1
|
Abbasnezhad A, Salami F, Mohebbati R. A review: Systematic research approach on toxicity model of liver and kidney in laboratory animals. Animal Model Exp Med 2022; 5:436-444. [PMID: 35918879 PMCID: PMC9610155 DOI: 10.1002/ame2.12230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Therapeutic experiments are commonly performed on laboratory animals to investigate the possible mechanism(s) of action of toxic agents as well as drugs or substances under consideration. The use of toxins in laboratory animal models, including rats, is intended to cause toxicity. This study aimed to investigate different models of hepatotoxicity and nephrotoxicity in laboratory animals to help researchers advance their research goals. The current narrative review used databases such as Medline, Web of Science, Scopus, and Embase and appropriate keywords until June 2021. Nephrotoxicity and hepatotoxicity models derived from some toxic agents such as cisplatin, acetaminophen, doxorubicin, some anticancer drugs, and other materials through various signaling pathways are investigated. To understand the models of renal or hepatotoxicity in laboratory animals, we have provided a list of toxic agents and their toxicity procedures in this review.
Collapse
Affiliation(s)
- Abbasali Abbasnezhad
- Department of PhysiologyFaculty of Medicine, Gonabad University of Medical SciencesGonabadIran
| | - Fatemeh Salami
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Reza Mohebbati
- Department of PhysiologyFaculty of Medicine, Gonabad University of Medical SciencesGonabadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Geraniol protects against cyclosporine A-induced renal injury in rats: Role of Wnt/β-catenin and PPARγ signaling pathways. Life Sci 2021; 291:120259. [PMID: 34968469 DOI: 10.1016/j.lfs.2021.120259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
AIMS The nephrotoxicity of cyclosporine A (CsA) limits its use as an immunosuppressant. Wnt/β-catenin signaling is involved in the pathogenesis of both acute and chronic kidney disease, and it is inhibited by peroxisome proliferator-activated receptor gamma (PPARγ). We aimed to evaluate if geraniol, which can modulate both PPARγ and Wnt signaling, could protect against CsA-induced nephrotoxicity. MATERIALS AND METHODS Rats (6 groups) received the vehicle or a combination of CsA (30 mg/kg) with the vehicle, geraniol (50, 100, or 200 mg/kg), or the PPARγ agonist pioglitazone for 4 weeks. Blood pressure (BP), markers of renal injury (serum urea, serum creatinine, blood urea nitrogen, and urinary NAG), oxidative stress (glutathione peroxidase), inflammation (ICAM-1, IL-18, and NF-κB), apoptosis (caspase-3), extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], and fibrosis (TGF-β1, Smad3, and Smad7) were assessed. Renal histological analysis, Wnt signaling components (Wnt-4/β-catenin and E-cadherin), and PPARγ expression were evaluated. KEY FINDINGS CsA group had renal injury, as well as increased BP, renal oxidative stress, inflammation, and fibrosis. The latter changes were associated with altered renal architecture, active Wnt signaling (higher Wnt-4 and β-catenin expression and E-cadherin down-regulation), and lower PPARγ levels. Geraniol protected against kidney damage and the associated biochemical and histomorphological changes in a dose-dependent manner. The latter effects were comparable or superior to those of pioglitazone. SIGNIFICANCE The down-regulation of Wnt/β-catenin and the increase in PPARγ by geraniol suggest that both pathways are involved in its renoprotective potential. The study highlights geraniol as a valuable protective asset against chemically induced nephrotoxicity.
Collapse
|
3
|
Avocado Seeds Relieve Oxidative Stress-Dependent Nephrotoxicity but Enhance Immunosuppression Induced by Cyclosporine in Rats. Antioxidants (Basel) 2021; 10:antiox10081194. [PMID: 34439442 PMCID: PMC8388998 DOI: 10.3390/antiox10081194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/24/2023] Open
Abstract
Cyclosporine A's (CsA) immunosuppressive effect makes it an ideal drug for organ transplantation. However, CsA's uses are restricted due to its side effects. We investigated the effects of avocado seed (AvS) powder on CsA-induced nephrotoxicity and immunosuppression in rats. The injection of CsA (5 mg/kg, subcutaneously, for 10 days) increased serum levels of creatinine, uric acid, and urea, and the renal levels of the malondialdehyde. It decreased creatinine clearance and the renal activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and Na+/K+ ATPase. The administration of CsA also significantly downregulated the renal expression of interferon-gamma, tumor necrosis factor-alpha, interleukin 1 beta, monocyte chemotactic protein 1, intercellular adhesion molecule-1, and vascular cell adhesion molecule 1 genes, and increased renal DNA damage. Histopathological examination confirmed the biochemical and molecular alterations that accompanied CsA nephrotoxicity. All CsA-induced deleterious effects, except immunosuppression, were ameliorated by feeding rats on a basal diet supplemented with 5% AvS powder for 4 weeks. Importantly, AvS also maximized CsA's immunosuppressive effect. These findings suggest a potential ameliorative effect of AvS on CsA-induced nephrotoxicity, and AvS enhances CsA's immunosuppressive effect. Therefore, AvS might be used in combination with CsA in transplantation treatment to relieve the CsA-induced nephrotoxicity.
Collapse
|
4
|
El-Bassossy HM, Hassanien MA, Bima A, Ghoneim FM, Elsamanoudy AZ. Renal Oxidative Stress and Inflammatory Response in Perinatal Cyclosporine-A Exposed Rat Progeny and its Relation to Gender. J Microsc Ultrastruct 2019; 7:44-49. [PMID: 31008055 PMCID: PMC6442325 DOI: 10.4103/jmau.jmau_52_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background and Aim of the Work: The current study postulated that cyclosporine A (CSA) could induce gender-specific renal damage. Hence, the current study aims to investigate the nephrotoxic effect of perinatal exposure of male and female rat progeny to CSA. Moreover, it aims to evaluate the oxidative stress and inflammation as a possible pathophysiologic mechanism. Materials and Methods: Female rats were randomly allocated to two groups of four and assigned to undergo either CSA (15 mg/kg/day; the 6th day after conception and continuing until the progeny were weaned) or vehicle treatment as control groups. At the age of 6 weeks, the progeny were divided into the following four groups: male progeny of control-group mothers (M-vehicle, 7); male progeny of CSA-treated mothers (M-CSA, 9); female progeny of control-group mothers (F-vehicle, 7); and female progeny of CSA-treated mothers (F-CSA, 6). Serum adiponectin, tumor necrosis factor-α (TNF-α) and creatinine, creatinine clearance, and urinary 8-isoprostane were measured. Histopathological examination by hematoxylin and eosin stain of Kidney was carried out. Results: Proteinuria and decreased creatinine clearance are significant in M-CSA than M-vehicle and F-CSA. 8-isoprostane is lower in F-CSA than F-vehicle. Increased TNF-α and decreased adiponectin levels in M-CSA than M-vehicle were observed. No significant differences were found in female rat groups. Conclusion: From the current study, it could be concluded that CSA could induce renal inflammation as well as oxidative stress that may explain the impaired renal function. The sex difference was a prominent finding in their vulnerability to CSA effects.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohammed A Hassanien
- Assessment Centre and Medical Education Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.,Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Abdulhadi Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma M Ghoneim
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Zaky Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Liu C, Zhu P, Fujino M, Isaka Y, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhuang J, Li XK. 5-aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy. Biochem Biophys Res Commun 2019; 508:583-589. [PMID: 30514440 DOI: 10.1016/j.bbrc.2018.11.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cyclosporine-A (CsA) is an immunosuppressant indicated for various immunological diseases; however, it can induce chronic kidney injury. Oxidative stress and apoptosis play a crucial role in CsA-induced nephrotoxicity. The present study evaluated the protective effect of combining 5-aminolaevulinic acid with iron (5-ALA/SFC), a precursor of heme synthesis, to enhance HO-1 activity against CsA-induced chronic nephrotoxicity. METHODS Mice were divided into three groups: the control group (using olive oil as a vehicle), CsA-only group, and CsA+5-ALA/SFC group. After 28 days, the mice were sacrificed, and blood and kidney samples were collected. In addition to histological and biochemical examination, the mRNA expression of proinflammatory and profibrotic cytokines was assessed. RESULTS Renal function in the 5-ALA/SFC treatment group as assessed by the serum creatinine and serum urea nitrogen levels was superior to that of the CsA-only treatment group, demonstrating that 5-ALA/SFC significantly attenuated CsA-induced kidney tissue inflammation, fibrosis, apoptosis, and tubular atrophy, as well as reducing the mRNA level of TNF-α, IL-6, TGF-β1, and iNOS while increasing HO-1. CONCLUSION The activity of 5-ALA/SFC has important implications for clarifying the mechanism of HO-1 activity in CsA-induced nephrotoxicity and may provide a favorable basis for clinical therapy.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitaka Isaka
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
6
|
Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, autophagy, and signalings. Food Chem Toxicol 2018; 118:889-907. [DOI: 10.1016/j.fct.2018.06.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
|
7
|
El-Bassossy HM, Awan Z, El-Mas MM. Perinatal ciclosporin A exposure elicits sex-related cardiac dysfunction and inflammation in the rat progeny. Toxicol Lett 2017; 281:35-43. [DOI: 10.1016/j.toxlet.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
|
8
|
Akool ES. Molecular mechanisms of the protective role of wheat germ oil against cyclosporin A-induced hepatotoxicity in rats. PHARMACEUTICAL BIOLOGY 2015; 53:1311-1317. [PMID: 25858514 DOI: 10.3109/13880209.2014.980584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Cyclosporin A (CsA) is one of the most important immunosuppressive agents. However, its clinical use is strongly limited by several side effects including hepatotoxicity which remains a major clinical problem. Involvement of reactive oxygen species (ROS) in CsA-induced hepatotoxicity has been reported. OBJECTIVE This study investigates the potential protective role of wheat germ oil (WGO) as an antioxidant against CsA-induced hepatotoxicity. MATERIALS AND METHODS Twenty-four male Wistar albino rats (six animals in each group) received castor oil, the vehicle of CsA i.p. (control) or either CsA (25 mg/kg/d i.p.), WGO (900 mg/kg/d by oral gavage), or CsA in combination with WGO daily for 21 d. RESULTS CsA administration significantly increased serum levels of the liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In addition, an increase in lipid peroxidation, inducible NO-synthase (iNOS), and NF-κB expression were observed in hepatic tissues of CsA-alone-treated rats. Furthermore, significant reduction in the hepatic content of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) was also observed in CsA-alone-treated animals. Moreover, histopathological changes occurred in CsA-alone-treated rats. Concomitant administration of WGO along with CsA improved all these parameters. Most interestingly, the immunosuppressive effect of CsA was not affected by WGO. CONCLUSION The present study suggests that concomitant use of WGO might be useful in reducing liver toxicity induced by CsA via inhibition of ROS, iNOS, and NF-κB expression.
Collapse
Affiliation(s)
- El-Sayed Akool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University , Cairo , Egypt
| |
Collapse
|
9
|
Lee J. Use of antioxidants to prevent cyclosporine a toxicity. Toxicol Res 2013; 26:163-70. [PMID: 24278520 PMCID: PMC3834483 DOI: 10.5487/tr.2010.26.3.163] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/30/2010] [Accepted: 08/11/2010] [Indexed: 01/05/2023] Open
Abstract
Cyclosporine A (CsA) is a potent immunosuppressor that is widely used in transplant surgery and the treatment of several autoimmune diseases. However, major side effects of CsA such as nephrotoxicity, hepatotoxicity, neurotoxicity and cardiovascular diseases have substantially limited its usage. Although molecular mechanisms underlying these adverse effects are not clearly understood, there is some evidence that suggests involvement of reactive oxygen species (ROS) . In parallel, protective effects of various antioxidants have been demonstrated by many research groups. Extensive studies of CsA-induced nephrotoxcity have confirmed that the antioxidants can restore the damaged function and structure of kidney. Subsequently, there have appeared numerous reports to demonstrate the positive antioxidant effects on liver and other organ damages by CsA. It may be timely to review the ideas to envisage the relationship between ROS and the CsA-induced toxicity. This review is comprised of a brief description of the immunosuppressive action and the secondary effects of CsA, and a synopsis of reports regarding the antioxidant treatments against the ROS-linked CsA toxicity. A plethora of recent reports suggest that antioxidants can help reduce many CsA’s adverse effects and therefore might help develop more effective CsA treatment regimens.
Collapse
Affiliation(s)
- Jinhwa Lee
- Dept. of Clinical Lab Science, Dongseo University, Jurea 2-dong, Sasang-gu, Busan 617-716, Korea
| |
Collapse
|
10
|
Ishikawa A, Homma Y. Beneficial effect of ubiquinol, the reduced form of coenzyme Q10, on cyclosporine nephrotoxicity. Int Braz J Urol 2013; 38:230-4; discussion 234. [PMID: 22555041 DOI: 10.1590/s1677-55382012000200011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cyclosporine (CyA) nephrotoxicity is partly due to some oxidative stress. Ubiquinol, the reduced form of coenzyme Q10 (rCoQ10), has recently gained attention for its anti-oxidative potential. The aim of this study is to evaluate the effect of rCoQ10 on a CyA nephrotoxic rat model. MATERIALS AND METHODS Six-week-old male Wistar rats were divided into three groups (five animals each). Group 1 received a medium only. Group 2 received 30 mg/kg/day of CyA only. Group 3 received both the same dose of CyA and 600 mg/kg/day of rCoQ10. CyA and rCoQ10 were both given orally for four weeks. Systolic blood pressure (BP), daily urinary albumin secretion (u-Alb), serum creatinine (s-Cr) level, and super-oxide anion (SO) level in the renal tissue were measured and compared among those three groups. Immunohistochemistry using an antibody for the transforming growth factor-beta (TGF-beta) was also examined. RESULTS BPs, u-Albs, s-Crs, and SO levels of groups 1, 2, and 3 were 114 ± 3, 132 ± 4, and 129 ± 5 mmHg, 2.6 ± 0.5, 42.1 ± 7.2, and 22.8 ± 3.4 micro-g/day, 1.1 ± 0.2, 1.7 ± 0.2, and 1.3 ± 0.2 mg/dL, and 224 ± 84, 1251 ± 138, and 512 ± 109 RLU/g kidney respectively. U-Albs, s-Crs, and SO levels were signifi cantly ameliorated by rCoQ10. Micro-vacuolar changes and TGF-beta positive deposits in the proximal renal tubular cells of CyA group rats disappeared in those of CyA and rCoQ10 group rats. CONCLUSION RCoQ10, an antioxidants, may have potential for preventing CyA nephrotoxicity.
Collapse
Affiliation(s)
- Akira Ishikawa
- Department of Urology, Graduate School of Medicine, the University of Tokyo, Japan.
| | | |
Collapse
|
11
|
Sato T, Ishikawa A, Homma Y. Effect of reduced form of coenzyme Q10 on cyclosporine nephrotoxicity. EXP CLIN TRANSPLANT 2012. [PMID: 23194328 DOI: 10.6002/ect.2012.0126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Cyclosporine, a potent immunosuppressant, has nephrotoxic adverse effects that may be mediated by oxidative stress. The reduced form of coenzyme Q10 has antioxidant effects. The aim of the present study was to evaluate the effect of the reduced form of coenzyme Q10 on cyclosporine nephrotoxicity. MATERIALS AND METHODS Six-week-old male Wistar rats were divided into 3 groups (10 animals each). Group 1 (control) received olive oil only. Group 2 received cyclosporine (30 mg/kg/d, which is an experimentally nephrotoxic dose). Group 3 received cyclosporine (30 mg/kg/d) and the reduced form of coenzyme Q10 (600 mg/kg/d). The cyclosporine and the reduced form of coenzyme Q10 were given orally for 4 weeks. Daily urinary albumin excretion, serum creatinine level, and urinary 8-hydroxydeoxyguanosine level were measured, and renal tissue was evaluated by immunohistochemistry. RESULTS In rats treated with cyclosporine and the reduced form of coenzyme Q10 (group 3), there were significantly less abnormalities in mean urinary albumin excretion (group 1: 2.8 ± 0.5; group 2: 41 ± 7; group 3: 21 ± 4 μg/d), serum creatinine (group 1: 1.0 ± 0.2; group 2: 1.8 ± 0.4; group 3: 1.4 ± 0.3 mg/dL), and urine 8-hydroxydeoxyguanosine levels (group 1: 7 ± 3; group 2: 10 ± 3; group 3: 7 ± 1 mg/mL creatinine) than rats treated with cyclosporine alone (group 2). There were 8-hydroxydeoxyguanosine deposits seen in the proximal tubular cells of group 2 that were not present in rats treated with the reduced form of coenzyme Q10 (group 3). CONCLUSIONS The reduced form of coenzyme Q10 may prevent or minimize cyclosporine nephrotoxicity by an antioxidant effect.
Collapse
Affiliation(s)
- Toshikazu Sato
- Department of Urology, Tokyo Teishin Hospital, Chiyoda-ku, Tokyo, Japan
| | | | | |
Collapse
|
12
|
Christians U, Klawitter J, Klawitter J, Brunner N, Schmitz V. Biomarkers of immunosuppressant organ toxicity after transplantation: status, concepts and misconceptions. Expert Opin Drug Metab Toxicol 2011; 7:175-200. [PMID: 21241200 DOI: 10.1517/17425255.2011.544249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION A major challenge in transplantation is improving long-term organ transplant and patient survival. Immunosuppressants protect the transplant organ from alloimmune reactions, but sometimes also exhibit limiting side effects. The key to improving long-term outcome following transplantation is the selection of the correct immunosuppressive regimen for an individual patient for minimizing toxicity while maintaining immunosuppressive efficacy. AREAS COVERED Proteomics and metabolomics have the potential to develop sensitive and specific diagnostic tools for monitoring early changes in cell signal transduction, regulation and biochemical pathways. Here, we review the steps required for the development of molecular markers from discovery, mechanistic and clinical qualification to regulatory approval, and present a critical discussion of the current status of molecular marker development as relevant for the management and individualization of immunosuppressive drug regimens. EXPERT OPINION Although metabolomics and proteomics-based studies have yielded several candidate molecular markers, most published studies are poorly designed, statistically underpowered and/or often have not gone beyond the discovery stage. Most molecular marker candidates are still at an early stage. Due to the high complexity of and the resources required for diagnostic marker development, initiatives and consortia organized and supported by funding agencies and regulatory agencies will be critical.
Collapse
Affiliation(s)
- Uwe Christians
- University of Colorado, Department of Anesthesiology, 1999 North Fitzsimons Parkway, Bioscience East, Suite 100, Aurora, CO 80045-7503, USA.
| | | | | | | | | |
Collapse
|
13
|
Klawitter J, Haschke M, Kahle C, Dingmann C, Klawitter J, Leibfritz D, Christians U. Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. Br J Clin Pharmacol 2011; 70:241-51. [PMID: 20653677 DOI: 10.1111/j.1365-2125.2010.03689.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THE SUBJECT * Ciclosporin's nephrotoxicity initially targets the proximal tubule and is, at least in part, driven by increased formation of oxygen radicals. * (1)H-nuclear magnetic resonance spectroscopy (NMR)- and mass spectrometry (MS)-based biochemical profiling (metabolomics) allows for the sensitive detection of metabolite pattern changes in urine. * In systematic studies in rats we showed that ciclosporin caused urine metabolite pattern changes typical for proximal tubule damage and that these pattern changes seemed to be more sensitive than established clinical kidney function markers such as serum creatinine concentrations. WHAT THIS PAPER ADDS * This study showed that urine metabolite pattern changes as assessed by (1)H-NMR and HPLC-MS are sensitive enough to detect the effect of ciclosporin as early as 4 h after a single oral dose. * In our previous rat studies, changes in urine metabolite pattern in response to ciclosporin translated into healthy humans, indicating the involvement of the same toxicodynamic mechanisms. * The results provide proof of concept for further development of this combination molecular marker strategy into diagnostic tools for the detection and monitoring of drug nephrotoxicity. AIMS The immunosuppressant ciclosporin is an efficient prophylaxis against transplant organ rejection but its clinical use is limited by its nephrotoxicity. Our previous systematic studies in the rat indicated urine metabolite pattern changes to be sensitive indicators of the negative effects of ciclosporin on the kidney. To translate these results, we conducted an open label, placebo-controlled, crossover study assessing the time-dependent toxicodynamic effects of a single oral ciclosporin dose (5 mg kg(-1)) on the kidney in 13 healthy individuals. METHODS In plasma and urine samples, ciclosporin and 15-F(2t)-isoprostane concentrations were assessed using HPLC-MS and metabolite profiles using (1)H-NMR spectroscopy. RESULTS The maximum ciclosporin concentrations were 1489 +/- 425 ng ml(-1) (blood) and 2629 +/- 1308 ng ml(-1) (urine). The increase in urinary 15-F(2t)-isoprostane observed 4 h after administration of ciclosporin indicated an increase in oxidative stress. 15-F(2t)-isoprostane concentrations were on average 2.9-fold higher after ciclosporin than after placebo (59.8 +/- 31.2 vs. 20.9 +/- 19.9 pg mg(-1) creatinine, P < 0.02). While there were no conclusive changes in plasma 15-F(2t)-isoprostane concentrations or metabolite patterns, non-targeted metabolome analysis using principal components analysis and partial least square fit analysis revealed significant changes in urine metabolites typically associated with negative effects on proximal tubule cells. The major metabolites that differed between the 4 h urine samples after ciclosporin and placebo were citrate, hippurate, lactate, TMAO, creatinine and phenylalanine. CONCLUSION Changes in urine metabolite patterns as a molecular marker are sufficiently sensitive for the detection of the negative effects of ciclosporin on the kidney after a single oral dose.
Collapse
Affiliation(s)
- Jost Klawitter
- Department of Anesthesiology, University of Colorado, Denver, CO 80045-7503, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. METHODS The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-kbeta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. RESULTS CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-kbeta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. CONCLUSIONS Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Collapse
|
15
|
Yu KH, Maeng HJ, Chung SJ. Functional Implications of Transporters Under Nitrosative Stress Conditions. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.3.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Sharma A, Jain S, Gupta R, Banerjee KG, Guleria S, Agarwal SK, Dinda AK. Ultrastructural alterations in endothelial mitochondria are associated with enhanced nitrotyrosine accumulation and progressive reduction of VEGF expression in sequential protocol renal allograft biopsies with calcineurin inhibitor toxicity. Transpl Int 2010; 23:407-16. [DOI: 10.1111/j.1432-2277.2009.00988.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Soleimani H, Ranjbar A, Baeeri M, Mohammadirad A, Khorasani R, Yasa N, Abdollahi M. Rat Plasma Oxidation Status After Nigella Sativa L. Botanical Treatment in CCL4-Treated Rats. Toxicol Mech Methods 2008; 18:725-31. [DOI: 10.1080/15376510802232233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hengameh Soleimani
- Laboratory of Toxicology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Ranjbar
- Laboratory of Toxicology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Laboratory of Toxicology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Mohammadirad
- Laboratory of Toxicology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Khorasani
- Laboratory of Toxicology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narguess Yasa
- Laboratory of Pharmacognosy, Faculty of Pharmacy, and Medicinal Plants Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Laboratory of Toxicology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Hudes ML, McCann JC, Ames BN. Unusual clustering of coefficients of variation in published articles from a medical biochemistry department in India. FASEB J 2008; 23:689-703. [DOI: 10.1096/fj.08-108910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark L. Hudes
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| | - Joyce C. McCann
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| | - Bruce N. Ames
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| |
Collapse
|
19
|
Zhu H, Zhang L, Amin AR, Li Y. Coordinated upregulation of a series of endogenous antioxidants and phase 2 enzymes as a novel strategy for protecting renal tubular cells from oxidative and electrophilic stress. Exp Biol Med (Maywood) 2008; 233:753-65. [PMID: 18408143 DOI: 10.3181/0801-rm-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In view of the crucial involvement of oxidative and electrophilic stress in various kidney disorders, this study was undertaken to test the hypothesis that pharmacologically-mediated coordinated upregulation of endogenous renal antioxidants and phase 2 enzymes is an effective strategy for renal protection. Notably, studies on the pharmacological inducibility of a series of antioxidants and phase 2 enzymes in renal tubular cells are lacking. Here we reported that incubation of normal rat kidney (NRK-52E) proximal tubular cells with low micromolar concentrations (10-50 microM) of the cruciferous nutraceutical, 1,2-dithiole-3-thione (D3T), led to a significant concentration-dependent induction of a wide spectrum of antioxidants and phase 2 enzymes, including catalase (CAT), reduced form of glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1), and heme oxygenase (HO). We further observed that D3T treatment also increased the protein and mRNA expression for CAT, gamma-glutamylcysteine ligase, GR, GST-A, GST-M, NQO1, and HO-1. Incubation of the renal tubular cells with H(2)O(2), SIN-1-derived peroxynitrite, or 4-hydroxy-2-nonenal led to concentration-dependent decreases in cell viability. Pretreatment of the renal tubular cells with 10-50 microM D3T afforded remarkable protection against the nephrocytotoxicity elicited by the above oxidative and electrophilic species. The D3T-mediated cytoprotection showed a concentration-dependent relationship. Taken together, this study for the first time comprehensively characterized the inducibility by a unique nutraceutical of a wide spectrum of antioxidative and phase 2 defenses in renal tubular cells at the levels of enzyme activity as well as protein and mRNA expression, and demonstrated that such a coordinated upregulation of cellular defenses led to remarkable protection of renal tubular cell from oxidative and electrophilic stress. Because of the crucial role of oxidative and electrophilic stress in inflammatory injury, D3T-mediated coordinated induction of endogenous antioxidative and phase 2 defenses may also serve as an important anti-inflammatory mechanism in kidneys.
Collapse
Affiliation(s)
- Hong Zhu
- Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, Virginia 24060, USA
| | | | | | | |
Collapse
|