1
|
Rajapaksa KJW, Yan Wong H, Lee D. Cascade Reactions of Alkynyl Ketones and Amides to Generate Unsaturated Oxacycles and Aromatic Carbocycles. Chemistry 2024; 30:e202403270. [PMID: 39307686 DOI: 10.1002/chem.202403270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Indexed: 11/06/2024]
Abstract
We describe novel amine-mediated transformation of alkynyl ketones and amides to generate 2-methylene-2H-pyrans, substituted 3-hydroxy-9H-fluoren-9-ones, and amine-incorporated arenes. These cascade processes are initiated by conjugate addition of secondary amine followed by hydrolysis of the enamine/vinylogous amide intermediates. The product distribution is highly sensitive to the steric and electronic effects of the substituents on both the alkyne moieties, the tether structure connecting them, and the nature of the amine. Alkynyl amide participates in the Alder-ene reaction favorably to generate more reactive allene amide that reacts with amine to generate amine-incorporated arene products. These metal-free cascade reactions are a useful synthetic method that can be exploited for the construction of various hetero- and carbocyclic systems.
Collapse
Affiliation(s)
- Kumudi J W Rajapaksa
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Hang Yan Wong
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
2
|
Liyanage Perera E, Wink DJ, Luo Y, Xia Y, Lee D. Cyclization Reactions of In Situ-Generated Acyl Ketene with Ynones to Form Oxacycles. J Org Chem 2024; 89:4496-4502. [PMID: 38506399 DOI: 10.1021/acs.joc.3c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Acyl ketenes react with polar unsaturated functional groups to give unique heterocyclic rings, yet reactions with unpolarized unsaturated functional groups have not been reported. Herein, we describe two effective ring-forming reactions between acetyl ketene and electron-deficient alkynes. The first reaction involves in situ tethering between acetyl ketene and nucleophile-containing 1,3-diynones, which promotes sequential intramolecular 1,6/1,4-additions to generate 2-methylene-2H-pyrans in various yields (24-91%). The other involves a zwitterionic intermediate generated from acetyl ketene and DABCO, which undergoes a Michael addition with terminal alkynyl ketones to generate 3-acyl-4-pyrones (11-79%).
Collapse
Affiliation(s)
- Erandi Liyanage Perera
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, 325035 Wenzhou, Zhejiang, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, 325035 Wenzhou, Zhejiang, P. R. China
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Li W, Zhang G, Tan S, Gong C, Yang Y, Gu M, Mi Z, Yang HY. Polyacylated Anthocyanins Derived from Red Radishes Protect Vascular Endothelial Cells Against Palmitic Acid-Induced Apoptosis via the p38 MAPK Pathway. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:412-420. [PMID: 35794452 DOI: 10.1007/s11130-022-00969-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Palmitic acid (PA), a widely consumed saturated fat, is known to induce the apoptosis of vascular endothelial cells. This study examined the protective effect of anthocyanin from red radish (ARR), which has been shown to protect the cardiovascular system and is rich in polyacylated pelargonidin (P) glycosides, on PA-treated SV 40 transfected aortic rat endothelial cells (SVAREC). In all, 22 distinct anthocyanins were identified in the ARR via ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry, the most abundant of which were pelargonidin-3-(p-coumaroyl)diglucoside-5-glucoside (31.60%), pelargonidin-3-(feruloyl)diglucoside-5-(malonyl)glucoside (22.98%), pelargonidin-3-(p-coumaroyl)diglucoside-5-(malonyl)glucoside (8.02%), and pelargonidin-3-(feruloyl)diglucoside-5-glucoside (6.25%). P displayed the highest serum level (93.72%) in the ARR-treated mice, while polyacylated P glucosides were also absorbed intact. Furthermore, ARR treatment effectively increased cellular activity and reduced the ratio of Bcl-2-associated X protein : B cell lymphoma-2, while simultaneously alleviating the excessive production of reactive oxygen species in PA-treated SVAREC. Transcriptome and further verification analyses confirmed that the ARR-inhibiting PA-induced apoptosis of SVAREC was related to the p38 mitogen-activated protein kinase signaling pathway. Our results are the first to demonstrate that ARR may be a promising phytochemical in the prevention of PA-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, 408100, Chongqing, China
| | - Gen Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, 408100, Chongqing, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, 408100, Chongqing, China.
| | - Changqiu Gong
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, 408100, Chongqing, China
| | - Yunjiao Yang
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, 408100, Chongqing, China
| | - Mengyuan Gu
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, 408100, Chongqing, China
| | - Zhenzhen Mi
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, 408100, Chongqing, China
| | - Hongyan Y Yang
- School of Aerospace Medicine, Fourth Military Medical University, No. 169, Changle-West road, 710032, Xi'an, China.
| |
Collapse
|
4
|
Park MN, Jeon HW, Rahman MA, Park SS, Jeong SY, Kim KH, Kim SH, Kim W, Kim B. Daemonorops draco Blume Induces Apoptosis Against Acute Myeloid Leukemia Cells via Regulation of the miR-216b/c-Jun. Front Oncol 2022; 12:808174. [PMID: 35356209 PMCID: PMC8959842 DOI: 10.3389/fonc.2022.808174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Daemonorops draco Blume (DD), also called dragon’s blood, has been used as a traditional Korean medicine, especially for relieving pain caused by wound infection. Recently, it has been described that DD has antibacterial and analgesic effects. In this study, the underlying anticancer effect of DD associated with apoptosis was investigated in acute myeloid leukemia cell lines U937 and THP-1. DD exhibited cytotoxic effects and induced apoptosis in U937 and THP-1 cells. Moreover, DD treatment significantly reduced mitochondrial membrane potential (ΔΨ). The protein expression of cleaved poly(ADP-ribose) polymerase, cleaved caspase-3, p-H2A.X, CCAAT/enhancer-binding protein (CHOP), and activating transcription factor 4 was upregulated by DD treatment. Consistently, DD-treated cells had increased reactive oxygen species (ROS) level in a concentration-dependent manner via miR-216b activation in association with c-Jun inhibition. N-acetyl-L-cysteine pretreatment reversed the cytotoxic effect of DD treatment as well as prevented ROS accumulation. Collectively, the results of this study suggest that the anticancer effect of DD in AML was mediated by CHOP-dependent apoptosis along with ROS accumulation and included upregulation of miR-216b followed by a decrease in c-Jun.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Sun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
5
|
Lu CC, Yang JS, Chiu YJ, Tsai FJ, Hsu YM, Yin MC, Juan YN, Ho TJ, Chen HP. Dracorhodin perchlorate enhances wound healing via β-catenin, ERK/p38, and AKT signaling in human HaCaT keratinocytes. Exp Ther Med 2021; 22:822. [PMID: 34131445 PMCID: PMC8193218 DOI: 10.3892/etm.2021.10254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Dracorhodin can be isolated from the exudates of the fruit of Daemonorops draco. Previous studies suggested that dracorhodin perchlorate can promote fibroblast proliferation and enhance angiogenesis during wound healing. In the present study, the potential bioactivity of dracorhodin perchlorate in human HaCaT keratinocytes, were investigated in vitro, with specific focus on HaCaT wound healing. The results of in vitro scratch assay demonstrated the progressive closure of the wound after treatment with dracorhodin perchlorate in a time-dependent manner. An MTT assay and propidium iodide exclusion detected using flow cytometry were used to detect cell viability of HaCaT cells. Potential signaling pathways underlying the effects mediated by dracorhodin perchlorate in HaCaT cells were clarified by western blot analysis and kinase activity assays. Dracorhodin perchlorate significantly increased the protein expression levels of β-catenin and activation of AKT, ERK and p38 in HaCaT cells. In addition, dracorhodin perchlorate did not induce HaCaT cell proliferation but promoted cell migration. Other mechanisms may yet be involved in the dracorhodin perchlorate-induced wound healing process of human keratinocytes. In summary, dracorhodin perchlorate may serve to be a potential molecularly-targeted phytochemical that can improve skin wound healing.
Collapse
Affiliation(s)
- Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung 40404, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 11217, Taiwan, R.O.C.,Department of Surgery, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C.,Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C.,School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Mei-Chin Yin
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan, R.O.C.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan, R.O.C.,Division of Chinese Medicine, China Medical University Beigang Hospital, Yulin 65152, Taiwan, R.O.C
| | - Hao-Ping Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan, R.O.C.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan, R.O.C
| |
Collapse
|
6
|
Lu Z, Lu C, Li C, Jiao Y, Li Y, Zhang G. Dracorhodin perchlorate induces apoptosis and G2/M cell cycle arrest in human esophageal squamous cell carcinoma through inhibition of the JAK2/STAT3 and AKT/FOXO3a pathways. Mol Med Rep 2019; 20:2091-2100. [PMID: 31322237 PMCID: PMC6691268 DOI: 10.3892/mmr.2019.10474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Dracorhodin perchlorate (DP), a synthetic analogue of the anthocyanin red pigment dracorhodin, has been shown to exert various pharmacological effects, including anticancer activity. However, its effects on human esophageal squamous cell carcinoma (ESCC) cells have not been previously investigated, and the molecular mechanisms underlying its anticancer activity remain unclear. In the present study, it was demonstrated that DP significantly reduced the viability of ESCC cells compared with that noted in normal human liver LO2 cells. Treatment with DP induced G2/M phase cell cycle arrest through upregulation of p21 and p27, and downregulation of cyclin B1 and Cdc2. Furthermore, DP treatment induced caspase-dependent apoptosis, which could be reversed by exposure to Z-VAD-FMK, a caspase inhibitor. Western blotting demonstrated that DP induced apoptosis through extrinsic and intrinsic pathways by upregulating death receptor 4 (DR4), DR5, cleaved caspase-3/-7/-9 and cleaved poly (ADP-ribose) polymerase (PARP), and by decreasing total PARP, total caspase-3/7, Bcl-2 and caspase-9/-10. Moreover, DP treatment decreased the phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), AKT, and forkhead box O3a (FOXO3a) in ESCC cells, indicating that the activity of the JAK2/STAT3 and AKT/FOXO3a signaling pathways was inhibited. Therefore, DP is a promising therapeutic agent for ESCC.
Collapse
Affiliation(s)
- Zhengyang Lu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chenyang Lu
- Department of Respiratory Medicine, Third Hospital of Xi'an, Xi'an, Shaanxi 710082, P.R. China
| | - Cheng Li
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
7
|
Kuo PC, Hung HY, Hwang TL, Du WK, Ku HC, Lee EJ, Tai SH, Chen FA, Wu TS. Anti-inflammatory Flavan-3-ol-dihydroretrochalcones from Daemonorops draco. JOURNAL OF NATURAL PRODUCTS 2017; 80:783-789. [PMID: 28398735 DOI: 10.1021/acs.jnatprod.7b00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four A-type flavan-3-ol-dihydroretrochalcone dimers, dragonins A-D (1-4), were characterized from the traditional Chinese medicine Sanguis Draconis. The structures of 1-4 were elucidated by spectroscopic and spectrometric analyses. Compounds 1 and 2 exhibited significant inhibition of fMLP/CB-induced superoxide anion and elastase. The signaling pathways accounting for the inhibitory effects of compound 2 were also elucidated. These purified A-type flavan-3-ol-dihydroretrochalcones are new potential leads for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University ; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wen-Ke Du
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Hsiang-Chih Ku
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University ; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - E-Jian Lee
- Department of Surgery and Anesthesiology, and Institute of Biomedical Engineering, National Cheng Kung University, Medical Center and Medical School , Tainan 701, Taiwan
| | - Shih-Huang Tai
- Department of Surgery and Anesthesiology, and Institute of Biomedical Engineering, National Cheng Kung University, Medical Center and Medical School , Tainan 701, Taiwan
| | - Fu-An Chen
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University , Pingtung 907, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University , Pingtung 907, Taiwan
| |
Collapse
|
8
|
Chen X, Luo J, Meng L, Pan T, Zhao B, Tang ZG, Dai Y. Dracorhodin perchlorate induces the apoptosis of glioma cells. Oncol Rep 2016; 35:2364-72. [PMID: 26846469 DOI: 10.3892/or.2016.4612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Dracorhodin perchlorate (Dp), a synthetic analogue of the antimicrobial anthocyanin red pigment, has recently been shown to induce apoptotic cell death in various types of cancer cells. Yet, the inhibitory effect of Dp on human glioma cells remains uninvestigated. Therefore, in the present study, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and cell cycle progression in glioma U87MG and T98G cells, respectively. Annexin V-FITC/propidium iodide double staining and JC-1 staining were separately applied to determine cellular apoptosis and mitochondrial membrane potential damage in the cells. The expression levels of associated proteins involved in cell cycle progression and apoptosis were measured by western blotting. The activities of caspase‑9/-3 were determined by Caspase-Glo-9/3 assay. The results indicated that Dp treatment significantly inhibited cell proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at the G1/S phase in the U87MG and T98G cells via the upregulation of p53 and p21 protein expression, and simultaneous downregulation of Cdc25A, Cdc2 and P-Cdc2 protein expression. Additionally, Dp treatment led to the loss of cellular mitochondrial membrane potential, and the release of cytochrome c, and strongly induced the occurence of apoptosis. Increased expression levels of Bim and Bax protein and the downregulated expression of Bcl-2 protein were observed. Caspase-9/-3 were activated and their activities were elevated after Dp treatment. These findings indicate that Dp inhibits cell proliferation, induces cell cycle arrest and apoptosis in glioma cells, and is a possible candidate for glioma treatment.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Junjie Luo
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Linghu Meng
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Taifeng Pan
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Binjie Zhao
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhen-Gang Tang
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yongjian Dai
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
9
|
Wu PF, Chiu CC, Chen CY, Wang HMD. 7-Hydroxydehydronuciferine induces human melanoma death via triggering autophagy and apoptosis. Exp Dermatol 2015; 24:930-5. [DOI: 10.1111/exd.12805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Pei-Fang Wu
- Department of Fragrance and Cosmetic Science; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
| | - Chien-Chih Chiu
- Department of Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
| | - Chung-Yi Chen
- School of Medical and Health Sciences; Fooyin University; Kaohsiung Taiwan, ROC
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetic Science; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
- Center for Stem Cell Research; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
- Department of Marine Biotechnology and Resources; National Sun Yat-Sen University; Kaohsiung Taiwan, ROC
| |
Collapse
|
10
|
Zhang G, Sun M, Zhang Y, Hua P, Li X, Cui R, Zhang X. Dracorhodin perchlorate induces G 1/G 0 phase arrest and mitochondria-mediated apoptosis in SK-MES-1 human lung squamous carcinoma cells. Oncol Lett 2015; 10:240-246. [PMID: 26171006 DOI: 10.3892/ol.2015.3212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Dracorhodin perchlorate (DP) has recently been revealed to induce apoptosis in various types of cancer. However, the antitumor potential and molecular mechanisms of DP in human lung cancer have not been previously reported. Therefore, the present study aimed to investigate the effects of DP on cell viability, the cell cycle and apoptosis, using an MTT assay, flow cytometry and western blot studies. DP was identified to induce cellular and DNA morphological changes, and decreased the viability of SK-MES-1 human lung squamous carcinoma cells. DP significantly inhibited the growth of SK-MES-1 cells by inducing apoptosis and G1/G0 cell cycle arrest in a dose-dependent manner via activation of p53 (P<0.05). Furthermore, DP promoted the significant upregulation of B cell lymphoma-2 (Bcl-2)-activated X protein and significant downregulation of Bcl-2 (P<0.05), inducing dissipation of the mitochondrial membrane potential (MMP). In addition, caspase-3 was activated by DP via the cleavage of its substrate, proteolytic cleavage of poly(ADP-ribose) polymerase. DP also induced caspase-independent apoptosis by significantly increasing the protein expression of the apoptosis-inducing factor (P<0.05), which is localized in mitochondria under the physiological conditions and released into the cytoplasm when MMP is dissipated. Furthermore, the present study demonstrated that DP significantly increased the generation of reactive oxygen species (P<0.05). In conclusion, the current study revealed that DP is able to induce cell cycle arrest and apoptosis in SK-MES-1 cells via activation of the mitochondrial pathway, indicating that DP may be a potential leading compound for the development of future lung cancer therapeutic regimes.
Collapse
Affiliation(s)
- Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mei Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yifan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peiyan Hua
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xingyi Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
11
|
Zhang P, Li J, Tang X, Zhang J, Liang J, Zeng G. Dracorhodin perchlorate induces apoptosis in primary fibroblasts from human skin hypertrophic scars via participation of caspase-3. Eur J Pharmacol 2014; 728:82-92. [DOI: 10.1016/j.ejphar.2014.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
12
|
Qiu JX, He YQ, Wang Y, Xu RL, Qin Y, Shen X, Zhou SF, Mao ZF. Plumbagin induces the apoptosis of human tongue carcinoma cells through the mitochondria-mediated pathway. Med Sci Monit Basic Res 2013; 19:228-36. [PMID: 23982457 PMCID: PMC3762523 DOI: 10.12659/msmbr.884004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Plumbagin, a quinonoid constituent isolated from the root of Plumbago zeylanica L., has been proven to possess anti-tumor activity both in vitro and in vivo. However, its anti-tumor properties for human tongue carcinoma have not been reported. This study aimed to investigate the inhibitory effect and the underlying mechanism of plumbagin on the growth of human tongue carcinoma cells. MATERIAL AND METHODS Cell proliferation ability was detected by EdU incorporation assay and colony formation assay. Cell-cycle distribution was determined by flow cytometric analysis using propidium iodide (PI) staining. Cellular apoptosis was then evaluated by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Western blotting was applied to assay the expression of Bax and Bcl-2. RESULTS Plumbagin inhibited the growth and proliferation of Tca8113 cells in vitro in a concentration- and time-dependent manner. The cell cycles of plumbagin-treated Tca8113 cells were arrested at the G2/M phase. Cells treated with plumbagin presented the characteristic morphological changes of apoptosis. The ratio of Bax/Bcl-2 was raised by plumbagin in a concentration-dependent manner. CONCLUSIONS These results indicate that plumbagin induces the apoptosis of Tca8113 cells through mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Jia-xuan Qiu
- Department of Stomatology, Fourth Affiliated Hospital of Nanchang University, Nanchang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yu JH, Zheng GB, Liu CY, Zhang LY, Gao HM, Zhang YH, Dai CY, Huang L, Meng XY, Zhang WY, Yu XF. Dracorhodin perchlorate induced human breast cancer MCF-7 apoptosis through mitochondrial pathways. Int J Med Sci 2013; 10:1149-56. [PMID: 23869191 PMCID: PMC3714391 DOI: 10.7150/ijms.6275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/13/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Dracorhodin perchlorate (DP) was a synthetic analogue of the antimicrobial anthocyanin red pigment dracorhodin. It was reported that DP could induce apoptosis in human prostate cancer, human gastric tumor cells and human melanoma, but the cytotoxic effect of DP on human breast cancer was not investigated. This study would investigate whether DP was a candidate chemical of anti-human breast cancer. METHODS The MTT assay reflected the number of viable cells through measuring the activity of cellular enzymes. Phase contrast microscopy visualized cell morphology. Fluorescence microscopy detected nuclear fragmentation after Hoechst 33258 staining. Flowcytometric analysis of Annexin V-PI staining and Rodamine 123 staining was used to detect cell apoptosis and mitochondrial membrane potential (MMP). Real time PCR detected mRNA level. Western blot examined protein expression. RESULTS DP dose and time-dependently inhibited the growth of MCF-7 cells. DP inhibited MCF-7 cell growth through apoptosis. DP regulated the expression of Bcl-2 and Bax, which were mitochondrial pathway proteins, to decrease MMP, and DP promoted the transcription of Bax and inhibited Bcl-2. Apoptosis-inducing factor (AIF) and cytochrome c which localized in mitochondrial in physiological condition were released into cytoplasm when MMP was decreased. DP activated caspase-9, which was the downstream of mitochondrial pathway. Therefore DP decreased MMP to release AIF and cytochrome c into cytoplasm, further activating caspase 9, lastly led to apoptosis. CONCLUSION Therefore DP was a candidate for anti-breast cancer, DP induced apoptosis of MCF-7 through mitochondrial pathway.
Collapse
Affiliation(s)
- Jing-hua Yu
- 1. Institute of virology and AIDS research, The first hospital of Jilin University, Changchun 130021, P. R. China
| | - Gui-bin Zheng
- 2. Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Chun-yu Liu
- 3. Acupunture department, The affiliated hospital to Changchun University of Chinese Medicine, Changchun 130021, P. R. China
| | - Li-ying Zhang
- 4. Department of Biotechnology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Hong-mei Gao
- 5. Medicinal chemistry, Changchun University of Chinese Medicine, Changchun 130021, P. R. China
| | - Ya-hong Zhang
- 6. Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Hennan, Kaifeng 475004, P. R. China
| | - Chun-yan Dai
- 1. Institute of virology and AIDS research, The first hospital of Jilin University, Changchun 130021, P. R. China
| | - Lin Huang
- 7. Tumor department of Hematology, the 208th Hospital of PLA, Changchun, 130062, P. R. China
| | - Xian-ying Meng
- 2. Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Wen-yan Zhang
- 1. Institute of virology and AIDS research, The first hospital of Jilin University, Changchun 130021, P. R. China
| | - Xiao-fang Yu
- 1. Institute of virology and AIDS research, The first hospital of Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
14
|
Rasul A, Ding C, Li X, Khan M, Yi F, Ali M, Ma T. Dracorhodin perchlorate inhibits PI3K/Akt and NF-κB activation, up-regulates the expression of p53, and enhances apoptosis. Apoptosis 2012; 17:1104-19. [DOI: 10.1007/s10495-012-0742-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
He Y, Ju W, Hao H, Liu Q, Lv L, Zeng F. Dracorhodin perchlorate suppresses proliferation and induces apoptosis in human prostate cancer cell line PC-3. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2011; 31:215. [PMID: 21505988 DOI: 10.1007/s11596-011-0255-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Indexed: 11/29/2022]
Abstract
The growth inhibition and pro-apoptosis effects of dracorhodin perchlorate on human prostate cancer PC-3 cell line were examined. After administration of 10-80 μmol/L dracorhodin perchlorate for 12-48 h, cell viability of PC-3 cells was measured by MTT colorimetry. Cell proliferation ability was detected by colony formation assay. Cellular apoptosis was inspected by acridine orange-ethidium bromide fluorescent staining, Hoechst 33258 fluorescent staining, and flow cytometry (FCM) with annexin V-FITC/propidium iodide dual staining. The results showed that dracorhodin perchlorate inhibited the growth of PC-3 in a dose- and time-dependent manner. IC50 of dracorhodin perchlorate on PC-3 cells at 24 h was 40.18 μmol/L. Cell clone formation rate was decreased by 86% after treatment with 20 μmol/L of dracorhodin perchlorate. Some cells presented the characteristic apoptotic changes. The cellular apoptotic rates induced by 10-40 μmol/L dracorhodin perchlorate for 24 h were 8.43% to 47.71% respectively. It was concluded that dracorhodin perchlorate significantly inhibited the growth of PC-3 cells by suppressing proliferation and inducing apoptosis of the cells.
Collapse
Affiliation(s)
- Yuanqiao He
- Department of Laboratory Animal Science, Nanchang University, Nanchang, 330006, China
| | - Wen Ju
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hua Hao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fuqing Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
16
|
Li WW, Gao XM, Wang XM, Guo H, Zhang BL. Icariin inhibits hydrogen peroxide-induced toxicity through inhibition of phosphorylation of JNK/p38 MAPK and p53 activity. Mutat Res 2011; 708:1-10. [PMID: 21236269 DOI: 10.1016/j.mrfmmm.2010.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/25/2010] [Accepted: 12/27/2010] [Indexed: 05/30/2023]
Abstract
Oxidative stress caused by hydrogen peroxide (H(2)O(2)) plays an important role in the pathogenesis of Alzheimer's disease (AD). The prominent damages caused by H(2)O(2) include the ruin of membrane integrity, loss of intracellular neuronal glutathione (GSH), oxidative damage to DNA as well as the subsequent caspase-3 and p53 activation. Icariin is a flavonoid extracted from the traditional Chinese herb Epimedium brevicornum Maxim. We have previously reported that icariin has a good curative effect on patients with mild cognitive impairment (MCI), AD animal and cell models. However, the molecular mechanism of how icariin exerts neuroprotective effects is still not well understood. To address this question, we exposed undifferentiated neuronal cell lines (PC12 cells) to hydrogen peroxide (H(2)O(2)) and investigated the possible neuroprotective mechanisms of icariin. Vitamin E was used as a positive control. We observed that H(2)O(2) activated the JNK/p38 mitogen-activated protein kinase (MAPK) and induced PC12 cells apoptosis in a concentration-dependent manner. More over, we demonstrated that icariin protected PC12 cells by attenuating LDH leakage, reducing GSH depletion, preventing DNA oxidation damage and inhibiting subsequent activation of caspase-3 and p53, which are the main targets of H(2)O(2)-induced cell damage. In addition, we also found that icariin's neuroprotective effect may partly correlate with its inhibitory effect on JNK/p38 MAPK pathways. Therefore, our findings suggest that icariin is a candidate for a novel neuroprotective drug to against oxidative-stress induced neurodegeneration.
Collapse
Affiliation(s)
- Wei-Wei Li
- Integrated Laboratory of TCM and Western Medicine, Peking University First Hospital, NO. 8, Xishiku Street, Xicheng District, Beijing 10034, China
| | | | | | | | | |
Collapse
|
17
|
Shi J, Hu R, Lu Y, Sun C, Wu T. Single-step purification of dracorhodin from dragon's blood resin of Daemonorops draco using high-speed counter-current chromatography combined with pH modulation. J Sep Sci 2009; 32:4040-7. [PMID: 19877147 DOI: 10.1002/jssc.200900392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dracorhodin is a major constituent found in "Dragon's blood" resin of Daemonorops draco Willd. Blume. This natural flavylium compound is a potent pharmaceutical substance due to its biological and pharmacological activities such as antimicrobial, antiviral, antitumor and cytotoxic activity. An effective high-speed counter-current chromatography method was successfully established for the isolation and purification of dracorhodin directly from extract of D. draco by using a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water (2:3:2:3 v/v). Under the optimal conditions, 6.6 mg dracorhodin was obtained from 100 mg crude resin. The isolated fraction of counter-current chromatography was determined by HPLC, NMR, UV/visible and ESI/MS combined with pH modulation, since dracorhodin is unstable in solution which exists in different forms depending on pH values. The data were compared with those of the reference substance, and the literatures as well. The purity of dracorhodin was over 98% based on the HPLC result.
Collapse
Affiliation(s)
- Jianmei Shi
- Department of Chemistry, Zhejiang University, Hangzhou, PR China
| | | | | | | | | |
Collapse
|
18
|
Nakashima KI, Abe N, Kamiya F, Ito T, Oyama M, Iinuma M. Novel Flavonoids in Dragon's Blood ofDaemonorops draco. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200900086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Peng H, Lv H, Wang Y, Liu YH, Li CY, Meng L, Chen F, Bao JK. Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 2009; 30:1805-15. [PMID: 19577602 PMCID: PMC7115534 DOI: 10.1016/j.peptides.2009.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 10/27/2022]
Abstract
A novel mannose-binding lectin (designated CML) was isolated from Clematis montana Buch.-Ham stem (Ranunculaceae) using ion exchange and gel filtration chromatographies on DEAE-Sepharose and Sephacryl S-100. The purified C. montana lectin was a homodimer of 11,968.9 Da subunits as determined by gel filtration and MS. The hemagglutinating activity of CML was inhibited by branched oligomannosides. The N-terminal 15-amino acid sequence of CML, DNVKYSGQVKNTGSA, has not been reported for other lectins. Also, the peptide mass fingerprinting assay confirmed that there is no match result of similar plant lectins for CML, indicating CML may be a novel plant lectin. CML showed marked antiviral activity against various viruses in cell culture. Subsequently, CML was also found to exhibit remarkable inhibitory effect on L929, HeLa, MCF7 and HepG2 cells. Furthermore, CML specially induced L929 cell apoptosis in dose-dependent manner as evidenced by MTT, fluorescent microscopy, LDH activity-based cytotoxicity assays and DNA ladder. Moreover, due to both caspase inhibitors and Western blot analyses, caspase was also found to play the important role in the potential apoptotic mechanism of CML. When the carbohydrate-binding site was fully inhibited by sugars, cytotoxicity was abruptly decreased and apoptotic phenomenon in L929 cells was not observed, suggesting a significant correlation between mannose-binding-specific activity and the antineoplastic mechanism.
Collapse
Affiliation(s)
- Hao Peng
- School of Life Sciences, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gupta D, Bleakley B, Gupta RK. Dragon's blood: botany, chemistry and therapeutic uses. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:361-380. [PMID: 18060708 DOI: 10.1016/j.jep.2007.10.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 05/25/2023]
Abstract
Dragon's blood is one of the renowned traditional medicines used in different cultures of world. It has got several therapeutic uses: haemostatic, antidiarrhetic, antiulcer, antimicrobial, antiviral, wound healing, antitumor, anti-inflammatory, antioxidant, etc. Besides these medicinal applications, it is used as a coloring material, varnish and also has got applications in folk magic. These red saps and resins are derived from a number of disparate taxa. Despite its wide uses, little research has been done to know about its true source, quality control and clinical applications. In this review, we have tried to overview different sources of Dragon's blood, its source wise chemical constituents and therapeutic uses. As well as, a little attempt has been done to review the techniques used for its quality control and safety.
Collapse
Affiliation(s)
- Deepika Gupta
- University School of Biotechnology, GGS Indraprastha University, K. Gate, Delhi 110006, India
| | | | | |
Collapse
|
21
|
Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol 2006; 126:1102-10. [PMID: 16410786 DOI: 10.1038/sj.jid.5700125] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cKit receptor plays a critical role in melanocyte physiology, influencing melanogenesis, proliferation, migration, and survival of the pigment-producing cells. However, pathways of cKit-mediated intracellular signaling and molecular mechanisms, which regulate specific cellular responses to the activation of the receptor in melanocytes, remain incompletely understood. Here, by using the genetically altered mouse melanocytes expressing an endogenous, constitutively active mutant (D814Y) cKit receptor, we investigated physiological cellular responses to the ligand-independent activation of the receptor tyrosine kinase. It was anticipated that such activation would either trigger uncontrolled proliferation of the melanocytes or stimulate melanin biosynthesis. In contrast to the expectation, we found that constitutive signaling from the cKit receptor did not stimulate melanogenesis and proliferation, but significantly promoted migration of the melanocytes both in vitro and in vivo. We also showed that such signaling is not associated with tumorigenic transformation of the pigment-producing cells. Taken together, our observations suggest that, in mammalian melanocytes, activation of the cKit receptor tyrosine kinase is primarily responsible for transmission of pro-migration signals, which may antagonize proliferation and melanogenesis. Our data also provide an additional explanation as to why malignant melanocytes lose cKit expression during melanoma progression.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|