1
|
Ito H, Ito M. Recent trends in ginseng research. J Nat Med 2024; 78:455-466. [PMID: 38512649 DOI: 10.1007/s11418-024-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Ginseng, the dried root of Panax ginseng, contains ginsenosides and has long been used in Korea, China, and Japan to treat various symptoms. Many studies on the utility of ginseng have been conducted and in this paper we investigate recent trends in ginseng research. P. ginseng studies were collected from scientific databases (PubMed, Web of Science, and SciFindern) using the keywords "Panax ginseng C.A. Meyer", "ginsenosides", "genetic diversity", "biosynthesis", "cultivation", and "pharmacology". We identified 1208 studies up to and including September 2023: 549 studies on pharmacology, 262 studies on chemical components, 131 studies on molecular biology, 58 studies on cultivation, 71 studies on tissue culture, 28 studies on clinical trials, 123 reviews, and 49 studies in other fields. Many researchers focused on the characteristic ginseng component ginsenoside to elucidate the mechanism of ginseng's pharmacological action, the relationship between component patterns and cultivation areas and conditions, and gene expression.
Collapse
Affiliation(s)
- Honoka Ito
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki City, Kanagawa, 210-9501, Japan.
| |
Collapse
|
2
|
Lim JS, Kim CR, Shin KS, Lee SJ, Yoon TJ, Park HJ. Synergistic effect of Korean red ginseng extract and GABA mixture on the IgE production in mice via Th1/Th2 cell balance. Food Sci Biotechnol 2021; 30:1571-1580. [PMID: 34868705 DOI: 10.1007/s10068-021-00985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
It has been recently reported that the immune system has been linked to the nervous system. This study was conducted to investigate the effect of administration of two components, gamma-aminobutyric acid (GABA) and Panax ginseng Meyer (GIN), on the production of IgE and Th1-Th2 dominant cytokines. Antibody and inflammatory mediator levels in serum, and the cytokines secreted to spleen cells of ovalbumin (OVA) immunized mice were analyzed. The group of GABA and GIN mixture significantly reduced IgE level and dramatically increased OVA-IgG2a antibody production. In addition, rising effect on IFN-gamma and GM-CSF levels related to Th1 cytokine was observed only in the group of GABA + GIN. The mixture alleviated allergic symptoms by reducing the level of histamine and prostaglandin. These studies suggest that GIN + GABA administration in the allergen-induced mouse model may regulate the Th1-Th2 balance by strongly acting on the immune response associated with Th1.
Collapse
Affiliation(s)
- Jung Sik Lim
- Department of Food and Nutrition, Yuhan University, 590, Kyungin-ro, Buchoen, 14780 Republic of Korea
| | - Chae Rim Kim
- Department of Food and Nutrition, Yuhan University, 590, Kyungin-ro, Buchoen, 14780 Republic of Korea
| | - Kwang Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwnggyosan-ro, Yeongtong-gu, Suwon, 16227 Republic of Korea
| | - Sue Jung Lee
- Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwnggyosan-ro, Yeongtong-gu, Suwon, 16227 Republic of Korea
| | - Taek Joon Yoon
- Department of Food and Nutrition, Yuhan University, 590, Kyungin-ro, Buchoen, 14780 Republic of Korea
| | - Hee Jung Park
- Department of Foodservice Management and Nutrition, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
3
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
4
|
Yuan M, Liu H, Zhou S, Zhou X, Huang YE, Hou F, Jiang W. Integrative Analysis of Regulatory Module Reveals Associations of Microgravity with Dysfunctions of Multi-body Systems and Tumorigenesis. Int J Mol Sci 2020; 21:ijms21207585. [PMID: 33066530 PMCID: PMC7589633 DOI: 10.3390/ijms21207585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have demonstrated that microgravity could lead to health risks. The investigation of the molecular mechanisms from the aspect of systems biology has not been performed yet. Here, we integratively analyzed transcriptional and post-transcriptional regulations based on gene and miRNA expression profiles in human peripheral blood lymphocytes cultured in modeled microgravity. Two hundred and thirty dysregulated TF-miRNA (transcription factor and microRNA) feed-forward loops (FFLs) were identified in microgravity. The immune, cardiovascular, endocrine, nervous and skeletal system subnetworks were constructed according to the functions of dysregulated FFLs. Taking the skeletal system as an example, most of genes and miRNAs in the subnetwork were involved in bone loss. In addition, several drugs have been predicted to have potential to reduce bone loss, such as traditional Chinese medicines Emodin and Ginsenoside Rh2. Furthermore, we investigated the relationships between microgravity and 20 cancer types, and found that most of cancers might be promoted by microgravity. For example, rectum adenocarcinoma (READ) might be induced by microgravity through reducing antigen presentation and suppressing IgA-antibody-secreting cells' migration. Collectively, TF-miRNA FFL might provide a novel mechanism to elucidate the changes induced by microgravity, serve as drug targets to relieve microgravity effects, and give new insights to explore the relationships between microgravity and cancers.
Collapse
|
5
|
Han MJ, Kim DH. Effects of Red and Fermented Ginseng and Ginsenosides on Allergic Disorders. Biomolecules 2020; 10:E634. [PMID: 32326081 PMCID: PMC7226199 DOI: 10.3390/biom10040634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
Both white ginseng (WG, dried root of Panax sp.) and red ginseng (RG, steamed and dried root of Panax sp.) are reported to exhibit a variety of pharmacological effects such as anticancer, antidiabetic, and neuroprotective activities. These ginsengs contain hydrophilic sugar-conjugated ginsenosides and polysaccharides as the bioactive constituents. When taken orally, their hydrophilic constituents are metabolized into hydrophobic ginsenosides compound K, Rh1, and Rh2 that are absorbable into the blood. These metabolites exhibit the pharmacological effects more strongly than hydrophilic parental constituents. To enforce these metabolites, fermented WG and RG are developed. Moreover, natural products including ginseng are frequently used for the treatment of allergic disorders. Therefore, this review introduces the current knowledge related to the effectiveness of ginseng on allergic disorders including asthma, allergic rhinitis, atopic dermatitis, and pruritus. We discuss how ginseng, its constituents, and its metabolites regulate allergy-related immune responses. We also describe how ginseng controls allergic disorders.
Collapse
Affiliation(s)
- Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
6
|
Shahiduzzaman M, Ras R, Widmer G. Effect of Ginsenoside-Rh2 and Curcurbitacin-B on Cryptosporidium parvum in vitro. Exp Parasitol 2020; 212:107873. [PMID: 32165146 DOI: 10.1016/j.exppara.2020.107873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/09/2022]
Abstract
Ginsenoside-Rh2 and cucurbitacin-B (CuB) are secondary metabolites of Ginseng (Panax ginseng) and Cucurbitaceae plants respectively. We assessed the anticryptosporidial activity of these two functional compounds in a cell culture model of cryptosporidiosis. The highest concentration of each compound that was not toxic to the host cells was used to assess the activity against C. parvum during infection/invasion and growth in HCT-8 cell monolayers. Monolayers were infected with pre-excysted C. parvum oocysts. Infected monolayers were incubated at 37 °C for 24 h and 48 h in the presence of different concentrations of each test compound. A growth resumption assay was performed by incubating infected monolayers in the presence of compounds for 24 h followed by a second 24-h incubation in the absence of compound. To screen for invasion inhibiting activity, freshly excysted C. parvum sporozoites were pre-treated with different concentrations of compounds prior to adding them to the cell monolayers. Paromomycin, a known inhibitor of C. parvum, and DMSO were used as positive and negative control, respectively. The level of infection was initially assessed using an immunofluorescent assay and quantified by real-time PCR. Both compounds were found to strongly inhibit C. parvum intracellular development in a dose-dependent manner. IC50 values of 25 μM for a 24 h development period and 5.52 μM after 48 h development were measured for Rh2, whereas for CuB an IC50 value of 0.169 μg/ml and 0.118 μg/ml were obtained for the same incubation periods. CuB also effectively inhibited resumption of growth, an activity that was not observed with Rh2. CuB was more effective at inhibiting excystation and/or host cell invasion, indicating that this compound also targets extracellular stages of the parasite.
Collapse
Affiliation(s)
- Md Shahiduzzaman
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA; Department of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Refaat Ras
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA; Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| |
Collapse
|
7
|
Ko E, Park S, Lee JH, Cui CH, Hou J, Kim MH, Kim SC. Ginsenoside Rh2 Ameliorates Atopic Dermatitis in NC/Nga Mice by Suppressing NF-kappaB-Mediated Thymic Stromal Lymphopoietin Expression and T Helper Type 2 Differentiation. Int J Mol Sci 2019; 20:ijms20246111. [PMID: 31817146 PMCID: PMC6940811 DOI: 10.3390/ijms20246111] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
Ginsenosides are known to have various highly pharmacological activities, such as anti-cancer and anti-inflammatory effects. However, the search for the most effective ginsenosides against the pathogenesis of atopic dermatitis (AD) and the study of the effects of ginsenosides on specific cytokines involved in AD remain unclear. In this study, ginsenoside Rh2 was shown to exert the most effective anti-inflammatory action on thymic stromal lymphopoietin (TSLP) and interleukin 8 in tumor necrosis factor-alpha and polyinosinic: polycytidylic acid induced normal human keratinocytes by inhibiting proinflammatory cytokines at both protein and transcriptional levels. Concomitantly, Rh2 also efficiently alleviated 2,4-dinitrochlorobenzene-induced AD-like skin symptoms when applied topically, including suppression of immune cell infiltration, cytokine expression, and serum immunoglobulin E levels in NC/Nga mice. In line with the in vitro results, Rh2 inhibited TSLP levels in AD mice via regulation of an underlying mechanism involving the nuclear factor κB pathways. In addition, in regard to immune cells, we showed that Rh2 suppressed not only the expression of TSLP but the differentiation of naïve CD4+ T-cells into T helper type 2 cells and their effector function in vitro. Collectively, our results indicated that Rh2 might be considered as a good therapeutic candidate for the alternative treatment of AD.
Collapse
Affiliation(s)
- Eunsu Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Sungjoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Jun Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
| | - Chang-Hao Cui
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
| | - Myung-ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea;
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (E.K.); (S.P.); (J.H.L.)
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (C.-H.C.); (J.H.)
- Correspondence: ; Tel.: +82-042-2619
| |
Collapse
|
8
|
Antidepressant effects of ginsenoside Rf on behavioral change in the glial degeneration model of depression by reversing glial loss. J Ginseng Res 2019; 44:603-610. [PMID: 32617040 PMCID: PMC7322760 DOI: 10.1016/j.jgr.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Depression is a common neuropsychiatric disease that shows astrocyte pathology. Ginsenoside Rf (G-Rf) is a saponin found in Panax ginseng which has been used to treat neuropsychiatric diseases. We aimed to investigate antidepressant properties of G-Rf when introduced into the L-alpha-aminoadipic acid (L-AAA)–infused mice model which is representative of a major depressive disorder that features diminished astrocytes in the brain. Methods L-AAA was infused into the prefrontal cortex (PFC) of mice to induce decrease of astrocytes. Mice were orally administered G-Rf (20 mg/kg) as well as vehicle only or imipramine (20 mg/kg) as controls. Depression-like behavior of mice was evaluated using forced swimming test (FST) and tail suspension test (TST). We observed recovery of astroglial impairment and increased proliferative cells in the PFC and its accompanied change in the hippocampus by Western blot and immunohistochemistry to assess the effect of G-Rf. Results After injection of L-AAA into the PFC, mice showed increased immobility time in FST and TST and loss of astrocytes without significant neuronal change in the PFC. G-Rf–treated mice displayed significantly more decreased immobility time in FST and TST than did vehicle-treated mice, and their immobility time almost recovered to those of the sham mice and imipramine-treated mice. G-Rf upregulated glial fibrillary acidic protein (GFAP) expression and Ki-67 expression in the PFC reduced by L-AAA and also alleviated astroglial change in the hippocampus. Conclusion G-Rf markedly reversed depression-like behavioral changes and exhibited protective effect against the astrocyte ablation in the PFC induced by L-AAA. These protective properties suggest that G-Rf might be a therapeutic agent for major depressive disorders.
Collapse
|
9
|
Liu X, Zhang Z, Liu J, Wang Y, Zhou Q, Wang S, Wang X. Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c mice. Int Immunopharmacol 2019; 72:98-111. [PMID: 30974284 DOI: 10.1016/j.intimp.2019.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
Ginsenoside Rg3 (Rg3), which comprises Panax ginseng, is commonly used to improve the immunocompetence of cancer patients undergoing chemotherapy. This study was designed to elucidate the immunoenhancement effects of Rg3 in immunosuppressed mice induced by cyclophosphamide (CTX) treatment. Balb/c mice were administered Rg3 intragastrically once daily for 19 consecutive days and were intraperitoneally administered CTX (80 mg/kg) on days 15-19. Weight and immune organ indices were recorded. Hematological tests and cytokines were assessed using ELISA. We measured the activity of LDH and ACP, performed pathological and immunohistochemical staining of immune organs, and evaluated cytokines and transcription factors using RT-PCR. Immunosuppressed mice showed weight loss, decreased thymus and spleen indices and severe pathological damage. CTX attenuated macrophage phagocytosis by decreasing activity of LDH and ACP and decreased the release of related immune factors, IgG, IL-2 and G-CSF. Subsequently, we observed T lymphocyte expression on the surface of the thymus and spleen, which inhibited T cell activity. Further mechanistic analysis showed that CTX decreased the expression of T-bet and IFN-γ and increased the expression of GATA-3 and IL-4 in the thymus and spleen, which affected the Th1/Th2 balance. However, Rg3 treatment reversed CTX-induced immunosuppression. In summary, all the results suggest that Rg3 has protective effects on CTX-induced immunosuppression, which could be partially related to macrophages, T cells and Th1/Th2 balance. Although deeper studies of its mechanism are needed, these findings support the hypothesis that Rg3 can improve the reduced immunocompetence after CTX injury.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhaojian Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinghua Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan
| | - Siwei Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Lorz LR, Kim D, Kim MY, Cho JY. Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway. J Ginseng Res 2019; 44:453-460. [PMID: 32372867 PMCID: PMC7195595 DOI: 10.1016/j.jgr.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 11/25/2022] Open
Abstract
Background BIOGF1K, a fraction of Panax ginseng, has desirable antimelanogenic, anti-inflammatory, and antiphotoaging properties that could be useful for treating skin conditions. Because its potential positive effects on allergic reactions in skin have not yet been described in detail, this study's main objective was to determine its efficacy in the treatment of atopic dermatitis (AD). Methods High-performance liquid chromatography was used to verify the compounds in BIOGF1K, and we used the (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide method to determine its cytotoxicity in RBL-2H3 and HMC-1 cell lines. RBL-2H3 cells were induced using both anti–DNP-IgE/DNP-BSA and calcium ionophore (A2187) treatments, whereas HMC-1 cells were induced using A2187 alone. To measure mast cell degranulation, we performed histamine (enzyme-linked immunosorbent assay) and β-hexosaminidase assays. To quantify interleukin (IL)-4, IL-5, and IL-13 levels in RBL-2H3 cells, we performed quantitative polymerase chain reaction (PCR); to quantify expression levels of IL-4 and IL-13 in HMC-1 cells, we used semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Finally, we detected the total and phosphorylated forms of extracellular signal-regulated kinase, p-38, and c-Jun N-terminal kinase proteins by immunoblotting. Results BIOGF1K decreased the AD response by reducing both histamine and β-hexosaminidase release as well as reducing the secretion levels of IL-4, IL-5, and IL-13 in RBL-2H3 cells and IL-4 and IL-13 in HMC-1 cells. In addition, BIOGF1K decreased MAPK pathway activation in RBL-2H3 and HMC-1 cells. Conclusions BIOGF1K attenuated the AD response, hence supporting its use as a promising and natural approach for treating AD.
Collapse
Affiliation(s)
- Laura Rojas Lorz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
11
|
Lorz LR, Kim MY, Cho JY. Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment. J Ginseng Res 2019; 44:8-13. [PMID: 32095092 PMCID: PMC7033350 DOI: 10.1016/j.jgr.2018.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing inflammatory disease that affects 1%-20% of people worldwide. Despite affecting many people, AD current treatments, such as corticosteroids and calcineurin inhibitors, have not only harmful secondary effects but are also often ineffective. Therefore, natural nontoxic compounds are on high demand for developing new effective AD treatments. Panax ginseng Meyer has been used traditionally for its promising healing and restorative properties to treat many diseases including skin disorders, reason why in this review we want to explore the research performed with AD and P. ginseng as well as determining its potential for new drug development. Previous researches have shown that P. ginseng has positive effects in AD patients such as lower eczema area and severity index, transepidermal water loss, and immunoglobulin E levels and better quality of sleep. In vivo animal models, as well, have shown positive results to P. ginseng and derived ginsenosides, such as the decrease of transepidermal water loss, immunoglobulin E levels in serum, allergy-related cytokines, and downregulation of NF-κB, MAPK, and Ikaros pathways. All of these previous data suggest that P. ginseng and its derived ginsenosides are undoubtedly a nontoxic effective option to treat AD.
Collapse
Key Words
- AD, atopic dermatitis
- ATX, plasma autotaxin
- Alternative medicine
- Atopic dermatitis
- CCL2, Chemokine ligand 2
- CG, cultivated ginseng
- COX-2, Cyclooxygenase-2
- DFE, Dermatophagoides farinae body extract
- DNFB, 1-fluoro-2,4-dinitrobenzene
- EASY, eczema area and severity index
- FLG, filaggrin
- Filaggrin
- GDP, 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol
- GMCSF, granulocyte macrophage colony-stimulating factor
- Ginsenosides
- HMC-1, human mast cell line
- IFN, interferon
- IL, interleukin
- KRG, Korean Red Ginseng
- LPS, lipopolysaccharide
- MCP-1, monocyte chemoattractant protein-1
- MDC, macrophage-derived chemokine
- MIP-1alpha, macrophage inflammatory protein-1alpha
- MIP-1beta, macrophage inflammatory protein-1beta
- NO, Nitric oxide
- PMA, phorbol-myristate acetate
- Panax ginseng
- RANTES, regulated on activation normal T cell expressed and secreted
- RGE, red ginseng extract
- TARC, thymus and activation-regulated chemokine
- TEWL, trans epidermal water loss
- TH cell, lymphocyte T helper cell
- TNCB, 2,4,6-trinitro-1-chlorobenzene
- TNF-α, tumor necrosis factor-alpha
- TSLP, thymic stromal lymphopoietin
Collapse
Affiliation(s)
- Laura Rojas Lorz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Riaz M, Rahman NU, Zia-Ul-Haq M, Jaffar HZ, Manea R. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Saba E, Jeong D, Irfan M, Lee YY, Park SJ, Park CK, Rhee MH. Anti-Inflammatory Activity of Rg3-Enriched Korean Red Ginseng Extract in Murine Model of Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:6874692. [PMID: 30405742 PMCID: PMC6201491 DOI: 10.1155/2018/6874692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Ginseng has therapeutic effects on various bodily disorders ranging from minor inflammation to major cardiovascular diseases. In our study, we explored the anti-inflammatory effects of Rg3-enriched red ginseng extract (Rg3-RGE), a ginsenoside belonging to the panaxadiol group. We employed nitric oxide assay (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), western blot, and hematoxylin and eosin staining (H&E) to elucidate the anti-inflammatory activity of Rg3-RGE. Rg3-RGE potently suppressed NO production in the murine macrophage cell line, RAW 264.7 cells, without any cytotoxicity across dosages. Additionally, it inhibited the mRNA expression of proinflammatory mediators and cytokines like iNOS, COX-2, IL-1β, IL-6, and TNF-α. Moreover it also inhibited the levels of malondialdehyde levels in serum of septic shock mice. Immunoblot analysis showed that Rg3-RGE induced anti-inflammatory signal transduction via the NF-κB and MAPK pathways. A remarkable attenuation of inflammation by oral treatment with Rg3-RGE in mice was observed in the survival study. The in vivo study using a septic shock mouse model also showed similar results as the in vitro study. Our findings suggest that Rg3-RGE can potentially be a potent anti-inflammatory agent that likely mediates its anti-inflammatory effects via the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Evelyn Saba
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dahye Jeong
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Irfan
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yuan Yee Lee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Joon Park
- Laboratory of Histology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chae-Kyu Park
- R&D Headquarters, Korean Ginseng cooperation, Daejeon 34520, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
14
|
Hong C, Yang P, Li S, Guo Y, Wang D, Wang J. In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. Molecules 2018; 23:E2113. [PMID: 30135411 PMCID: PMC6225384 DOI: 10.3390/molecules23092113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Ginsenoside Rg5 has been proved to have a wide range of pharmacological activities. However, the in vitro and in vivo metabolism pathways of ginsenosides are still unclear, which impedes the understanding of their in vivo fate. In this paper, the possible metabolic process of Rg5 was studied and the metabolites are identified. Methods: Samples from rat liver microsomes (RLMs) in vitro and from rat urine, plasma and feces in vivo were collected for analysis after oral administration of Rg5. A rapid analysis technique using ultra-performance liquid chromatography (UPLC)/quadrupole-time-of-flight mass spectrometry (QTOF-MS) was applied for detecting metabolites of Rg5 both in vitro and in vivo. Results: A feasible metabolic pathway was proposed and described for ginsenoside Rg5. A total of 17 metabolic products were detected in biological samples, including the RLMs (four), rat urine (two), feces (13) and plasma (four). Fifteen of them have never been reported before. Oxidation, deglycosylation, deoxidation, glucuronidation, demethylation and dehydration were found to be the major metabolic reactions of Rg5. Conclusions: The present study utilized a reliable and quick analytical tool to explore the metabolism of Rg5 in rats and provided significant insights into the understanding of the metabolic pathways of Rg5 in vitro and in vivo. The results could be used to not only evaluate the efficacy and safety of Rg5, but also identify potential active drug candidates from the metabolites.
Collapse
Affiliation(s)
- Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Shuping Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Yizhen Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
- Institute of Materia Medica, Academy of Integrated Chinese and Western Medicine, Fudan University, Shanghai 200040, China.
| |
Collapse
|
15
|
Hyun SH, Kyung JS, Song YB, So SH, Kim YS. Systemic and Local Anaphylaxis is Not Induced by Korean Red Ginseng Mixture in Guinea Pigs. Toxicol Res 2018; 34:183-189. [PMID: 30057692 PMCID: PMC6057292 DOI: 10.5487/tr.2018.34.3.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Currently, injuries to customers due to health functional foods are annually increasing. To evaluate the antigenicity of Korean red ginseng mixture (KRGM), we tested for systemic anaphylactic shock and passive cutaneous anaphylaxis in guinea pigs. Based on a comparison of measured body weights, there were no changes in body weight for the KRGM treatment group compared with the control group. In the ovalbumin treated group, however, there was a statistically significant decrease in body weight. For the active systemic anaphylaxis test, after the induction, there were no symptoms that suggested anaphylactic shock in the control and KRGM treatment group. In the ovalbumin treated group, there were symptoms that suggested severe anaphylaxis, and those symptoms included restlessness, piloerection, tremor, rubbing or licking the nose, sneezing, coughing, hyperpnea, dyspnea, staggering gait, jumping, gasping and writhing, convulsion, side position and Cheyne-stokes respiration. All animals died within thirty minutes in the ovalbumin treated group. For the passive cutaneous anaphylaxis test in guinea pigs sensitized to KRGM, each anti-serum was diluted in a stepwise manner. This was followed by an intravenous injection of a mixture of KRGM and Evans blue. The results of the test showed that all the responses were negative in the control and the low-dose and high-dose administration groups. However, in the ovalbumin treated group, all the responses were positive. Based on the above results, there were no anaphylactic responses for up to 12 times the amount of human intake of KRGM in Hartley Guinea-pigs. The results suggest that KRGM is safe as measured by the systemic and local antigenicity in guinea pigs.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Korea
| | - Jong Soo Kyung
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Korea
| | - Yong Bum Song
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Korea
| | - Seung-Ho So
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Korea
| | - Young Sook Kim
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Korea
| |
Collapse
|
16
|
Kee JY, Hong SH. Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway. J Ginseng Res 2018; 43:282-290. [PMID: 30976166 PMCID: PMC6437450 DOI: 10.1016/j.jgr.2018.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Ginsenoside Rg3 (G-Rg3) is the major bioactive ingredient of Panax ginseng and has many pharmacological effects, including antiadipogenic, antiviral, and anticancer effects. However, the effect of G-Rg3 on mast cell–mediated allergic inflammation has not been investigated. Method The antiallergic effects of G-Rg3 on allergic inflammation were evaluated using the human and rat mast cell lines HMC-1 and RBL-2H3. Antiallergic effects of G-Rg3 were detected by measuring cyclic adenosine monophosphate (cAMP), detecting calcium influx, and using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and in vivo experiments. Results G-Rg3 decreased histamine release from activated mast cells by enhancing cAMP levels and calcium influx. Proinflammatory cytokine production was suppressed by G-Rg3 treatment via regulation of the mitogen-activated protein kinases/nuclear factor-kappa B and receptor-interacting protein kinase 2 (RIP2)/caspase-1 signaling pathway in mast cells. Moreover, G-Rg3 protected mice against the IgE-mediated passive cutaneous anaphylaxis reaction and compound 48/80-induced anaphylactic shock. Conclusion G-Rg3 may serve as an alternative therapeutic agent for improving allergic inflammatory disorders.
Collapse
Affiliation(s)
- Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| |
Collapse
|
17
|
Lee SH, Choi KH, Cha KM, Hwang SY, Park UK, Jeong MS, Hong JY, Han CK, In G, Kopalli SR, Kim SK. Protective effects of Korean Red Ginseng against sub-acute immobilization stress-induced testicular damage in experimental rats. J Ginseng Res 2017; 43:125-134. [PMID: 30662301 PMCID: PMC6323174 DOI: 10.1016/j.jgr.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022] Open
Abstract
Background Excessive stress causes varied physiological and psychological disorders including male reproductive problems. Here, we attempted to investigate the protective effects of Korean Red Ginseng (Panax ginseng Meyer; KRG) against sub-acute immobilization stress-induced testicular damage in experimental rats. Methods Male rats (age, 4 wk; weight, 60–70 g) were divided into four groups (n = 8 in each group): normal control group, immobilization control group, immobilization group treated with 100 mg/kg of KRG daily, and immobilization group treated with 200 mg/kg of KRG daily. Normal control and immobilization control groups received vehicle only. KRG (100 mg/kg and 200 mg/kg) was mixed in the standard diet powder and fed daily for 6 mo. Parameters such as organ weight, blood chemistry, sperm kinematic values, and expression levels of testicular-related molecules were measured using commercially available kits, Western blotting, and reverse transcription polymerase chain reaction. Results Data revealed that KRG restored the altered testis and epididymis weight in immobilization stress-induced rats significantly (p < 0.05). Further, KRG ameliorated the altered blood chemistry and sperm kinematic values when compared with the immobilization control group and attenuated the altered expression levels of spermatogenesis-related proteins (nectin-2, cAMP responsive element binding protein 1, and inhibin-⍺), sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor), and antioxidant-related enzymes (glutathione S-transferase m5, peroxiredoxin-4, and glutathione peroxidase 4) significantly in the testes of immobilization stress-induced rats. Conclusion KRG protected immobilization stress-induced testicular damage and fertility factors in rats, thereby indicating its potential in the treatment of stress-related male sterility.
Collapse
Affiliation(s)
- Sang-Ho Lee
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Kyung-Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Kyu-Min Cha
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Seock-Yeon Hwang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, Daejeon, Republic of Korea
| | - Un-Kyu Park
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, Daejeon, Republic of Korea
| | - Min-Sik Jeong
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Jae-Yup Hong
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Chang-Kyun Han
- Botanical Drug Laboratory, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gyo In
- Botanical Drug Laboratory, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
18
|
Cho M, Choi G, Shim I, Chung Y. Enhanced Rg3 negatively regulates Th1 cell responses. J Ginseng Res 2017; 43:49-57. [PMID: 30662293 PMCID: PMC6323242 DOI: 10.1016/j.jgr.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022] Open
Abstract
Background Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. Methods Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve CD4+ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. Results KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma (IFNγ) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. Conclusion Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases.
Collapse
Affiliation(s)
- Minkyoung Cho
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Brain Korea 21 Program, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Inbo Shim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Brain Korea 21 Program, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Biswas T, Mathur AK, Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 2017; 101:4009-4032. [PMID: 28411325 DOI: 10.1007/s00253-017-8279-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.
Collapse
Affiliation(s)
- Tanya Biswas
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - A K Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - Archana Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India.
| |
Collapse
|
20
|
Jung Y, Kim B, Ryu MH, Kim H. Chinese medicines reported to have effects on contact dermatitis in the last 20 years. Chin J Integr Med 2017; 24:64-71. [DOI: 10.1007/s11655-016-2535-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Indexed: 12/19/2022]
|
21
|
Tetradecanol reduces EL-4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion. Eur J Pharmacol 2017; 799:135-142. [PMID: 28167257 DOI: 10.1016/j.ejphar.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Tetradecanol is a straight-chain saturated fatty alcohol purified from Dendropanax morbifera leaves. We found that tetradecanol (30μM) reduced specifically the growth of T cells such as EL-4 T cell and isolated murine CD4+ T cells. In this study, we investigated the effects of tetradecanol on the regulation of interlukin-2 (IL-2), a potent T cell growth factor. Tetradecanol significantly inhibited IL-2 secretion in EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) and also in isolated murine CD4+ T cells activated with anti-CD3 and anti-CD28 antibodies. Next, we examined the effect of tetradecanol on the transcriptional activity related to IL-2 production in T cells. Tetradecanol decreased PMA/Io-induced promoter activity of NF-κB in EL-4 T cells, but did not show any significant effects on the promoters of activator protein 1 (AP-1) and nuclear factor of activated T cells (NF-AT). Tetradecanol inhibited IκBα degradation and nuclear translocation of NF-κB subunit, p65 in PMA/Io-activated EL-4 T cells. These results suggest that tetradecanol might have immunosuppressive effects on T cell mediated disorders. Using a chronic allergic contact dermatitis model induced by repeated application of oxazolone, we showed that tetradecanol reduced ear thickness induced by oxazolone.
Collapse
|
22
|
Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Panax spp Root-Derived Ingredients as Used in Cosmetics. Int J Toxicol 2016; 34:5S-42S. [PMID: 26684797 DOI: 10.1177/1091581815610508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of 13 Panax spp root-derived ingredients as used in cosmetics. Panax "spp" indicates that multiple species within the genus are used in cosmetics, but not all species within that genus. Four species are being considered in this safety assessment. These ingredients function mostly as skin-conditioning agents-miscellaneous, fragrance ingredients, skin-conditioning agents-humectant, skin-conditioning agents-emollient, and cosmetic astringents. The Panel reviewed available data related to these ingredients and addressed the issue of pulegone, a constituent of these ingredients and other ingredients, such as peppermint oil. The Panel concluded that these Panax spp root-derived ingredients are safe in the practices of use and concentration as given in this safety assessment.
Collapse
|
23
|
Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Yang DC. Suppression of MAPKs/NF-κB Activation Induces Intestinal Anti-Inflammatory Action of Ginsenoside Rf in HT-29 and RAW264.7 Cells. Immunol Invest 2016; 45:439-49. [DOI: 10.3109/08820139.2016.1168830] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Muhammad Hanif Siddiqi
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Veronica Castro Aceituno
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shakina Yesmin Simu
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Deok Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
24
|
Inhibitory effects of ginsenosides on basic fibroblast growth factor-induced melanocyte proliferation. J Ginseng Res 2016; 41:268-276. [PMID: 28701866 PMCID: PMC5489749 DOI: 10.1016/j.jgr.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND UV-B-exposed keratinocytes secrete various paracrine factors. Among these factors, basic fibroblast growth factor (bFGF) stimulates the proliferation of melanocytes. Ginsenosides, the major active compounds of ginseng, are known to have broad pharmacological effects. In this study, we examined the antiproliferative effects of ginsenosides on bFGF-induced melanocyte proliferation. METHODS We investigated the inhibitory effects of Korean Red Ginseng and ginsenosides from Panax ginseng on bFGF-induced proliferation of melan-a melanocytes. RESULTS When melan-a melanocytes were treated with UV-B-irradiated SP-1 keratinocytes media, cell proliferation increased. This increased proliferation of melanocytes decreased with a neutralizing anti-bFGF antibody. To elucidate the effects of ginsenosides on melanocyte proliferation induced by bFGF, we tested 15 types of ginsenoside compounds. Among them, Rh3, Rh1, F1, and CK demonstrated antiproliferative effects on bFGF-induced melanocyte proliferation after 72 h of treatment. bFGF stimulated cell proliferation via extracellular signal-regulated kinase (ERK) activation in various cell types. Western blot analysis found bFGF-induced ERK phosphorylation in melan-a. Treatment with Rh3 inhibited bFGF-induced maximum ERK phosphorylation and F1-delayed maximum ERK phosphorylation, whereas Rh1 and CK had no detectable effects. In addition, cotreatment with Rh3 and F1 significantly suppressed bFGF-induced ERK phosphorylation. Western blot analysis found that bFGF increased microphthalmia-associated transcription factor (MITF) protein levels in melan-a. Treatment with Rh3 or F1 had no detectable effects, whereas cotreatment with Rh3 and F1 inhibited bFGF-induced MITF expression levels more strongly than a single treatment. CONCLUSION In summary, we found that ginsenosides Rh3 and F1 have a synergistic antiproliferative effect on bFGF-induced melan-a melanocyte proliferation via the inhibition of ERK-mediated upregulation of MITF.
Collapse
|
25
|
Chen Y, Liu ZH, Xia J, Li XP, Li KQ, Xiong W, Li J, Chen DL. 20(S)-ginsenoside Rh2 inhibits the proliferation and induces the apoptosis of KG-1a cells through the Wnt/β-catenin signaling pathway. Oncol Rep 2016; 36:137-46. [PMID: 27121661 DOI: 10.3892/or.2016.4774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
Previous research has shown that total saponins of Panax ginseng (TSPG) and other ginsenoside monomers inhibit the proliferation of leukemia cells. However, the effect has not been compared among them. Cell viability was determined by Cell Counting Kit-8 assay, and ultra-structural characteristics were observed under transmission electron microscopy. Cell cycle distribution and apoptosis were determined by flow cytometry (FCM). Real-time fluorescence quantitative‑PCR, western blotting and immunofluorescence were used to measure the expression of β-catenin, TCF4, cyclin D1 and NF-κBp65. β-catenin/TCF4 target gene transcription were observed by ChIP-PCR assay. We found that 20(S)-ginsenoside Rh2 [(S)Rh2] inhibited the proliferation of KG-1a cells more efficiently than the other monomers. Moreover, (S)Rh2 arrested KG-1a cells in the G0/G1 phase and induced apoptosis. In addition, the levels of β-catenin, TCF4, cyclin D1 mRNA and protein were decreased. The ChIP-PCR showed that (S)Rh2 downregulated the transcription of β-catenin/TCF4 target genes, such as cyclin D1 and c-myc. These results indicated that (S)Rh2 induced cell cycle arrest and apoptosis through the Wnt/β-catenin signaling pathway, demonstrating its potential as a chemotherapeutic agent for leukemia therapy.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ze-Hong Liu
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Xia
- Department of Human Anatomy, Chongqing Medical and Health School, Chongqing 408000, P.R. China
| | - Xiao-Peng Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ke-Qiong Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Xiong
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Di-Long Chen
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
26
|
20-(s)-ginsenoside Rg3 induces apoptotic cell death in human leukemic U937 and HL-60 cells through PI3K/Akt pathways. Anticancer Drugs 2015; 25:1072-80. [PMID: 25035959 DOI: 10.1097/cad.0000000000000147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leukemia is currently one of the most deadly diseases. Ginseng has been used in Asian countries for the treatment and prevention of various diseases, including leukemia, but the molecular mechanism of its antileukemia activity has not been well defined. The aim of this study was to explore the effect of 20-(s)-ginsenoside Rg3 on apoptosis in human leukemic U937 and HL-60 cells and the underlying mechanism. We found that 20-(s)-ginsenoside Rg3 reduced cell viability and induced apoptosis in U937 and HL-60 cells. The induction of apoptosis was accompanied by the downregulation of PI3K/Akt family proteins. Moreover, we observed that 20-(s)-ginsenoside Rg3 treatment resulted in activation of caspase-3 and caspase-9. Taken together, our findings suggest for the first time that 20-(s)-ginsenoside Rg3 can promote apoptosis in U937 and HL-60 cells, at least partly through the downregulation of PI3K/Akt family proteins. Moreover, the triggering of caspase-3 and caspase-9 activation mediated apoptotic induction. All these findings collectively demonstrate that the natural compound 20-(s)-ginsenoside Rg3 effectively induces apoptosis in human leukemic cells, which suggests that this compound may play a role in future therapies for leukemia.
Collapse
|
27
|
Cho SH. Red ginseng for atopic dermatitis. World J Dermatol 2014; 3:58-63. [DOI: 10.5314/wjd.v3.i3.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/14/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Red ginseng is known for its significant biological activities which include anti-inflammation. Red ginseng may be used for the management and prevention of atopic dermatitis based on its effect on an atopic dermatitis animal model. More therapeutic efficacies other than atopic dermatitis are also reviewed briefly.
Collapse
|
28
|
ZHANG YUEHUI, LI HAIDONG, LI BO, JIANG SHENGDAN, JIANG LEISHENG. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells. Oncol Rep 2013; 31:919-25. [DOI: 10.3892/or.2013.2914] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022] Open
|
29
|
Kim MS. Korean Red Ginseng Tonic Extends Lifespan in D. melanogaster. Biomol Ther (Seoul) 2013; 21:241-5. [PMID: 24265871 PMCID: PMC3830124 DOI: 10.4062/biomolther.2013.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/05/2022] Open
Abstract
Aging is the single most important risk factor that increases susceptibility to many forms of diseases. As such, much effort has been put forward to elucidate the mechanisms behind the processes of aging and to discover novel compounds that retain antiaging activities. Korean red ginseng has been used for a variety of medical purposes in eastern countries for several thousands of years. It has been shown that Korean red ginseng affects a number of biological activities including, but not limited to, anti-inflammatory, anti-oxidative and anti-diabetic pathways. However, few studies have been performed to evaluate its anti-aging effects with an in vivo system. Here Drosophila melanogaster as an in vivo model organism demonstrates that Korean red ginseng tonic extends lifespan, increases resistance to starvation stress and prevents weight gain. This data suggest that Korean red ginseng may regulate organisms' metabolism in favor of extending lifespan.
Collapse
Affiliation(s)
- Man Su Kim
- College of Pharmacy, Inje University, Gimhae 621-749, Republic of Korea
| |
Collapse
|
30
|
Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 2013; 21:381-90. [PMID: 24244826 PMCID: PMC3825202 DOI: 10.4062/biomolther.2013.053] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bae WJ, Ha US, Kim S, Kim SJ, Hong SH, Lee JY, Hwang TK, Hwang SY, Kim HJ, Kim SW. Reduction of oxidative stress may play a role in the anti-inflammatory effect of the novel herbal formulation in a rat model of hydrochloric acid-induced cystitis. Neurourol Urodyn 2013; 34:86-91. [DOI: 10.1002/nau.22507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Woong-Jin Bae
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - U-Syn Ha
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Seol Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Su-Jin Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Sung-Hoo Hong
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Ji-Youl Lee
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Tae-Kon Hwang
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | | | - Hong-Jun Kim
- College of Oriental Medicine; Woosuk University; Wanju Korea
| | - Sae-Woong Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| |
Collapse
|
32
|
Kang S, Min H. Ginseng, the 'Immunity Boost': The Effects of Panax ginseng on Immune System. J Ginseng Res 2013; 36:354-68. [PMID: 23717137 PMCID: PMC3659612 DOI: 10.5142/jgr.2012.36.4.354] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/28/2022] Open
Abstract
Thousands of literatures have described the diverse role of ginseng in physiological processes such as cancer, neurodegenerative disorders, insulin resistance, and hypertension. In particular, ginseng has been extensively reported to maintain homeostasis of the immune system and to enhance resistance to illness or microbial attacks through the regulation of immune system. Immune system comprises of different types of cells fulfilling their own specialized functions, and each type of the immune cells is differentially influenced and may be simultaneously controlled by ginseng treatment. This review summarizes the current knowledge on the effects of ginseng on immune system. We discuss how ginseng regulates each type of immune cells including macrophages, natural killer cells, dendritic cells, T cells, and B cells. We also describe how ginseng exhibits beneficial effects on controlling inflammatory diseases and microbial infections.
Collapse
Affiliation(s)
- Soowon Kang
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | |
Collapse
|
33
|
Lee KG, Son SW. Efficacy of korean red ginseng in the treatment of atopic dermatitis. J Ginseng Res 2013; 35:149-54. [PMID: 23717056 PMCID: PMC3659524 DOI: 10.5142/jgr.2011.35.2.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 01/28/2023] Open
Abstract
In order to determine the efficacy of functional foods, objective measurement of the severity of atopic dermatitis (AD) after taking foods is important. The aim of this study was to conduct an objective evaluation of whether Korean red ginseng (KRG) might be helpful for improvement of skin condition and serum IgE in patients with AD. Thirty atopic patients (18 females and 12 males) participated in this study. Patients took KRG for 16 weeks. Bioengineering methods, including the corneometer and evaporimeter, were used at the start of the study and after 8 weeks and 16 weeks. In addition, we assessed serum IgE levels and the severity scoring of the atopic dermatitis (SCORAD) index. Transepidermal water loss and skin hydration showed significant improvement after 16 weeks. A significant decrease in the SCORAD index, as well as in serum IgE level, was observed after 16 weeks. Our results demonstrated that KRG may be helpful as a functional food for patients with AD.
Collapse
Affiliation(s)
- Kyung Goo Lee
- Department of Dermatology, Korea University College of Medicine, Seoul 136-705, Korea
| | | |
Collapse
|
34
|
Jung JH, Kang IG, Kim DY, Hwang YJ, Kim ST. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J Ginseng Res 2013; 37:167-75. [PMID: 23717169 PMCID: PMC3659635 DOI: 10.5142/jgr.2013.37.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/22/2012] [Accepted: 12/05/2012] [Indexed: 12/24/2022] Open
Abstract
Korean red ginseng (KRG) is reported to have anti-allergic properties, including beneficial effects on asthma and atopic dermatitis. However, its effect on allergic rhinitis has not been studied extensively. This study examined how KRG affected allergic inflammation of the nasal cavity in an allergic mouse model. A total of 40 Balb/c female mice were divided into four experimental groups according to treatment and allergic state: group 1 (G1), saline only; group 2 (G2), ovalbumin (OVA); group 3 (G3), OVA+KRG; and group 4 (G4), OVA+dexamethasone. Serum IgE levels were significantly lower in the KRG treatment group (G3) than in the allergic group (G2). However, serum IgG1 levels did not differ between G2 and G3. In the nasal lavage fluid, IL-4 and IL-5 levels were significantly lower in G3 than in G2 (p<0.05). H&E and Luna staining revealed that the eosinophil count was lower in G3 and G4 than in G2 (p<0.05). Immunohistochemical staining revealed that there were fewer IL-4-, IL- 5-, and MUC5AC-positive cells in G3 and G4 than in G2 (p<0.05). These results indicate that KRG reduces the nasal allergic inflammatory reaction in an allergic murine model by reducing Th2 cytokines.
Collapse
Affiliation(s)
- Joo Hyun Jung
- Department of Otolaryngology, Head & Neck Surgery, Gil Medical Center, School of Medicine, Gachon University, Incheon 405-760, Korea
| | | | | | | | | |
Collapse
|
35
|
Inhibitory effects of sulfated 20(S)-ginsenoside Rh2 on the release of pro-inflammatory mediators in LPS-induced RAW 264.7 cells. Eur J Pharmacol 2013; 712:60-6. [PMID: 23665488 DOI: 10.1016/j.ejphar.2013.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 01/25/2023]
Abstract
Ginsenoside Rh2 is one of the most important ginsenosides in ginseng with anti-inflammatory and antitumor effects. However, the extremely poor oral bioavailability induced by its low water solubility greatly limits the potency of Rh2 in vivo. In the previous study, we sulfated 20(S)-ginsenoside Rh2 with chlorosulfonic acid and pyridine method, and got one novel derivative, Rh2-B1, with higher water solubility and greater immunologic enhancement than Rh2. However, the anti-inflammatory effect of Rh2-B1 remains unclear. We therefore investigated the effects of Rh2-B1 on lipopolysaccharide (LPS)-induced proinflammatory mediators in RAW 264.7 macrophages. We found that Rh2-B1 dramatically inhibited LPS-induced overproduction of nitric oxide, prostaglandin E2, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Consistently, the protein and mRNA expression levels of inducible nitric oxide synthase and cyclooxygenase-2 were remarkably decreased by Rh2-B1. In addition, Rh2-B1 significantly suppressed the phosphorylations of p38, c-Jun N-terminal kinase, and extracellular signal receptor-activated kinase 1/2 induced by LPS. Rh2-B1 was further shown to inhibit NF-κB p65 translocation into the nucleus by suppressing IκBα degradation. In conclusion, we demonstrate that Rh2-B1 inhibits the release of LPS-induced pro-inflammatory mediators through blocking mitogen-activated protein kinases and NF-κB signaling pathways, suggesting that sulfated ginsenosides could be potential agents for anti-inflammatory therapies.
Collapse
|
36
|
Cho E, Cho SH. Effects of Korean red ginseng extract on the prevention of atopic dermatitis and its mechanism on early lesions in a murine model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:294-302. [PMID: 23149290 DOI: 10.1016/j.jep.2012.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/02/2012] [Accepted: 11/04/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Korean red ginseng (KRG) has been shown to possess various biological activities including anti-inflammatory properties. AIM OF THE STUDY We aimed to investigate the effects and mechanism of KRG on the prevention of atopic dermatitis (AD) using a mouse model. MATERIALS AND METHODS The effect of KRG in trinitrochlorobenzene (TNCB)-treated NC/Nga mice was assessed by measuring ear thickness, transepidermal water loss (TEWL), total serum IgE, histologic changes of lesional skin, mRNA and protein expression of thymic stromal lymphopoietin (TSLP) and tumor necrosis factor (TNF)-α, immunohistochemistry for tissue interleukin (IL)-4, IL-17, and interferon (IFN)-γ. RESULTS KRG significantly reduced ear thickness. Oral administration of KRG significantly prevented the increase in TEWL induced by TNCB. The serum IgE level was significantly lower in the KRG group. Histologically, lymphocyte infiltration was markedly decreased by KRG. CD1a positive (CD1a+) cells were diminished by KRG. Immunohistochemically, KRG significantly suppressed the protein expression of TSLP and TNF-α. The mRNA expression of TSLP in the lesions was significantly reduced by KRG. These results demonstrate that oral administration of KRG may inhibit the development of AD-like skin lesions in NC/Nga mice by modifying TSLP, DCs, and at least in part, the Th2 response. CONCLUSION KRG may be a potential therapeutic modality for the prevention of AD.
Collapse
Affiliation(s)
- Eujin Cho
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
37
|
Fu BD, Bi WY, He CL, Zhu W, Shen HQ, Yi PF, Wang L, Wang DC, Wei XB. Sulfated derivatives of 20(S)-ginsenoside Rh2 and their inhibitory effects on LPS-induced inflammatory cytokines and mediators. Fitoterapia 2012; 84:303-7. [PMID: 23266729 DOI: 10.1016/j.fitote.2012.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/22/2023]
Abstract
Ginsenoside Rh2 is one of the most important ginsenosides in ginseng with antitumor, antidiabetic, antiallergic, and anti-inflammatory effects. However, the extremely poor oral bioavailability induced by its low water solubility greatly limits the potency of Rh2 in clinical use. Therefore, in this study we sulfated 20(S)-ginsenoside Rh2 with chlorosulfonic acid and pyridine method, and got two new sulfated derivatives, Rh2-B1 and Rh2-B2, with higher water solubility. Their chemical structures were characterized by spectroscopic methods (IR, MS and NMR). Additionally, Rh2-B1 and Rh2-B2 had the greater anti-inflammatory effects than Rh2 through inhibiting inflammatory cytokines and mediators in LPS-induced mouse RAW264.7 macrophages cells. These results suggested that the sulfated modification of Rh2 improved its water solubility and the sulfated derivatives could be more potential candidates for developing as anti-inflammatory agents.
Collapse
Affiliation(s)
- Ben-Dong Fu
- College of Animal Science and Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim JH, Kang JW, Kim M, Lee DH, Kim H, Choi HS, Kim EJ, Chung IM, Chung IY, Yoon DY. The liquid Panax ginseng inhibits epidermal growth factor-induced metalloproteinase 9 and cyclooxygenase 2 expressions via inhibition of inhibitor factor kappa-B-alpha and extracellular signal-regulated kinase in NCI-H292 human airway epithelial cells. Am J Rhinol Allergy 2011; 25:e55-9. [PMID: 21679500 DOI: 10.2500/ajra.2011.25.3586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ginseng (Panax ginseng C.A. Meyer) has been used in Asian countries for the treatment of various diseases. However, the mechanisms of liquid Panax ginseng (LG) on allergic inflammatory response in epidermal growth factor (EGF)-stimulated human airway epithelial cells remain largely unclear. METHODS MUC5AC, cyclooxygenase (COX) 2, and matrix metalloproteinase (MMP) 9 expressions were measured using reverse transcription-polymerase chain reaction, Western blotting, and gelatin zymogram analyses in NCI-H292 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) protein levels were analyzed by Western blotting. RESULTS To gain insight into the antiallergy effects of LG, we examined its influence on epidermal growth factor (EGF)-induced MMP-9 and COX-2 productions in NCI-H292 cells. LG was treated for 1 hour and then followed by EGF treatment for 24 hours into NCI-H292 cells. The decrease of COX-2 production was correlated with the reduced levels of proteins and mRNAs of inducible MMP-9 and MUC5AC. LG blocked upstream signaling of NF-kappa-B activation via inhibition of phosphorylations of inhibitor factor-kappa- B-alpha (I-kappa-B-alpha) and ERK. These results suggest that LG protects NCI-H292 cells from EGF-induced damage by down-regulation of COX-2, MMP-9, and MUC5AC gene expressions by blocking NF-kappa-B and ERK. CONCLUSION LG modulates allergic inflammatory response in EGF-stimulated NCI-H292 human airway epithelial cells via inhibition of I-kappa-B-alpha and ERK.
Collapse
Affiliation(s)
- Jung-Hee Kim
- Department of Biocience and Biotechnology, Bio/Molecular Informatics Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim HS, Kim DH, Kim BK, Yoon SK, Kim MH, Lee JY, Kim HO, Park YM. Effects of topically applied Korean red ginseng and its genuine constituents on atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol 2010; 11:280-5. [PMID: 21118672 DOI: 10.1016/j.intimp.2010.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/10/2010] [Accepted: 11/14/2010] [Indexed: 12/21/2022]
Abstract
Ginseng (the root of Panax ginseng C.A. Meyer, family Araliaceae) possesses various biological activities, including anti-inflammatory and anti-tumor actions. However, their topical effect on atopic dermatitis (AD) has not been studied yet. The aim of this study was to examine the therapeutic effects of topical Korean red ginseng saponin fraction (KRGS) and its genuine constituents on AD-like skin lesions in an AD mouse model. The therapeutic effect of topical KRGS and ginsenosides in 2-chloro-1,3,5-trinitrobenzene (TNCB)-treated NC/Nga mice was assessed by measuring the skin severity scores, ear thickness, histological changes of lesional skin including mast cell count, tissue tumor necrosis factor (TNF)-α, interleukin (IL)-4, and interferon (IFN)-γ mRNA expression, and total serum IgE. Topical administration of 0.1% KRGS, 0.1% Rh2 and 0.1% Rh2+0.1% Rg3 significantly reduced the clinical skin severity scores, ear thickness and mast cell infiltration in the TNCB-induced AD-like skin lesions. Topical application of KRGS and its constituents significantly reduced TNCB-induced increase in ear TNF-α and IL-4 mRNA expression, but not IFN-γ mRNA expression. There was little change of serum total IgE level by topical KRGS and its constituents. In this study, topical KRGS and ginsenosides Rh2 and Rg3 were found to exert an anti-inflammatory effect in vivo and proved to be beneficial in an animal model of AD. Our results suggest that KRGS and its ginsenosides Rh2 and Rg3 have potential as a topical agent for the treatment of AD.
Collapse
Affiliation(s)
- Hei Sung Kim
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee YH, Lee BK, Choi YJ, Yoon IK, Chang BC, Gwak HS. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int J Cardiol 2010; 145:275-276. [DOI: 10.1016/j.ijcard.2009.09.553] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
|
41
|
Sumiyoshi M, Sakanaka M, Kimura Y. Effects of Red Ginseng extract on allergic reactions to food in Balb/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:206-212. [PMID: 20713140 DOI: 10.1016/j.jep.2010.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/30/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Red Ginseng roots (Panax ginseng C.A. Meyer) have traditionally been thought to have anti-allergic effects, but their influence on food-induced allergic responses is unclear. MATERIALS AND METHODS This study examined the effects of a Red Ginseng extract on an ova-albumin (OVA)-evoked allergic reaction in mice. RESULTS AND CONCLUSIONS The orally administered extract significantly inhibited the increase in OVA-specific IgG(1) (Th(2)) levels in OVA-sensitized mice, but had no effect on OVA-specific IgE (Th(2)) levels. The extract prevented a reduction in IL-12 production and the ratio of IFN-γ (Th(1)) to IL-4 (Th(2)) in splenocytes, and enhanced small intestinal CD8-, IFN-γ-, and IgA-positive cell numbers in the OVA-sensitized mice. These findings suggest that Red Ginseng inhibits allergic reactions to food by preventing reductions in the ratio of IFN-γ to IL-4 and in IL-12 production induced by dietary antigens in spleen cells, and/or increasing the expression of CD8 and IFN-γ in the small intestine. It may also protect against sensitization to antigens as an immunomodulator by increasing intestinal IgA secretion without affecting antigen-specific IgE levels. In conclusion, Red Ginseng roots may be a natural preventative of food allergies.
Collapse
Affiliation(s)
- Maho Sumiyoshi
- Division of Functional Histology, Department of Functional Biomedicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan
| | | | | |
Collapse
|
42
|
Li Y, Wang Q, Yao X, Li Y. Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways. Eur J Pharmacol 2010; 640:46-54. [PMID: 20580705 DOI: 10.1016/j.ejphar.2010.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/24/2010] [Accepted: 05/06/2010] [Indexed: 02/07/2023]
Abstract
The herbal products baicalin, baicalein, chlorogenic acid, and ginsenoside Rf have multiple pharmacological effects and are extensively used in alternative and/or complementary therapies. The present study investigated whether baicalin, baicalein, chlorogenic acid, and ginsenoside Rf induced the expression of the cytochrome P450 3A4 (CYP3A4) and multi-drug resistance 1 (MDR1) genes through the pregnane X receptor and constitutive androstane receptor pathways. Real time PCR, western blotting, and a luminescent assay were used to assess the induction of gene expression and activity of CYP3A4 and MDR1 by the test compounds. The interactions of baicalein/chlorogenic acid/ginsenoside Rf with constitutive androstane receptor and pregnane X receptor were evaluated using luciferase reporter and gel shift assays. Baicalein induced the expression of CYP3A4 and MDR1 mRNA by activating pregnane X receptor and constitutive androstane receptor. Chlorogenic acid and ginsenoside Rf showed a relatively weak effect on CYP3A4 promoter activation only in HepG2 cells cotransfected with constitutive androstane receptor and demonstrated no effects on MDR1 via either the constitutive androstane receptor or pregnane X receptor pathway. Baicalin had no effect on either CYP3A4 or MDR1 gene expression. In conclusion, baicalein has the potential to up-regulate CYP3A4 and MDR1 through the direct activation of the constitutive androstane receptor and pregnane X receptor pathways. Chlorogenic acid and ginsenoside Rf only induced constitutive androstane receptor-mediated CYP3A4 expression.
Collapse
Affiliation(s)
- Yue Li
- Department of New Drug Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, and Institute of Infectious Diseases, Beijing Ditan Hospital, No. 1, Xian Nong Tan Street, Beijing 100050, China.
| | | | | | | |
Collapse
|
43
|
Gu Y, Wang GJ, Wu XL, Zheng YT, Zhang JW, Ai H, Sun JG, Jia YW. Intestinal absorption mechanisms of ginsenoside Rh2: stereoselectivity and involvement of ABC transporters. Xenobiotica 2010; 40:602-12. [DOI: 10.3109/00498254.2010.500744] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Ríos JL. Effects of triterpenes on the immune system. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:1-14. [PMID: 20079412 DOI: 10.1016/j.jep.2009.12.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 12/30/2009] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triterpenes, which comprise a broad chemical group of active principles, are implicated in the mechanisms of action and pharmacological effects of many medicinal plants used in folk medicine against diseases in which the immune system is implicated. They have been described as anti-inflammatory, antiviral, antimicrobial, and antitumoral agents, as well as being immunomodulator compounds. Several of them are implicated in the resolution of immune diseases, although their effects have not always been clearly correlated. AIM OF THE REVIEW The aim of this review is to compile relevant data on the mechanisms of action of triterpenes isolated from active ethnomedicinal plants and their role in the resolution of diseases in which the immune system is implicated to examine the mechanism by which they are useful as ethnopharmacological medicines. METHODS The selection of papers was made using the most relevant databases for the biomedical sciences on the basis of their ethnopharmacological use. We principally chose those studies that examined the resolution of allergic responses in vivo and those that studied the effects of the more relevant mediators implicated in the immune response in vitro. RESULTS The number of compounds actually studied is limited compared with the high number of principles that have been isolated and identified. Many studies focus on specific pathologies such cancer or inflammation, but in many cases they are clearly correlated with the immune response. Lanostanes, cucurbitanes, and oleananes are probably the most interesting groups; however, other compounds are also of potential importance. CONCLUSIONS Studies of specific mechanisms against mediators or transcription factors could be the objective for future research on ethnomedicinal plants used to combat immune diseases since the results obtained with cucurbitacins or derivatives of oleanolic acid support the use of different medicinal plants, thereby opening up a new frontier for future studies.
Collapse
Affiliation(s)
- José-Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Av Vicent Andrés Estellés s/n 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
45
|
The Symptoms of Atopic Dermatitis in NC/Nga Mice Were Significantly Relieved by the Water Extract ofLiriope platyphylla. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.4.377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
|
47
|
|
48
|
Metabolism of Ginsenosides to Bioactive Compounds by Intestinal Microflora and Its Industrial Application. J Ginseng Res 2009. [DOI: 10.5142/jgr.2009.33.3.165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Lü JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009; 7:293-302. [PMID: 19601854 DOI: 10.2174/157016109788340767] [Citation(s) in RCA: 457] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications. Ginsenosides, the major pharmacologically active ingredients of ginseng, appear to be responsible for most of the activities of ginseng including vasorelaxation, antioxidation, anti-inflammation and anti-cancer. Approximately 40 ginsenoside compounds have been identified. Researchers now focus on using purified individual ginsenoside to reveal the specific mechanism of functions of ginseng instead of using whole ginseng root extracts. Individual ginsenosides may have different effects in pharmacology and mechanisms due to their different chemical structures. Among them the most commonly studied ginsenosides are Rb1, Rg1, Rg3, Re, Rd and Rh1. The molecular mechanisms and medical applications of ginsenosides have attracted much attention and hundreds of papers have been published in the last few years. The general purpose of this update is to provide information of recently described effects of ginsenosides on antioxidation, vascular system, signal transduction pathways and interaction with receptors. Their therapeutic applications in animal models and humans as well as the pharmacokinetics and toxicity of ginsenosides are also discussed in this review. This review concludes with some thoughts for future directions in the further development of ginseng compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
50
|
Lü JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009. [PMID: 19601854 DOI: 10.2174/15701609788340767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications. Ginsenosides, the major pharmacologically active ingredients of ginseng, appear to be responsible for most of the activities of ginseng including vasorelaxation, antioxidation, anti-inflammation and anti-cancer. Approximately 40 ginsenoside compounds have been identified. Researchers now focus on using purified individual ginsenoside to reveal the specific mechanism of functions of ginseng instead of using whole ginseng root extracts. Individual ginsenosides may have different effects in pharmacology and mechanisms due to their different chemical structures. Among them the most commonly studied ginsenosides are Rb1, Rg1, Rg3, Re, Rd and Rh1. The molecular mechanisms and medical applications of ginsenosides have attracted much attention and hundreds of papers have been published in the last few years. The general purpose of this update is to provide information of recently described effects of ginsenosides on antioxidation, vascular system, signal transduction pathways and interaction with receptors. Their therapeutic applications in animal models and humans as well as the pharmacokinetics and toxicity of ginsenosides are also discussed in this review. This review concludes with some thoughts for future directions in the further development of ginseng compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|