1
|
Tada R, Hidaka A, Kiyono H, Kunisawa J, Aramaki Y. Intranasal administration of cationic liposomes enhanced granulocyte-macrophage colony-stimulating factor expression and this expression is dispensable for mucosal adjuvant activity. BMC Res Notes 2018; 11:472. [PMID: 30005702 PMCID: PMC6045820 DOI: 10.1186/s13104-018-3591-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Objective Infectious diseases remain a threat to human life. Vaccination against pathogenic microbes is a primary method of treatment as well as prevention of infectious diseases. Particularly mucosal vaccination is a promising approach to fight against most infectious diseases, because mucosal surfaces are a major point of entry for most pathogens. We recently developed an effective mucosal adjuvant of cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposomes). However, the mechanism(s) underlying the mucosal adjuvant effects exerted by the cationic liposomes have been unclear. In this study, we investigated the role of granulocyte–macrophage colony-stimulating factor (GM-CSF), which was reported to act as a mucosal adjuvant, on the mucosal adjuvant activities of DOTAP/DC-chol liposomes when administered intranasally to mice. Results Here, we show that, although intranasal vaccination with cationic liposomes in combination with antigenic protein elicited GM-CSF expression at the site of administration, blocking GM-CSF function by using an anti-GM-CSF neutralizing antibody did not alter antigen-specific antibody production induced by DOTAP/DC-chol liposomes, indicating that GM-CSF may not contribute to the mucosal adjuvant activity of the cationic liposomes when administered intranasally. Electronic supplementary material The online version of this article (10.1186/s13104-018-3591-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Akira Hidaka
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
2
|
Brown BR, Lee EJ, Snow PE, Vance EE, Iwakura Y, Ohno N, Miura N, Lin X, Brown GD, Wells CA, Smith JR, Caspi RR, Rosenzweig HL. Fungal-derived cues promote ocular autoimmunity through a Dectin-2/Card9-mediated mechanism. Clin Exp Immunol 2017; 190:293-303. [PMID: 28763100 DOI: 10.1111/cei.13021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
Uveitis (intraocular inflammation) is a leading cause of loss of vision. Although its aetiology is largely speculative, it is thought to arise from complex genetic-environmental interactions that break immune tolerance to generate eye-specific autoreactive T cells. Experimental autoimmune uveitis (EAU), induced by immunization with the ocular antigen, interphotoreceptor retinoid binding protein (IRBP), in combination with mycobacteria-containing complete Freund's adjuvant (CFA), has many clinical and histopathological features of human posterior uveitis. Studies in EAU have focused on defining pathogenic CD4+ T cell effector responses, such as those of T helper type 17 (Th17) cells, but the innate receptor pathways precipitating development of autoreactive, eye-specific T cells remain poorly defined. In this study, we found that fungal-derived antigens possess autoimmune uveitis-promoting function akin to CFA in conventional EAU. The capacity of commensal fungi such as Candida albicans or Saccharomyces cerevisae to promote IRBP-triggered EAU was mediated by Card9. Because Card9 is an essential signalling molecule of a subgroup of C-type lectin receptors (CLRs) important in host defence, we evaluated further the proximal Card9-activating CLRs. Using single receptor-deficient mice we identified Dectin-2, but not Mincle or Dectin-1, as a predominant mediator of fungal-promoted uveitis. Conversely, Dectin-2 activation by α-mannan reproduced the uveitic phenotype of EAU sufficiently, in a process mediated by the Card9-coupled signalling axis and interleukin (IL)-17 production. Taken together, this report relates the potential of the Dectin-2/Card9-coupled pathway in ocular autoimmunity. Not only does it contribute to understanding of how innate immune receptors orchestrate T cell-mediated autoimmunity, it also reveals a previously unappreciated ability of fungal-derived signals to promote autoimmunity.
Collapse
Affiliation(s)
- B R Brown
- VA Portland Health Care System, Portland, OR, USA.,School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - E J Lee
- VA Portland Health Care System, Portland, OR, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - P E Snow
- VA Portland Health Care System, Portland, OR, USA
| | - E E Vance
- VA Portland Health Care System, Portland, OR, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Y Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - N Ohno
- Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - N Miura
- Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - X Lin
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - G D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - C A Wells
- The University of Melbourne Centre for Stem Cell Systems, University of Melbourne, Parkville, Victoria, Australia
| | - J R Smith
- Eye and Vision Health, Flinders University School of Medicine, Adelaide, Australia
| | - R R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - H L Rosenzweig
- VA Portland Health Care System, Portland, OR, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Hirata N, Ishibashi KI, Sato W, Nagi-Miura N, Adachi Y, Ohta S, Ohno N. β-mannosyl linkages inhibit CAWS arteritis by negatively regulating dectin-2-dependent signaling in spleen and dendritic cells. Immunopharmacol Immunotoxicol 2013; 35:594-604. [PMID: 23981001 DOI: 10.3109/08923973.2013.830124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS CAWS, Candida albicans water-soluble fraction, is an extracellular mannoprotein produced by C. albicans NBRC1385. It is a ligand of dectin-2, the C-type lectin receptor for innate immunity, and has strong potency for induction of vasculitis in DBA/2 mice. The structure of this mannoprotein is known to be modulated by the culture conditions. To clarify the structure required for vasculitis, CAWSs were prepared in the two culture conditions with or without pH control, and biological properties were compared. METHODS CAWSs prepared by the standard protocol and pH controlled at 7.0 were designated as CAWS and CAWS727, respectively. The antigenicity was detected by the anti-Candida mannan IgG. These chemical structures were assessed by nuclear magnetic resonance analysis and the lectin array system. The in vitro activity of CAWSs was tested by tumor necrosis factor-α (TNF-α) induction using bone marrow-derived dendritic cells and spleen cell cultures. RESULTS The antigenicity of CAWS727 was similar to CAWS but the nuclear magnetic resonance analysis showed a higher ratio of β-mannosyl linkages were detected in CAWS727. The lectin array showed relative affinities of CAWS727 to α-mannosyl specific lectins were weaker than those of CAWS. CAWS induced severe vasculitis in DBA/2 mice while CAWS727 did not. CAWS significantly induced TNF-α but CAWS727 did slightly. In addition, CAWS-induced TNF-α production was inhibited by mixing with CAWS727 in a concentration dependent manner. CONCLUSION The α-mannosyl linkages of Candida mannan is a key molecule for the immunotoxicity. CAWS727, which conatins β-mannosyl linkages, competitively bound to lectin receptors, and resulted in reductions in the inflammatory response.
Collapse
Affiliation(s)
- Naoto Hirata
- Department of Pharmacy, Nagano Red Cross Hospital , Nagano , Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Hozumi H, Tada R, Murakami T, Adachi Y, Ohno N. Comparative analysis of hepatic CD14 expression between two different endotoxin shock model mice: relation between hepatic injury and CD14 expression. PLoS One 2013; 8:e53692. [PMID: 23308276 PMCID: PMC3538677 DOI: 10.1371/journal.pone.0053692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo.
Collapse
Affiliation(s)
- Hiroyasu Hozumi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Rui Tada
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Taisuke Murakami
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- * E-mail:
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
5
|
Tada R, Takano Y, Murakami H, Ishibashi KI, Nagi-Miura N, Adachi Y, Ohno N. Vasculitis and anaphylactoid shock in mice induced by the polysaccharide fraction secreted into culture supernatants by the fungus Candida metapsilosis. Microbiol Immunol 2011; 55:357-65. [PMID: 21362025 DOI: 10.1111/j.1348-0421.2011.00326.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological effects of Candida metapsilosis water-soluble fraction (CMWS), prepared using a completely synthesized medium, were examined to determine whether CMWS induces vasculitis similar to that seen in Kawasaki disease, and anaphylactoid shock, in mice. It was found that intraperitoneal injection of CMWS induces coronary arteritis and i.v. injection induces acute anaphylactoid shock in mice, similar to Candida albicans water-soluble fraction (CAWS)-induced arteritis and anaphylactoid shock. The mannan structure of the polysaccharide fraction was then analyzed by performing antiserum reactivity tests and nuclear magnetic resonance spectroscopy. The mannan structure was investigated because the present authors have recently found that the mannan moiety within the polysaccharide fraction might be responsible for these pathogenic activities. The structural analysis showed that the mannan structure within CMWS expresses α-mannan residues, but not β-mannan. In addition, the mannan structure of CMWS is quite similar to that of CAWS. The present findings indicate that the polysaccharide fraction from C. metapsilosis, which is mainly composed of mannan, contributes to coronary arteritis and acute shock, and that the mannan structure could be responsible for this pathogenicity.
Collapse
Affiliation(s)
- Rui Tada
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Tamai R, Sugamata M, Kiyoura Y. Candida albicans enhances invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microb Pathog 2011; 51:250-4. [PMID: 21742026 DOI: 10.1016/j.micpath.2011.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/25/2011] [Accepted: 06/26/2011] [Indexed: 12/19/2022]
Abstract
Although Candida albicans has been isolated from periodontal pockets, its relationship to periodontitis is unclear. In this study, we investigated the effect of C. albicans on the adhesion and invasion of Ca9-22, a human gingival epithelial cell line, and human gingival fibroblasts by Porphyromonas gingivalis. Heat-killed C. albicans and water-soluble mannoprotein-β-glucan complex from C. albicans (CAWS) did not enhance P. gingivalis adhesion or upregulate the expression of β1 integrin and ICAM-1, which are required for P. gingivalis invasion; both the epithelial cells and fibroblasts expressed dectin-1, which recognizes components of the C. albicans cell wall. However, pretreatment of Ca9-22 cells and human gingival fibroblasts with heat-killed C. albicans or CAWS significantly enhanced P. gingivalis invasion. These results suggest that C. albicans may exacerbate infectious disease by enhancing the invasion of host cells by anaerobic bacteria.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963 8611, Japan
| | | | | |
Collapse
|
7
|
Nathan AT, Peterson EA, Chakir J, Wills-Karp M. Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. J Allergy Clin Immunol 2009; 123:612-8. [PMID: 19178937 DOI: 10.1016/j.jaci.2008.12.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/17/2008] [Accepted: 12/03/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND House dust mite (HDM) induces allergic asthma in sensitized individuals, although the mechanisms by which HDM is sensed and recognized by the airway mucosa, leading to dendritic cell (DC) recruitment, activation, and subsequent T(H)2-mediated responses, are unknown. OBJECTIVE We sought to define the pathways by which HDM activates respiratory epithelium to induce allergic airway responses. METHODS Using a human airway epithelial cell line (16HBE14o-), we studied secretion of the DC chemokine CCL20 after exposure to HDM or other allergens, investigated components of the HDM responsible for the induction of chemokine release, and examined activation of signaling pathways. Central findings were also confirmed in primary human bronchial cells. RESULTS We demonstrate that exposure of airway epithelium to HDM results in specific and rapid secretion of CCL20, a chemokine attractant for immature DCs. The induction of CCL20 secretion is dose and time dependent and quite specific to HDM because other allergens, such as ragweed pollen and cockroach antigen, fail to significantly induce CCL20 secretion. Induction of CCL20 secretion is not protease or Toll-like receptor 2/4 dependent but, interestingly, relies on beta-glucan moieties within the HDM extract, as evidenced by the ability of other beta-glucans to competitively inhibit its secretion and by the fact that disruption of these structures by treatment of HDM with beta-glucanase significantly reduces subsequent chemokine secretion. CONCLUSION Taken together, our results describe a novel mechanism for specific pattern recognition of HDM-derived beta-glucan moieties, which initiates allergic airway inflammation and, through recruitment of DCs, might link innate pattern recognition at the airway surface with adaptive immune responses.
Collapse
Affiliation(s)
- Amy T Nathan
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | |
Collapse
|
8
|
Tada R, Nagi-Miura N, Adachi Y, Ohno N. The influence of culture conditions on vasculitis and anaphylactoid shock induced by fungal pathogen Candida albicans cell wall extract in mice. Microb Pathog 2008; 44:379-88. [DOI: 10.1016/j.micpath.2007.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 11/29/2022]
|
9
|
Tada R, Nagi-Miura N, Adachi Y, Ohno N. An Unambiguous Assignment and Structural Analysis Using Solution NMR Experiments of O-Antigen from Escherichia coli ATCC23505 (Serotype O9). Chem Pharm Bull (Tokyo) 2007; 55:992-5. [PMID: 17603187 DOI: 10.1248/cpb.55.992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial lipopolysaccharide from Escherichia coli O9 (O9 LPS) has various characteristic biological activities other than endotoxic activities. The biological activities exhibited depend on the structure of the O-antigen. The O-antigen region of O9 LPS is composed of the mannose homopolysaccharide (MHP). This structure was reported previously, but not all its proton and carbon signals were assigned. In the present study, we completely assign all proton and carbon signals of the O-antigen of O9 LPS using (1)H- and (13)C-NMR spectroscopy, including the DQF-COSY, TOCSY, NOESY, HSQC, H2BC, HSQC-TOCSY and HMBC methods.
Collapse
Affiliation(s)
- Rui Tada
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
10
|
Shinohara H, Nagi-Miura N, Ishibashi KI, Adachi Y, Ishida-Okawara A, Oharaseki T, Takahashi K, Naoe S, Suzuki K, Ohno N. Beta-mannosyl linkages negatively regulate anaphylaxis and vasculitis in mice, induced by CAWS, fungal PAMPS composed of mannoprotein-beta-glucan complex secreted by Candida albicans. Biol Pharm Bull 2006; 29:1854-61. [PMID: 16946498 DOI: 10.1248/bpb.29.1854] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans water soluble fraction (CAWS) is a water-soluble extracellular mannoprotein-beta-glucan complex obtained from the culture supernatant of Candida albicans, which grows in a chemically defined medium. CAWS induced toxic reactions, such as acute anaphylactoid reaction, by intravenous administration and coronary arteritis by intraperitoneal administration. To clarify the structure responsible for these toxic reactions, C. albicans was cultured in pH- and temperature-controlled conditions and prepared with CAWS with or without the beta-1,2-linked mannosyl segment (BM). The structure of CAWS was assessed by immunochemical and spectroscopic methodologies, and we found that CAWS prepared under the natural culture conditions contained only small amounts of BM and CAWS prepared at neutral conditions at 27 degrees C contained a significantly higher percentage of BM. Both the acute lethal toxicity and coronary arteritis induction was significantly more severe in the absence of BM. Activation of a complement pathway, the lectin pathway, by CAWS was significantly stronger in the absence of BM. These facts strongly suggest that BM linkages in CAWS negatively modulate acute and chronic toxicity of CAWS, and may be strongly related to the lectin pathway of the complement activation.
Collapse
Affiliation(s)
- Hiroyasu Shinohara
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|