpression of ramA and soxS, respectively. Transformation of the ramR mutants and the soxR mutant with the wild-type ramR and soxR genes, respectively, abolished overexpression of acrB and ramA in the ramR mutants and of soxS in the soxR mutant, as well as antibiotic cross-resistance. Resistance due to efflux system overexpression was demonstrated for 4 new antibiotics: cefuroxime, cefotaxime, ceftazidime, and ertapenem. This study shows that the ramR and soxR genes control the expression of efflux systems in K. pneumoniae and suggests the existence of efflux pumps other than AcrAB and of other loci involved in the regulation of AcrAB expression.
Collapse
|
35
|
Membrane efflux and influx modulate both multidrug resistance and virulence of Klebsiella pneumoniae in a Caenorhabditis elegans model. Antimicrob Agents Chemother 2010; 54:4373-8. [PMID: 20679507 DOI: 10.1128/aac.01607-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cross-resistance to cefoxitin (FOX), chloramphenicol (CMP), and quinolones (nalidixic acid [NAL]) related to a putative efflux system overexpression has recently been reported for Klebsiella pneumoniae. The potential impact of this multidrug resistance (MDR) on the virulence of K. pneumoniae was evaluated in the Caenorhabditis elegans model. For 2 of the 3 MDR clinical isolates studied, a significant increase in acrB transcription was found in comparison with their antibiotic-susceptible revertants. ATCC 138821 and MDR, revertant, and derivative strains with altered porin expression were studied. Strains proved or suspected to overexpress an efflux system were significantly more virulent than the ATCC and revertant strains (time to kill 50% of nematodes [LT(50)] in days: 3.4 to 3.8 ± 0.2 versus 4.1 to 4.4 ± 0.3, P < 0.001). Inversely, strains with altered porin expression were significantly less virulent, independently of the expression level of efflux system (LT(50) = 5.4 to 5.6 ± 0.2, P < 0.001). Altered porin expression did not change MICs of CMP and NAL but did those of FOX (4 to 16× MIC) and ertapenem (16 to 64× MIC). The strains with a normally or an overexpressed efflux system that received the β-lactamase CTX-M-15 became more widely resistant without modification of their virulence potential, suggesting that balance between resistance and virulence is dependent on the type of resistance mechanisms. In conclusion, this study shows that the expression of both efflux systems and porins is a key factor not only for antibiotic resistance but also virulence potential in K. pneumoniae.
Collapse
|
36
|
Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology (Reading) 2010; 156:1983-1992. [DOI: 10.1099/mic.0.038158-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the genome of Klebsiella pneumoniae NTUH-K2044, nine fimbrial gene clusters were identified. Besides type 1 and type 3 fimbriae, the others are novel and were named Kpa, Kpb, Kpc, Kpd, Kpe, Kpf and Kpg fimbriae. Prevalence analysis among 105 K. pneumoniae clinical isolates revealed that the kpc genes were highly associated with the K1 serotype isolates. Induced expression of the recombinant kpcABCD genes in Escherichia coli resulted in Kpc fimbriation and increased biofilm formation. A putative site-specific recombinase encoding gene kpcI and a 302 bp intergenic DNA flanked by 11 bp inverted repeats, namely kpcS, were identified in the upstream region of the kpcABCD genes. Using LacZ as the reporter, a dramatic difference in promoter activity of kpcS in two different orientations was observed and accordingly assigned as ON and OFF phase. kpcI expression was found to be able to invert kpcS in trans from phase ON to OFF and vice versa. Using the two-plasmid system, expression of kpcA, encoding the major component of the Kpc fimbriae, could be observed upon the induced expression of kpcI. These results indicate that KpcI is involved in the regulation of Kpc fimbriation in a phase-variable manner.
Collapse
|
37
|
Zhao F, Bai J, Wu J, Liu J, Zhou M, Xia S, Wang S, Yao X, Yi H, Lin M, Gao S, Zhou T, Xu Z, Niu Y, Bao Q. Sequencing and genetic variation of multidrug resistance plasmids in Klebsiella pneumoniae. PLoS One 2010; 5:e10141. [PMID: 20405037 PMCID: PMC2853573 DOI: 10.1371/journal.pone.0010141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/22/2010] [Indexed: 11/27/2022] Open
Abstract
Background The development of multidrug resistance is a major problem in the treatment of pathogenic microorganisms by distinct antimicrobial agents. Characterizing the genetic variation among plasmids from different bacterial species or strains is a key step towards understanding the mechanism of virulence and their evolution. Results We applied a deep sequencing approach to 206 clinical strains of Klebsiella pneumoniae collected from 2002 to 2008 to understand the genetic variation of multidrug resistance plasmids, and to reveal the dynamic change of drug resistance over time. First, we sequenced three plasmids (70 Kb, 94 Kb, and 147 Kb) from a clonal strain of K. pneumoniae using Sanger sequencing. Using the Illumina sequencing technology, we obtained more than 17 million of short reads from two pooled plasmid samples. We mapped these short reads to the three reference plasmid sequences, and identified a large number of single nucleotide polymorphisms (SNPs) in these pooled plasmids. Many of these SNPs are present in drug-resistance genes. We also found that a significant fraction of short reads could not be mapped to the reference sequences, indicating a high degree of genetic variation among the collection of K. pneumoniae isolates. Moreover, we identified that plasmid conjugative transfer genes and antibiotic resistance genes are more likely to suffer from positive selection, as indicated by the elevated rates of nonsynonymous substitution. Conclusion These data represent the first large-scale study of genetic variation in multidrug resistance plasmids and provide insight into the mechanisms of plasmid diversification and the genetic basis of antibiotic resistance.
Collapse
Affiliation(s)
- Fangqing Zhao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jie Bai
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinyu Wu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Jing Liu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Mingming Zhou
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Shilin Xia
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Shanjin Wang
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Xiaoding Yao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Huiguang Yi
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Meili Lin
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Shengjie Gao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Tieli Zhou
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Zuyuan Xu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
| | - Yuxin Niu
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- * E-mail: (YN); (QB)
| | - Qiyu Bao
- Institute of Biomedical Informatics, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, China
- * E-mail: (YN); (QB)
| |
Collapse
|
38
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
39
|
Nishioka T, Ogawa W, Kuroda T, Katsu T, Tsuchiya T. Gene cloning and characterization of EfmA, a multidrug efflux pump, from Enterococcus faecium. Biol Pharm Bull 2009; 32:483-8. [PMID: 19252300 DOI: 10.1248/bpb.32.483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A DNA fragment responsible for resistance to antimicrobial agents was cloned from chromosomal DNA of Enterococcus faecium FN-1, a clinically isolated strain. Escherichia coli KAM32, a drug-hypersusceptible mutant, was used as a host for gene cloning. Cells of E. coli KAM32 harboring a recombinant plasmid (pTFM8) carrying the DNA fragment became resistant to fluoroquinolones, macrolides, ethidium bromide, 4',6-diamidino-2-phenylindole (DAPI) and tetraphenylphosphonium chloride (TPPCl). Three complete open reading frames (ORFs) were found in the DNA insert of pTFM8, and the deduced amino acid sequences of one of the ORFs showed high similarity to Mdt(A) from Lactococcus lactis. Mdt(A) is a multidrug efflux pump belonging to a major facilitator superfamily. We designated the ORF efmA. E. coli KAM32 cells harboring the efmA showed energy-dependent efflux of DAPI and TPP(+). We also observed norfloxacin/H(+) antiport due to EfmA. The mRNA expression of efmA was observed in E. faecium FN-1 grown without any exogenously added antimicrobial agents. Thus, we conclude that efmA is constitutively expressed under laboratory growth conditions and would contribute to intrinsic resistance against multiple antimicrobial agents in E. faecium FN-1.
Collapse
Affiliation(s)
- Toshihiro Nishioka
- Laboratory of Molecular Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|
40
|
Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LFW, Krogfelt KA, Struve C, Triplett EW, Methé BA. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 2008; 4:e1000141. [PMID: 18654632 PMCID: PMC2453333 DOI: 10.1371/journal.pgen.1000141] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 06/24/2008] [Indexed: 12/25/2022] Open
Abstract
We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.
Collapse
|
41
|
Li DW, Onishi M, Kishino T, Matsuo T, Ogawa W, Kuroda T, Tsuchiya T. Properties and expression of a multidrug efflux pump AcrAB-KocC from Klebsiella pneumoniae. Biol Pharm Bull 2008; 31:577-82. [PMID: 18379044 DOI: 10.1248/bpb.31.577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that we had cloned genes responsible for multidrug resistance from the chromosomal DNA of Klebsiella pneumoniae MGH78578 using a drug-hypersusceptible Escherichia coli strain as a host. One of the recombinant plasmids pETV6 conferred resistance to host cells against a wide range of antimicrobial agents, dyes and detergents. It was revealed that this plasmid carried the acrBKp gene and a part of the acrAKp gene coding for a multidrug efflux pump belonging to the RND family. We cloned the whole acrAKpBKp operon of K. pneumoniae and characterized the pump. The AcrAB pump utilized TolC as an outer membrane component in cells of E. coli. Elevated energy-dependent efflux of ethidium was observed with cells possessing AcrAKp BKp-TolC. We cloned a gene coding for an ortholog of TolC from chromosomal DNA of K. pneumoniae, and designated it kocC. It seems that the AcrAKpBKp-KocC complex functions as a potent multidrug efflux pump in K. pneumoniae. We observed a higher level of expression of acrAKp in K. pneumoniae MGH78578, a multidrug resistant strain, compared with ATCC10031, a drug susceptible strain.
Collapse
Affiliation(s)
- Dai-Wei Li
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
SUMMARY Bacteroides species are significant clinical pathogens and are found in most anaerobic infections, with an associated mortality of more than 19%. The bacteria maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. B. fragilis, which accounts for only 0.5% of the human colonic flora, is the most commonly isolated anaerobic pathogen due, in part, to its potent virulence factors. Species of the genus Bacteroides have the most antibiotic resistance mechanisms and the highest resistance rates of all anaerobic pathogens. Clinically, Bacteroides species have exhibited increasing resistance to many antibiotics, including cefoxitin, clindamycin, metronidazole, carbapenems, and fluoroquinolones (e.g., gatifloxacin, levofloxacin, and moxifloxacin).
Collapse
|
43
|
Ping Y, Ogawa W, Kuroda T, Tsuchiya T. Gene cloning and characterization of KdeA, a multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull 2007; 30:1962-4. [PMID: 17917272 DOI: 10.1248/bpb.30.1962] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a gene related to multidrug resistance from a drug-resistant Klebsiella pneumoniae strain MGH78578. We designated the gene kdeA, which encodes a protein possessing 12 hydrophobic regions. The deduced amino acid sequence of KdeA is similar to that of MdfA, a well-characterized multidrug efflux pump from Escherichia coli. Introduction of the kdeA gene into cells of the drug-hypersusceptible E. coli strain KAM32 resulted in elevated minimum inhibitory concentrations of chloramphenicol, norfloxacin, acriflavine, and ethidium bromide. We observed elevated energy-dependent ethidium efflux activity with cells carrying kdeA compared with control cells. We also observed expression of kdeA in cells of K. pneumoniae under normal growth conditions.
Collapse
Affiliation(s)
- Yu Ping
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | |
Collapse
|
44
|
Ogawa W, Koterasawa M, Kuroda T, Tsuchiya T. KmrA Multidrug Efflux Pump from Klebsiella pneumoniae. Biol Pharm Bull 2006; 29:550-3. [PMID: 16508165 DOI: 10.1248/bpb.29.550] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a gene responsible for multidrug resistance from the chromosomal DNA of Klebsiella pneumoniae MGH78578 that showed multidrug resistance. We designated the gene kmrA. The deduced amino acid sequence of KmrA was similar to that of SmvA that is responsible for methyl viologen-resistance in Salmonella enterica sv. Typhi and Typhimurium. Introduction of the cloned kmrA gene into drug-hypersensitive Escherichia coli KAM32 cells made them resistant to acriflavine, 4',6-diamidino-2-phenylindole (DAPI), Hoechst 33342, tetraphenylphosphonium chloride (TPPCl), methyl viologen and ethidium bromide. We observed elevated energy-dependent efflux of ethidium in E. coli cells carrying the kmrA gene compared with control cells. We also cloned the smvA gene from S. enterica sv. Typhimurium LT2 and investigated the resistance pattern for several drugs. The pattern was similar between KmrA from K. pneumoniae and SmvA from S. enterica.
Collapse
Affiliation(s)
- Wakano Ogawa
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Japan
| | | | | | | |
Collapse
|