1
|
Tanaka H, Yanai C, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by Cell Wall Mannoprotein Fractions of Clinically Isolated Candida Species. Med Mycol J 2020; 61:33-48. [PMID: 32863327 DOI: 10.3314/mmj.20-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances (CADS) such as the hot water extract of C. albicans and Candida water-soluble fractions (CAWS) induce coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the mannoprotein fractions (MN fractions) of clinically isolated Candida species induce vasculitis in mice. We prepared MN fractions from 26 strains of Candida species by conventional hot water extraction and compared vasculitis in DBA/2 mice. The results obtained revealed that the induction of vasculitis and resulting heart failure were significantly dependent on the species; namely, death rates on day 200 were as follows: Candida krusei (100%), Candida albicans (84%), Candida dubliniensis (47%), Candida parapsilosis (44%), Candida glabrata (32%), Candida guilliermondii (20%), and Candida tropicalis (20%). Even for C. albicans, some strains did not induce vasculitis. The present results suggest that MN-induced vasculitis is strongly dependent on the species and strains of Candida, and also that the MN fractions of some non-albicans Candida induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
2
|
Navarro-Arias MJ, Defosse TA, Dementhon K, Csonka K, Mellado-Mojica E, Dias Valério A, González-Hernández RJ, Courdavault V, Clastre M, Hernández NV, Pérez-García LA, Singh DK, Vizler C, Gácser A, Almeida RS, Noël T, López MG, Papon N, Mora-Montes HM. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence. Front Microbiol 2016; 7:1951. [PMID: 27994582 PMCID: PMC5133257 DOI: 10.3389/fmicb.2016.01951] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite the significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1Δ null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with an atypical role for O-linked mannans.
Collapse
Affiliation(s)
- María J Navarro-Arias
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato Guanajuato, Mexico
| | - Tatiana A Defosse
- Biomolécules et Biotechnologies Végétales, Université François-Rabelais de ToursTours, France; Groupe d'Etude des Interactions Hôte-Pathogène, Université d'AngersAngers, France
| | - Karine Dementhon
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Université Bordeaux 2, UMR-Centre National de la Recherche Scientifique 5234 Bordeaux, France
| | - Katalin Csonka
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Erika Mellado-Mojica
- Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional (IPN) Guanajuato, Mexico
| | - Aline Dias Valério
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina Londrina, Brazil
| | - Roberto J González-Hernández
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato Guanajuato, Mexico
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours Tours, France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours Tours, France
| | - Nahúm V Hernández
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato Guanajuato, Mexico
| | - Luis A Pérez-García
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato Guanajuato, Mexico
| | | | - Csaba Vizler
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Ricardo S Almeida
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina Londrina, Brazil
| | - Thierry Noël
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Université Bordeaux 2, UMR-Centre National de la Recherche Scientifique 5234 Bordeaux, France
| | - Mercedes G López
- Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional (IPN) Guanajuato, Mexico
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène, Université d'Angers Angers, France
| | - Héctor M Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato Guanajuato, Mexico
| |
Collapse
|
3
|
Koyama T, Makita M, Shibata N, Okawa Y. Influence of oxidative and osmotic stresses on the structure of the cell wall mannan of Candida albicans serotype A. Carbohydr Res 2009; 344:2195-200. [DOI: 10.1016/j.carres.2009.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/08/2009] [Accepted: 08/01/2009] [Indexed: 11/25/2022]
|
6
|
Shinohara H, Nagi-Miura N, Ishibashi KI, Adachi Y, Ishida-Okawara A, Oharaseki T, Takahashi K, Naoe S, Suzuki K, Ohno N. Beta-mannosyl linkages negatively regulate anaphylaxis and vasculitis in mice, induced by CAWS, fungal PAMPS composed of mannoprotein-beta-glucan complex secreted by Candida albicans. Biol Pharm Bull 2006; 29:1854-61. [PMID: 16946498 DOI: 10.1248/bpb.29.1854] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans water soluble fraction (CAWS) is a water-soluble extracellular mannoprotein-beta-glucan complex obtained from the culture supernatant of Candida albicans, which grows in a chemically defined medium. CAWS induced toxic reactions, such as acute anaphylactoid reaction, by intravenous administration and coronary arteritis by intraperitoneal administration. To clarify the structure responsible for these toxic reactions, C. albicans was cultured in pH- and temperature-controlled conditions and prepared with CAWS with or without the beta-1,2-linked mannosyl segment (BM). The structure of CAWS was assessed by immunochemical and spectroscopic methodologies, and we found that CAWS prepared under the natural culture conditions contained only small amounts of BM and CAWS prepared at neutral conditions at 27 degrees C contained a significantly higher percentage of BM. Both the acute lethal toxicity and coronary arteritis induction was significantly more severe in the absence of BM. Activation of a complement pathway, the lectin pathway, by CAWS was significantly stronger in the absence of BM. These facts strongly suggest that BM linkages in CAWS negatively modulate acute and chronic toxicity of CAWS, and may be strongly related to the lectin pathway of the complement activation.
Collapse
Affiliation(s)
- Hiroyasu Shinohara
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|