1
|
Zhang MY, Ma LJ, Jiang L, Gao L, Wang X, Huang YB, Qi XM, Wu YG, Liu XQ. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116422. [PMID: 36972781 DOI: 10.1016/j.jep.2023.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Juan Ma
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue-Bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-Ming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Si-Wu-Tang ameliorates bile duct ligation-induced liver fibrosis via modulating immune environment. Biomed Pharmacother 2022; 155:113834. [DOI: 10.1016/j.biopha.2022.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
|
3
|
Si-Wu Water Extracts Protect against Colonic Mucus Barrier Damage by Regulating Muc2 Mucin Expression in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11162499. [PMID: 36010498 PMCID: PMC9407452 DOI: 10.3390/foods11162499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) could cause gut barrier damage. The herbs in si-wu (SW) include dang gui (Angelica sinensis (Oliv.) Diels), shu di huang (the processed root of Rehmannia glutinosa Libosch.), chuan xiong (rhizome of Ligusticum chuanxiong Hort.), and bai shao (the root of Paeonia lactiflora f. pilosella (Nakai) Kitag.). Si-wu water extracts (SWE) have been used to treat blood deficiency. Components of one herb from SW have been reported to have anti-inflammatory and anti-obesity activities. However, there have been no reports about the effects of SWE on gut barrier damage. Therefore, the aim of the study was to explore the effect of SWE on gut barrier damage. In this study, we found that SWE effectively controlled body weight, liver weight, and feed efficiency, as well as decreased the serum TC level in HFD-fed mice. Moreover, SWE and rosiglitazone (Ros, positive control) increased the colonic alkaline phosphatase (ALP) level, down-regulated serum pro-inflammatory cytokine levels, and reduced intestinal permeability. In addition, SWE increased goblet cell numbers and mucus layer thickness to strengthen the mucus barrier. After supplementation with SWE and rosiglitazone, the protein expression of CHOP and GRP78 displayed a decrease, which improved the endoplasmic reticulum (ER) stress condition. Meanwhile, the increase in Cosmc and C1GALT1 improved the O-glycosylation process for correct protein folding. These results collectively demonstrated that SWE improved the mucus barrier, focusing on Muc2 mucin expression, in a prolonged high-fat diet, and provides evidence for the potential of SWE in the treatment of intestinal disease-associated mucus barrier damage.
Collapse
|
4
|
Ferulic Acid Protects Human Lens Epithelial Cells against Ionizing Radiation-Induced Oxidative Damage by Activating Nrf2/HO-1 Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6932188. [PMID: 35592532 PMCID: PMC9113866 DOI: 10.1155/2022/6932188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/27/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Ionizing radiation- (IR-) induced oxidative stress has been recognized as an important mediator of apoptosis in lens epithelial cells (LECs) and also plays an important role in the pathogenesis of IR-induced cataract. Ferulic acid (FA), a phenolic phytochemical found in many traditional Chinese medicine, has potent radioprotective and antioxidative properties via activating nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway. The goals of this study were to determine the protective effect of FA against IR-induced oxidative damage on human lens epithelial cells (HLECs) and to elucidate the role of Nrf2 signal pathway. HLECs were subjected to 4 Gy X-ray radiation with or without pretreatment of FA. It was found that FA pretreatment protected HLECs against IR-induced cell apoptosis and reduced levels of ROS and MDA caused by radiation in a dose-dependent manner. IR-dependent attenuated activities of antioxidant enzymes (SOD, CAT, and GPx) and decreased ratio of reduced GSH/GSSG were increased by pretreatment of FA. FA inhibited IR-induced increase of Bax and cleaved caspase-3 and the decrease of Bcl-2 in a dose-dependent manner. Furthermore, FA provoked Nrf2 nuclear translocation and upregulated mRNA and protein expressions of HO-1 in a dose-dependent manner. These findings indicated that FA could effectively protect HLECs against IR-induced apoptosis by activating Nrf2 signal pathway to inhibit oxidative stress, which suggested that FA might have a therapeutic potential in the prevention and alleviation of IR-induced cataract.
Collapse
|
5
|
Zuo HL, Zhang QR, Chen C, Yang FQ, Yu H, Hu YJ. Molecular evidence of herbal formula: a network-based analysis of Si-Wu decoction. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:198-205. [PMID: 32519355 DOI: 10.1002/pca.2965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Emerging network pharmacology (NP) combines phytochemical information with bioinformatics tools allowing herbal formulae to be illustrated holistically in the context of phytochemical basis and therapeutic mechanisms. OBJECTIVE This study attempted to explore the holistic molecular evidence of herbal formula Si-Wu decoction (SWD) by using the method of NP. MATERIAL AND METHOD Databases of traditional medicines combined with PubChem, SciFinder, SEA, STRING, and KEGG were employed to gather information for establishing the "compound similarity" (CS) network and the "target-(pathway)-target" (TPT) network. Gephi software was applied to visualise the networks, with further module-based and node-based network topological analysis. Moreover, the approved drugs and shortest path analysis were used to validate the TPT network. RESULTS The CS network presented the phytochemical profile of SWD, including the major compound groups of iridoid glycosides, glycosides, phthalide lactones, phenylpropanoids, and monoterpenoids. Furthermore, the topological analysis of TPT network depicted the holistic property of SWD in interpretable neuroendocrine immunomodulation (NIM) perspective, and the node degree analysis indicated a closer connection of SWD with endocrine or metabolism system. Moreover, by combing the analysis of the CS network and TPT network, potential active ingredients could be primarily identified. CONCLUSION The phytochemical profile and molecular target profile, which might pave the way for an understanding of SWD in modern science and provide a reference for relevant quality research and evaluation, were demonstrated by network analysis. Moreover, the methods could be further applied to discover the phytochemical or biomolecular evidence with distinct advantages in dealing with the tremendous separated information.
Collapse
Affiliation(s)
- Hua-Li Zuo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Qian-Ru Zhang
- School of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Cen Chen
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
6
|
Zhang X, Chen X, Wang L, He C, Shi Z, Fu Q, Xu W, Zhang S, Hu S. Review of the Efficacy and Mechanisms of Traditional Chinese Medicines as a Therapeutic Option for Ionizing Radiation Induced Damage. Front Pharmacol 2021; 12:617559. [PMID: 33658941 PMCID: PMC7917257 DOI: 10.3389/fphar.2021.617559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation damage refers to acute, delayed, or chronic tissue damage associated with ionizing radiation. Specific or effective therapeutic options for systemic injuries induced by ionizing radiation have not been developed. Studies have shown that Chinese herbal Medicine or Chinese Herbal Prescription exhibit preventive properties against radiation damage. These medicines inhibit tissue injuries and promote repair with very minimal side effects. This study reviews traditional Chinese herbal medicines and prescriptions with radiation protective effects as well as their mechanisms of action. The information obtained will guide the development of alternative radioprotectants.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Xu
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Du Q, He D, Zeng HL, Liu J, Yang H, Xu LB, Liang H, Wan D, Tang CY, Cai P, Huang JH, Zhang SH. Siwu Paste protects bone marrow hematopoietic function in rats with blood deficiency syndrome by regulating TLR4/NF-κB/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113160. [PMID: 32736053 DOI: 10.1016/j.jep.2020.113160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siwu Paste (SWP) was recorded in the first national Pharmacopoeia of China, "Tai Ping Hui Min He Ji Ju Fang", it showed excellent effects in regulating all syndromes relevant to blood. AIM OF THE STUDY This study aimed to investigate the protective effects of Siwu Paste (SWP) on bone marrow hematopoietic by using rats' model with blood deficiency syndrome induced by chemotherapy. MATERIALS AND METHODS Animal model with blood deficiency syndrome was successfully established by evaluating their peripheral blood cell level and erythrocyte membrane energy metabolism enzyme activity. Serum hematopoietic cytokine levels were detected by using Enzyme-linked immunosorbent assay (ELISA). Hematoxylin-Eosin (HE) staining method was used to observe the pathological morphology of femur bone marrow, and the viability of BMSC was detected by Cell Counting Kit (CCK-8). Furthermore, the expression of toll-like receptor 4 (TLR4), nuclear transcription factor kB (NF-κB), and NOD-like receptor protein 3 (NLRP3) protein in femur bone marrow were detected by using Western-blotting and High-content cell imaging analysis system (HCA). RESULTS Obtained results showed that SWP could significantly improve the status of anemia, regulate the expressions of serum hematopoietic cytokines, and protect bone marrow hematopoietic cells. Furthermore, the expressions of TLR4, NF-κB, and NLRP3 protein were inhibited in bone marrow hematopoietic cells. CONCLUSIONS Siwu Paste (SWP) could recover the bone marrow hematopoietic functions in rats with blood deficiency syndrome. The therapeutic mechanism may be related to the regulation of serum hematopoietic cytokines, and inhibition of TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Hong-Liang Zeng
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Jian Liu
- The First Hospital of Hunan University of Chinese Medicine, Central Laboratory, Changsha, Hunan, 410007, China.
| | - Hui Yang
- The First Hospital of Hunan University of Chinese Medicine, Central Laboratory, Changsha, Hunan, 410007, China.
| | - Lin-Ben Xu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Hao Liang
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Dan Wan
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Chun-Yu Tang
- Hunan Times Sunshine Pharmaceutical Co., Ltd., Changsha, Hunan, 410208, China.
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, China.
| |
Collapse
|
8
|
Si-Wu-Tang Alleviates Nonalcoholic Fatty Liver Disease via Blocking TLR4-JNK and Caspase-8-GSDMD Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8786424. [PMID: 32849904 PMCID: PMC7439165 DOI: 10.1155/2020/8786424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has high global prevalence; however, the treatments of NAFLD are limited due to lack of approved drugs. Methods Mice were randomly assigned into three groups: Control group, NAFLD group, NAFLD plus Si-Wu-Tang group. A NAFLD mice model was established by feeding with a methionine- and choline-deficient (MCD) diet for four weeks. Si-Wu-Tang was given orally by gastric gavage at the beginning of 3rd week, and it lasted for two weeks. The treatment effects of Si-Wu-Tang were confirmed by examining the change of body weight, serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels, Oil Red O staining, and hematoxylin and eosin (H&E) staining of the liver samples and accompanied by steatosis grade scores. The expression and activation of the possible signaling proteins involved in the pathogenesis of NAFLD were determined by western blotting. Results Mice fed with four weeks of MCD diet displayed elevated serum levels of ALT and AST, while there was decreased body weight. The hepatic Oil Red O staining and H&E staining showed severe liver steatosis with high steatosis grade scores. All these can be improved by treating with Si-Wu-Tang for two weeks. Mechanistically, the increased hepatic TLR4 expression and its downstream JNK phosphorylation induced by MCD diet were suppressed by Si-Wu-Tang. Moreover, the upregulations of Caspase-8, gasdermin D (GSDMD), and cleaved-GSDMD in liver mediated by MCD diet were all inhibited by Si-Wu-Tang. Conclusions Treatment with Si-Wu-Tang improves MCD diet-induced NAFLD in part via blocking TLR4-JNK and Caspase-8-GSDMD signaling pathways, suggesting that Si-Wu-Tang has potential for clinical application in treating NAFLD.
Collapse
|
9
|
Network Pharmacology-Based Investigation of the System-Level Molecular Mechanisms of the Hematopoietic Activity of Samul-Tang, a Traditional Korean Herbal Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9048089. [PMID: 32104198 PMCID: PMC7040423 DOI: 10.1155/2020/9048089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process of the continuous production of diverse blood cell types to meet the body's physiological demands and involves complex regulation of multiple cellular mechanisms in hematopoietic stem cells, including proliferation, self-renewal, differentiation, and apoptosis. Disruption of the hematopoietic system is known to cause various hematological disorders such as myelosuppression. There is growing evidence on the beneficial effects of herbal medicines on hematopoiesis; however, their mechanism of action remains unclear. In this study, we conducted a network pharmacological-based investigation of the system-level mechanisms underlying the hematopoietic activity of Samul-tang, which is an herbal formula consisting of four herbal medicines, including Angelicae Gigantis Radix, Rehmanniae Radix Preparata, Paeoniae Radix Alba, and Cnidii Rhizoma. In silico analysis of the absorption-distribution-metabolism-excretion model identified 16 active phytochemical compounds contained in Samul-tang that may target 158 genes/proteins associated with myelosuppression to exert pharmacological effects. Functional enrichment analysis suggested that the targets of Samul-tang were significantly enriched in multiple pathways closely related to the hematopoiesis and myelosuppression development, including the PI3K-Akt, MAPK, IL-17, TNF, FoxO, HIF-1, NF-kappa B, and p53 signaling pathways. Our study provides novel evidence regarding the system-level mechanisms underlying the hematopoiesis-promoting effect of herbal medicines for hematological disorder treatment.
Collapse
|
10
|
Li C, Zhu F, Xu C, Xiao P, Wen J, Zhang X, Wu B. Dangguibuxue decoction abolishes abnormal accumulation of erythroid progenitor cells induced by melanoma. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112035. [PMID: 31226383 DOI: 10.1016/j.jep.2019.112035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Dangguibuxue decoction (DGBX), is a well-known traditional Chinese medicine that contains two types of materials used to treat anemia. In this study, we aimed to explore the effect and mechanism of DGBX on abolishing erythroid progenitor cell (Ter119+CD71+) accumulation induced by melanoma. MATERIALS AND METHODS B16/F10 melanoma cells were used to establish transplanted and metastatic melanoma models. DGBX or normal saline were administered intragastrically daily after the models were established. Tumor sizes and metastatic nodules were observed after tumor cell inoculation. To further test the function of DGBX on erythroid progenitor cell (EPC) accumulation and immunosuppressive abilities, the percentage of EPCs in the blood, and spleen were quantified with flow cytometry. The proportion of CD8+ T cells and related functional mediators, IFN-γ and TNF-α,were also quantified with flow cytometry. To further strengthen our in vivo observations, DGBX serum was prepared from the rats three days after DGBX was administered. Liquid chromatography-mass spectrometry was carried out to control the quality of the experiments. B16/F10 melanomacells were cultured with DGBX serum, and proliferation and apoptosis were observed with the CCK8 assay and AnnexinV/7AAD staining, respectively. EPCs were isolated from B16/F10-bearing mice and cultured under erythroid differentiation conditions. EPCs were treated with DGBX serum, and mature red cell proportions and cell denucleations were tested with flow cytometry and Giemsa staining of the cultured EPCs. Flow cytometry and qPCR were used to analyze the effects of DGBX on the expression of key molecules involved in erythroid development and to explore the mechanism by which DGBX relieves abnormal EPC accumulation. RESULTS DGBX treatments significantly reduced B16 melanoma tumor sizes and metastatic nodules. Most importantly, our study strongly suggested that DGBX could alleviate anemia, and systematically enhance anti-tumor immune responses by reducing abnormal EPC accumulation. Moreover, DGBX serum treatments had no direct effect on tumor cell proliferation and apoptosis, but could promote EPCs to differentiate into mature red blood cells, in vitro. Mechanistically, at least in part, DGBX relieved abnormal EPC accumulation by altering the "master switch" transcription factors, Pu.1 and Gata-1. CONCLUSIONS DGBX significantly alleviates abnormal tumor-induced EPC accumulation, inhibits B16 melanoma progression, and enhances anti-tumor immune responses.
Collapse
Affiliation(s)
- Chengyin Li
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China; No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Fenglin Zhu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China; No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Chong Xu
- No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China; Pharmacy Department, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junsong Wen
- No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xia Zhang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China; No.4 Clinical Medicine School of Chengdu University of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
11
|
Elucidation of the Effects of Si-Wu Tang on Menstrual Disorder Patterns through Activation of Aromatase and Antioxidation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4761651. [PMID: 30949219 PMCID: PMC6425378 DOI: 10.1155/2019/4761651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 01/25/2023]
Abstract
Si-Wu Tang (SWT), a traditional Chinese formula, is commonly used for treating female diseases, such as relief of menstrual discomfort and climacteric syndrome. The aim of this study was to explore the synergistic effects between each herb in SWT on menstrual disorder patterns. Estradiol regulation and antioxidative effects were indicators that ameliorated menstrual disorder patterns and the total polyphenol and polysaccharide contents were quality markers. According to relationships of bioactivity and phytochemical contents, we discuss the effects of each herb in SWT. In a testosterone-treated MCF-7 cell model, Rehmannia glutinosa and catalpol significantly increased the estradiol content and aromatase upregulation in cell culture. We suggest that catalpol is an aromatase promoter in SWT, and R. glutinosa is a major actor. In terms of the antioxidant activity, pentagalloylglucose, gallic acid, and ferulic acid had stronger antioxidative effects than other compounds. We suggest that the antioxidative ability depends on polyphenols, and Paeonia lactiflora is a major contributor. Based on the prescribing principle of traditional Chinese medicine (TCM) theory, we suggest that R. glutinosa in SWT act as an aromatase promoter in the role of sovereign for ameliorating menstrual disorder patterns. As P. lactiflora has the strongest antioxidant effects and can prevent ROS damage ovarian; therefore, P. lactiflora could help R. glutinosa work as a minister for menstrual disorder patterns and R. glutinosa and P. lactiflora are a herbal pair in SWT.
Collapse
|
12
|
Chen WD, Huang HS, Su YC, Chou SC, Ho WC, Kao MC, Lin HJ, Huang ST. The characteristics and prescription patterns of Chinese herbal medicine in clinical practice for the treatment of anemia. Taiwan J Obstet Gynecol 2018; 57:570-577. [PMID: 30122581 DOI: 10.1016/j.tjog.2018.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Chinese herbal medicine (CHM) is frequently applied to patients to improve the symptoms and signs associated with anemia. The aim of this study is to use the claims data from the National Health Insurance Research Database (NHIRD) in Taiwan to analyze CHM prescription patterns and to identify the frequency and combinations of CHM commonly used to treat anemia. MATERIALS AND METHODS A total of 41,028 patients were diagnosed with anemia in Taiwan within the defined study period. After randomly equal matching for age and sex, data from 7682 patients characterized as CHM users and non-users were analyzed. Network analyses of the 30 most frequently applied herbs and formulas were used to indicate CHM combinations in patients with anemia. RESULTS Those patients with anemia who were older, office workers, and lived in central areas of Taiwan had higher tendencies toward CHM usage. Based on considerations of comorbidities, anemia patients associated with chronic kidney diseases, diabetes mellitus, and hypertensive diseases preferred Western medical management and demonstrated a lesser likelihood of combining treatment with CHM; by contrast, those with coronary artery disease demonstrated a higher tendency for CHM use. Notably, Astragalus membranaceus (AM) and Gui-Pi-Tang (GPT) were the most commonly prescribed CHM single herb and formula, respectively. The core prescription pattern consisted of AM, Salvia miltiorrhiza (SM), Angelica sinensis (AS), GPT, and Si-Wu-Tang (SWT), as indicated by the associations and frequency of CHM utilization by traditional Chinese medicine (TCM) physicians. CONCLUSION This study demonstrates that CHM may be applied as an integral element of treatment for patients with anemia. It also provides insight regarding individual therapy and common clinical practices of TCM physicians in the treatment of anemia. Further research is required to explore potential interactions and possible mechanisms at play with CHM management of anemia.
Collapse
Affiliation(s)
- Wei-Di Chen
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Sen Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40447, Taiwan; Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Chih Su
- School of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40447, Taiwan; Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Shen-Chieh Chou
- Department of Pharmacy School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Science, China Medical University, Taichung, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40447, Taiwan; Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Inhibition of Neoplastic Transformation and Chemically-Induced Skin Hyperplasia in Mice by Traditional Chinese Medicinal Formula Si-Wu-Tang. Nutrients 2017; 9:nu9030300. [PMID: 28335476 PMCID: PMC5372963 DOI: 10.3390/nu9030300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022] Open
Abstract
Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT), comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women’s diseases. In our previous studies, the antioxidant Nrf2 pathways were strongly induced by SWT in vitro and in vivo. Since Nrf2 activation has been associated with anticarcinogenic effects, the purpose of this study is to evaluate SWT’s activity of cancer prevention. In the Ames test, SWT demonstrated an antimutagenic activity against mutagenicity induced by the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). In JB6 P+ cells, a non-cancerous murine epidermal model for studying tumor promotion, SWT inhibited epidermal growth factor (EGF)-induced neoplastic transformation. The luciferase reporter gene assays demonstrated that SWT suppressed EGF-induced AP-1 and TNF-α-induced NF-κB activation, which are essential factors involved in skin carcinogenesis. In a DMBA-induced skin hyperplasia assay in ‘Sensitivity to Carcinogenesis’ (SENCAR) mice, both topical and oral SWT inhibited DMBA-induced epidermal hyperplasia, expression of the proliferation marker Proliferating cell nuclear antigen (PCNA), and H-ras mutations. These findings demonstrate, for the first time, that SWT prevents tumor promoter and chemical-induced carcinogenesis in vitro and in vivo, partly by inhibiting DNA damage and blocking the activation of AP-1 and NF-κB.
Collapse
|
14
|
New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 2017; 103:41-55. [PMID: 28237775 DOI: 10.1016/j.fct.2017.02.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.).
Collapse
|
15
|
To Unveil the Molecular Mechanisms of Qi and Blood through Systems Biology-Based Investigation into Si-Jun-Zi-Tang and Si-Wu-Tang formulae. Sci Rep 2016; 6:34328. [PMID: 27677604 PMCID: PMC5039637 DOI: 10.1038/srep34328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Traditional Chinese Medicine (TCM) is increasingly getting clinical application worldwide. But its theory like QI-Blood is still abstract. Actually, Qi deficiency and blood deficiency, which were treated by Si-Jun-Zi-Tang (SJZT) and Si-Wu-Tang (SWT) respectively, have characteristic clinical manifestations. Here, we analyzed targets of the ingredients in SJZT and SWT to unveil potential biologic mechanisms between Qi deficiency and blood deficiency through biomedical approaches. First, ingredients in SWT and SJZT were retrieved from TCMID database. The genes targeted by these ingredients were chosen from STITCH. After enrichment analysis by Gene Ontology (GO) and DAVID, enriched GO terms with p-value less than 0.01 were collected and interpreted through DAVID and KEGG. Then a visualized network was constructed with ClueGO. Finally, a total of 243 genes targeted by 195 ingredients of SWT formula and 209 genes targeted by 61 ingredients of SJZT were obtained. Six metabolism pathways and two environmental information processing pathways enriched by targets were correlated with 2 or more herbs in SWT and SJZT formula, respectively.
Collapse
|
16
|
Hematopoietic Effects of Paeoniflorin and Albiflorin on Radiotherapy-Induced Myelosuppression Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5789381. [PMID: 27313650 PMCID: PMC4899601 DOI: 10.1155/2016/5789381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/08/2016] [Indexed: 11/17/2022]
Abstract
Paeonia lactiflora root (baishao in Chinese) is a commonly used herb in traditional Chinese medicine (TCM). Paeoniflorin (PF) and albiflorin (AF) are two major active constituents of P. lactiflora. In this paper, we aimed to investigate the hematopoietic effects of PF and AF on myelosuppression mice induced by radiotherapy and to explore the underlying mechanism. The finding indicated that PF and AF significantly increased the numbers of white blood cells (WBC) and reversed the atrophy of thymus. Furthermore, PF and AF increased the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) and reduced the levels of tumor necrosis factor-α (TNF-α) in serum and increased the level of colony-stimulating factor (G-CSF) in plasma. Lastly, PF and AF not only enhanced the mRNA levels of GM-CSF and G-CSF in the spleens, but also increased the protein levels of G-CSF and GM-CSF in bone marrow. Our results suggest that PF and AF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model.
Collapse
|
17
|
Quan Y, Li B, Sun YM, Zhang HY. Elucidating pharmacological mechanisms of natural medicines by biclustering analysis of the gene expression profile: a case study on curcumin and Si-Wu-Tang. Int J Mol Sci 2014; 16:510-20. [PMID: 25551600 PMCID: PMC4307259 DOI: 10.3390/ijms16010510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Natural medicines have attracted wide attention in recent years. It is of great significance to clarify the pharmacological mechanisms of natural medicines. In prior studies, we established a method for elucidating pharmacological mechanisms of natural products contained in connectivity map (cMap), in terms of module profiles of gene expression in chemical treatments. In this study, we explore whether this methodology is applicable to dissecting the pharmacological mechanisms of natural medicines beyond the agents contained in cMap. First, the gene expression profiles of curcumin (a typical isolated natural medicine) and Si-Wu-Tang (a classic traditional Chinese medicine formula) treatments were merged with those of cMap-derived 1309 agents, respectively. Then, a biclustering analysis was performed using FABIA method to identify gene modules. The biological functions of gene modules provide preliminary insights into pharmacological mechanisms of both natural medicines. The module profile can be characterized by a binary vector, which allowed us to compare the expression profiles of natural medicines with those of cMap-derived agents. Accordingly, we predicted a series of pharmacological effects for curcumin and Si-Wu-Tang by the indications of cMap-covered drugs. Most predictions were supported by experimental observations, suggesting the potential use of this method in natural medicine dissection.
Collapse
Affiliation(s)
- Yuan Quan
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bin Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - You-Min Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Hong-Yu Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Wang XY, Ma ZC, Wang YG, Tan HL, Xiao CR, Liang QD, Tang XL, Cheng Y, Gao Y. Tetramethylpyrazine protects lymphocytes from radiation-induced apoptosis through nuclear factor-κB. Chin J Nat Med 2014; 12:730-7. [PMID: 25443365 DOI: 10.1016/s1875-5364(14)60112-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Indexed: 11/18/2022]
Abstract
AIM Radiation induces an important apoptosis response in irradiated organs. The objective of this study was to investigate the radioprotective effect of tetramethylpyrazine (TMP) on irradiated lymphocytes and discover the possible mechanism of protection. METHOD Lymphocytes were pretreated for 12 h with TMP (25-200 μmol·L(-1)) and then exposed to 4 Gy radiation. Cell apoptosis and the signaling pathway were analyzed. RESULTS Irradiation increased cell death, DNA fragmentation, activated caspase activation and cytochrome c translocation, downregulated B-cell lymphoma 2 (Bcl-2) and up-regulated Bcl-2-associated X protein (Bax). Pretreated with TMP significantly reversed this tendency. Several anti-apoptotic characteristics of TMP, including the ability to increase cell viability, inhibit caspase-9 activation, and upregulate Bcl-2 and down-regulate Bax in 4Gy-irradiated lymphocytes were determined. Signal pathway analysis showed TMP could translate nuclear factor-κB (NF-κB) from cytosol into the nucleus. CONCLUSION The results suggest that TMP had a radioprotective effect through the NF-κB pathway to inhibit apoptosis, and it may be an effective candidate for treating radiation diseases associated with cell apoptosis.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China; Chongqing Maternal and Child Health-Care Hospital, Chongqing 400016, China
| | - Zeng-Chun Ma
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China.
| | - Yu-Guang Wang
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
| | - Hong-Ling Tan
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
| | - Cheng-Rong Xiao
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
| | - Qian-De Liang
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
| | - Xiang-Lin Tang
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
| | - Yu Cheng
- Chongqing Maternal and Child Health-Care Hospital, Chongqing 400016, China
| | - Yue Gao
- Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China.
| |
Collapse
|
19
|
Romero-Weaver A, Ni J, Lin L, Kennedy A. Orally Administered Fructose Increases the Numbers of Peripheral Lymphocytes Reduced by Exposure of Mice to Gamma or SPE-like Proton Radiation. LIFE SCIENCES IN SPACE RESEARCH 2014; 2:80-85. [PMID: 25360417 PMCID: PMC4209748 DOI: 10.1016/j.lssr.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure of the whole body or a major portion of the body to ionizing radiation can result in Acute Radiation Sickness (ARS), which can cause symptoms that range from mild to severe, and include death. One of the syndromes that can occur during ARS is the hematopoietic syndrome, which is characterized by a reduction in bone marrow cells as well as the number of circulating blood cells. Doses capable of causing this syndrome can result from conventional radiation therapy and accidental exposure to ionizing radiation. It is of concern that this syndrome could also occur during space exploration class missions in which astronauts could be exposed to significant doses of solar particle event (SPE) radiation. Of particular concern is the reduction of lymphocytes and granulocytes, which are major components of the immune system. A significant reduction in their numbers can compromise the immune system, causing a higher risk for the development of infections which could jeopardize the success of the mission. Although there are no specific countermeasures utilized for the ARS resulting from exposure to space radiation(s), granulocyte colony-stimulating factor (G-CSF) has been proposed as a countermeasure for the low number of neutrophils caused by SPE radiation, but so far no countermeasure exists for a reduced number of circulating lymphocytes. The present study demonstrates that orally administered fructose significantly increases the number of peripheral lymphocytes reduced by exposure of mice to 2 Gy of gamma- or SPE-like proton radiation, making it a potential countermeasure for this biological end-point.
Collapse
Affiliation(s)
- A.L. Romero-Weaver
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - J. Ni
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, PR China, 200433
| | - L. Lin
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - A.R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Corresponding author: Kennedy A.R., Phone: 215-898-0079, Fax: 215-898-1411,
| |
Collapse
|
20
|
Liu M, Ravula R, Wang Z, Zuo Z, Chow MS, Thakkar A, Prabhu S, Andresen B, Huang Y. Traditional Chinese medicinal formula Si-Wu-Tang prevents oxidative damage by activating Nrf2-mediated detoxifying/antioxidant genes. Cell Biosci 2014; 4:8. [PMID: 24507416 PMCID: PMC3930016 DOI: 10.1186/2045-3701-4-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022] Open
Abstract
Background Induction of Nrf2-mediated detoxifying/antioxidant genes has been recognized as an effective strategy for cancer chemoprevention. Si-Wu-Tang (SWT), comprising the combination of four herbs, Paeoniae, Angelicae, Chuanxiong and Rehmanniae, is one of the most popular traditional oriental medicines for women’s diseases. The purpose of this study is to determine the effects of SWT on Nrf2 pathway in vitro and in vivo and to identify the active component(s). Results Cell viability and apoptosis were analyzed in the non-cancerous breast epithelial cell line MCF-10A after H2O2 treatment in the presence or absence of SWT using the Sulphorhodamine B assay, Annexin-V/Propidium iodide staining and flow cytometry. SWT strongly reduced H2O2 -induced cytotoxicity and apoptosis in MCF-10A cells. Expression of Nrf2 and Nrf2-regulated genes HMOX1 (heme oxygenase 1) and SLC7A11 (xCT) was evaluated by quantitative RT-PCR, Western Blot and immunocytochemistry. SWT strongly induced Nrf2-regulated genes at mRNA and protein levels and increased the nuclear translocation of Nrf2 in MCF-10A cells. The in vivo pharmacodynamic effect of SWT was evaluated in healthy female Sprague–Dawley rats. Short-term oral administration of SWT (1,000 mg/kg per day for six consecutive days) to rats resulted in an increased expression of Nrf2-regulated genes Hmox1 and Slc7A11 in the liver detected by quantitative RT-PCR. Among nine compounds that have been identified previously in the SWT products, z-liguistilide was discovered as the main component responsible for the effect of Nrf2 activation using the antioxidant response element-luciferase reporter gene assay. Z-liguistilide was confirmed with a high potency to induce Nrf2-regulated genes and Nrf2 nuclear translocation. Conclusions Our results demonstrated that SWT and its component z-liguistilide are able to activate the Nrf2 pathway in non-cancerous cells and organs in vitro and in vivo, suggesting that SWT might be an orally effective and nontoxic agent for cancer chemoprevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
21
|
Gao B, Doan A, Hybertson BM. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol 2014; 6:19-34. [PMID: 24520207 PMCID: PMC3917919 DOI: 10.2147/cpaa.s35078] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2; encoded in humans by the NFE2L2 gene) is a transcription factor that regulates the gene expression of a wide variety of cytoprotective phase II detoxification and antioxidant enzymes through a promoter sequence known as the antioxidant-responsive element (ARE). The ARE is a promoter element found in many cytoprotective genes; therefore, Nrf2 plays a pivotal role in the ARE-driven cellular defense system against environmental stresses. Agents that target the ARE/Nrf2 pathway have been tested in a wide variety of disorders, with at least one new Nrf2-activating drug now approved by the US Food and Drug Administration. Examination of in vitro and in vivo experimental results, and taking into account recent human clinical trial results, has led to an opinion that Nrf2-activating strategies – which can include drugs, foods, dietary supplements, and exercise – are likely best targeted at disease prevention, disease recurrence prevention, or slowing of disease progression in early stage illnesses; they may also be useful as an interventional strategy. However, this rubric may be viewed even more conservatively in the pathophysiology of cancer. The activation of the Nrf2 pathway has been widely accepted as offering chemoprevention benefit, but it may be unhelpful or even harmful in the setting of established cancers. For example, Nrf2 activation might interfere with chemotherapies or radiotherapies or otherwise give tumor cells additional growth and survival advantages, unless they already possess mutations that fully activate their Nrf2 pathway constitutively. With all this in mind, the ARE/Nrf2 pathway remains of great interest as a possible target for the pharmacological control of degenerative and immunological diseases, both by activation and by inhibition, and its regulation remains a promising biological target for the development of new therapies.
Collapse
Affiliation(s)
- Bifeng Gao
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - An Doan
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brooks M Hybertson
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
22
|
Song HJ, Jin MH, Lee SH. Effect of Ferulic Acid Isolated from Cnidium Officinale on the Synthesis of Hyaluronic Acid. ACTA ACUST UNITED AC 2013. [DOI: 10.15230/scsk.2013.39.4.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Fang Z, Lu B, Liu M, Zhang M, Yi Z, Wen C, Shi T. Evaluating the pharmacological mechanism of Chinese medicine Si-Wu-Tang through multi-level data integration. PLoS One 2013; 8:e72334. [PMID: 24223693 PMCID: PMC3817162 DOI: 10.1371/journal.pone.0072334] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/03/2013] [Indexed: 11/21/2022] Open
Abstract
Si-Wu-Tang (SWT) is a Traditional Chinese Medicine (TCM) formula widely used for the treatments of gynecological diseases. To explore the pharmacological mechanism of SWT, we incorporated microarray data of SWT with our herbal target database TCMID to analyze the potential activity mechanism of SWT's herbal ingredients and targets. We detected 2,405 differentially expressed genes in the microarray data, 20 of 102 proteins targeted by SWT were encoded by these DEGs and can be targeted by 2 FDA-approved drugs and 39 experimental drugs. The results of pathway enrichment analysis of the 20 predicted targets were consistent with that of 2,405 differentially expressed genes, elaborating the potential pharmacological mechanisms of SWT. Further study from a perspective of protein-protein interaction (PPI) network showed that the predicted targets of SWT function cooperatively to perform their multi-target effects. We also constructed a network to combine herbs, ingredients, targets and drugs together which bridges the gap between SWT and conventional medicine, and used it to infer the potential mechanisms of herbal ingredients. Moreover, based on the hypothesis that the same or similar effects between different TCM formulae may result from targeting the same proteins, we analyzed 27 other TCM formulae which can also treat the gynecological diseases, the subsequent result provides additional insight to understand the potential mechanisms of SWT in treating amenorrhea. Our bioinformatics approach to detect the pharmacology of SWT may shed light on drug discovery for gynecological diseases and could be utilized to investigate other TCM formulae as well.
Collapse
Affiliation(s)
- Zhao Fang
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Science, East China Normal University, Shanghai, China
| | - Bingxin Lu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Science, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Science, East China Normal University, Shanghai, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenghui Yi
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengping Wen
- TCM Clinical Basis Institute, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Science, East China Normal University, Shanghai, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
24
|
Liang Q, Ma J, Ma Z, Wang Y, Tan H, Xiao C, Liu M, Lu B, Zhang B, Gao Y. Chemical comparison of dried rehmannia root and prepared rehmannia root by UPLC-TOF MS and HPLC-ELSD with multivariate statistical analysis. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2012.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
25
|
Liu M, Fan J, Wang S, Wang Z, Wang C, Zuo Z, Chow MSS, Shi L, Wen Z, Huang Y. Transcriptional profiling of Chinese medicinal formula Si-Wu-Tang on breast cancer cells reveals phytoestrogenic activity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:11. [PMID: 23305139 PMCID: PMC3637310 DOI: 10.1186/1472-6882-13-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/08/2013] [Indexed: 12/14/2022]
Abstract
Background Si-Wu-Tang (SWT), comprising the combination of four herbs, Paeoniae, Angelicae, Chuanxiong and Rehmanniae, is one of the most popular traditional oriental medicines for women’s diseases. In our previous study, the microarray gene expression profiles of SWT on breast cancer cell line MCF-7 were found similar to the effect of β-estradiol (E2) on MCF-7 cells in the Connectivity Map database. Methods Further data analysis was conducted to find the main similarities and differences between the effects of SWT and E2 on MCF-7 gene expression. The cell proliferation assay on MCF-7 (ER-positive) and MDA-MB-231 (ER-negative) cells were used to examine such estrogenic activity. The estrogenic potency of SWT was further confirmed by estrogen-responsive element (ERE) luciferase reporter assay in MCF-7 cells. Results Many estrogen regulated genes strongly up-regulated by E2 were similarly up-regulated by SWT, e.g., GREB1, PGR and EGR3. Of interest with regard to safety of SWT, the oncogenes MYBL1 and RET were strongly induced by E2 but not by SWT. Quantitative RT-PCR analysis revealed a highly concordant expression change in selected genes with data obtained by microarrays. Further supporting SWT’s estrogenic activity, in MCF-7 but not in MDA-MB-231 cells, SWT stimulated cell growth at lower concentrations (< 3.0 mg/ml), while at high concentrations, it inhibits the growth of both cell lines. The growth inhibitory potency of SWT was significantly higher in MDA-MB-231 than in MCF-7 cells. The SWT-induced cell growth of MCF-7 could be blocked by addition of the estrogen receptor antagonist tamoxifen. In addition, SWT was able to activate the ERE activity at lower concentrations. The herbal components Angelicae, Chuanxiong and Rehmanniae at lower concentrations (< 3.0 mg/ml) also showed growth-inducing and ERE-activating activity in MCF-7 cells. Conclusions These results revealed a new mechanism to support the clinical use of SWT for estrogen related diseases and possibly for cancer prevention. This study also demonstrated the feasibility of using microarray transcriptional profiling to discover phytoestrogenic components that are present in natural products.
Collapse
|
26
|
Use of Herbal Dietary Supplement Si-Wu-Tang and Health-Related Quality of Life in Postpartum Women: A Population-Based Correlational Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:790474. [PMID: 23476705 PMCID: PMC3586461 DOI: 10.1155/2013/790474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
Abstract
Objective. The aim of the study was to explore the association between women's use of herbal dietary supplement Si-Wu-Tang during the postpartum period and their health-related quality of life. Methods. This is a population-based correlational study. We used multistage, stratified, systematic sampling to recruit 24,200 pairs of postpartum women and newborns from the Taiwan National Birth Registry in 2005. A structured questionnaire was successfully administered to 87.8% of the sampled population. Trained interviewers performed home interviews 6 months after the women's deliveries between June 2005 and July 2006. The Medical Outcomes Study 36-item Short-Form (SF-36) was used to measure the quality of life of the women along with the frequency of Si-Wu-Tang use. Results. Si-Wu-Tang use after delivery improved women's score for bodily pain and also improved their score for mental health when used more than 10 times. In addition, there were increases in general health and vitality scores in the group who continuously used Si-Wu-Tang more than 10 times after using Sheng-Hua-Tang. Conclusion. Use of Si-Wu-Tang after delivery may be associated with women's health-related quality of life especially for those who previously used Sheng-Hua-Tang. These results are exploratory and need to be replicated.
Collapse
|
27
|
Ma ZC, Hong Q, Wang YG, Liang QD, Tan HL, Xiao CR, Tang XL, Shao S, Zhou SS, Gao Y. Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2. Drug Discov Ther 2012; 5:299-305. [PMID: 22466441 DOI: 10.5582/ddt.2011.v5.6.299] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigated the effect of ferulic acid (FA) on the up-regulation of heme oxygenase-1 (HO-1) in lymphocytes and the molecular mechanisms involved. Lymphocytes were treated with FA (0.001-0.1 μM) for certain times. Cell viability, the activity and level of expression of HO-1, and signal pathways were analyzed. FA significantly upregulated HO-1 expression both at the level of mRNA and protein in lymphocytes. Moreover, FA induced NF-E2-related factor (Nrf2) nuclear translocation and transcriptional activity, which is upstream of FA induced HO-1 expression. In addition, lymphocytes treated with FA exhibited activation of extracellular regulated kinase (ERK) and treatments with U0126 (an ERK kinase inhibitor) attenuated the FA induced activation of Nrf2, resulting in a decrease in HO-1 expression. Zinc protoporphyrin (ZnPP, a HO-1 inhibitor) markedly suppressed cytoprotection from radiation-induced cell damage by FA. Results suggested that the ERK signaling pathway controlled the anti-oxidation of FA by regulating the expression of the antioxidant enzyme HO-1.
Collapse
Affiliation(s)
- Z C Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wen Z, Wang Z, Wang S, Ravula R, Yang L, Xu J, Wang C, Zuo Z, Chow MSS, Shi L, Huang Y. Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PLoS One 2011; 6:e18278. [PMID: 21464939 PMCID: PMC3065471 DOI: 10.1371/journal.pone.0018278] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/25/2011] [Indexed: 12/14/2022] Open
Abstract
To pursue a systematic approach to discovery of mechanisms of action of traditional Chinese medicine (TCM), we used microarrays, bioinformatics and the “Connectivity Map” (CMAP) to examine TCM-induced changes in gene expression. We demonstrated that this approach can be used to elucidate new molecular targets using a model TCM herbal formula Si-Wu-Tang (SWT) which is widely used for women's health. The human breast cancer MCF-7 cells treated with 0.1 µM estradiol or 2.56 mg/ml of SWT showed dramatic gene expression changes, while no significant change was detected for ferulic acid, a known bioactive compound of SWT. Pathway analysis using differentially expressed genes related to the treatment effect identified that expression of genes in the nuclear factor erythroid 2-related factor 2 (Nrf2) cytoprotective pathway was most significantly affected by SWT, but not by estradiol or ferulic acid. The Nrf2-regulated genes HMOX1, GCLC, GCLM, SLC7A11 and NQO1 were upreguated by SWT in a dose-dependent manner, which was validated by real-time RT-PCR. Consistently, treatment with SWT and its four herbal ingredients resulted in an increased antioxidant response element (ARE)-luciferase reporter activity in MCF-7 and HEK293 cells. Furthermore, the gene expression profile of differentially expressed genes related to SWT treatment was used to compare with those of 1,309 compounds in the CMAP database. The CMAP profiles of estradiol-treated MCF-7 cells showed an excellent match with SWT treatment, consistent with SWT's widely claimed use for women's diseases and indicating a phytoestrogenic effect. The CMAP profiles of chemopreventive agents withaferin A and resveratrol also showed high similarity to the profiles of SWT. This study identified SWT as an Nrf2 activator and phytoestrogen, suggesting its use as a nontoxic chemopreventive agent, and demonstrated the feasibility of combining microarray gene expression profiling with CMAP mining to discover mechanisms of actions and to identify new health benefits of TCMs.
Collapse
Affiliation(s)
- Zhining Wen
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zhijun Wang
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Steven Wang
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Ranadheer Ravula
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Lun Yang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- Department of Clinical Pharmacy and Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Xu
- Clinical Transcriptional Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Charles Wang
- Functional Genomics Core, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Moses S. S. Chow
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Leming Shi
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- Department of Clinical Pharmacy and Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (LS); (YH)
| | - Ying Huang
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (LS); (YH)
| |
Collapse
|
29
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Lu BB, Gao Y. Effects of ferulic acid on hematopoietic cell recovery in whole-body gamma irradiated mice. Int J Radiat Biol 2011; 87:499-505. [PMID: 21254928 DOI: 10.3109/09553002.2011.548438] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The objective of this study was to investigate the mechanism for ferulic acid (FA)-induced radioprotection by evaluating the recovery of bone marrow cells and peripheral blood hematology. MATERIALS AND METHODS Balb/c mice were irradiated at a dose of 2.5 Gy using cobalt-60 gamma resources. Following irradiation, FA was administered intragastrically for seven consecutive days. Hematopoietic progenitor colony-forming cell assays were used to assess the reconstitution of bone marrow after radiation-induced myelosuppression. Cytokine levels were investigated using enzyme-linked immunosorbent assay and Western blot analysis. RESULTS The results demonstrated that FA treatment enhanced hematopoietic progenitor cell activity resulting in accelerated blood cell recovery. FA administration increased levels of granulocyte-colony stimulating factor (G-CSF) and erythropoietin. CONCLUSION These results suggest radioprotective efficacy by FA may be a result of early recovery of hematopoietic cells due to enhanced production of G-CSF and erythropoietin.
Collapse
Affiliation(s)
- Zeng-Chun Ma
- Beijing Institute of Radiation Medicine, Tai-Ping Road 27, Beijing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Wang DG, Gao Y. Ferulic acid protects lymphocytes from radiation-predisposed oxidative stress through extracellular regulated kinase. Int J Radiat Biol 2010; 87:130-40. [DOI: 10.3109/09553002.2011.523510] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Zhang BL, Gao Y. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol Pharm Bull 2010; 33:29-34. [PMID: 20045931 DOI: 10.1248/bpb.33.29] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferulic acid (FA) has been demonstrated to have a remarkable antioxidant activity, the mechanism of FA of protecting human umbilical vein endothelial cells (HUVECs) from radiation induced oxidative stress was investigated in the present study. The oxidative protection of FA was assessed by cellular glutathione (GSH) content, nicotinamide adenine dinucleotide phosphate (NADPH) levels, and reactive oxygen species (ROS) analysis. Nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation was detected using Western blotting. The upstream signaling pathway involved in FA mediated Nrf2 activation was determined by signaling inhibitors. FA significantly increased the transcription of antioxidant related genes such as GCLC (glutamate-cysteine ligase catalytic subunit), GCLM (glutamate-cysteine ligase regulatory subunit), NQO1 (NADPH quinone oxidoreductase-1) and heme oxygenase-1 (HO-1) mRNA in radiated cells, and these changes involved in a significant increase of the intracellular GSH content and the expression of NAPDH. FA evidently promoted Nrf2 translocation into nuclei and increased the intracellular GSH and NADPH levels in radiated cells. Phosphatidylinositol 3-kinase (PI3K) and extracellular signal regulated kinase (ERK) pathways were associated with FA-induced Nrf2 activation. The results suggested that FA-induced Nrf2 activation play key role in cytoprotective effect of FA against oxidative stress via PI3K and ERK signaling pathways.
Collapse
Affiliation(s)
- Zeng-Chun Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Cai SH, Gao Y. Ferulic Acid Attenuates Adhesion Molecule Expression in Gamma-Radiated Human Umbilical Vascular Endothelial Cells. Biol Pharm Bull 2010; 33:752-8. [PMID: 20460750 DOI: 10.1248/bpb.33.752] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Qian Hong
- Beijing Institute of Radiation Medicine
| | | | | | | | | | - Shao-Hua Cai
- Geriatric-Respiratory Department, PLA General Hospital
| | - Yue Gao
- Beijing Institute of Radiation Medicine
| |
Collapse
|